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Abstract: The role of hepatitis C virus (HCV) infection in the induction of type II mixed 
cryoglobulinemia (MCII) and the possible establishment of related lymphoproliferative 
disorders, such as B-cell non-Hodgkin lymphoma (B-NHL), is well ascertained.  
However, the molecular pathways involved and the factors predisposing to the 
development of these HCV-related extrahepatic complications deserve further 
consideration and clarification. To date, several host- and virus-related factors have been 
implicated in the progression to MCII, such as the virus-induced expansion of selected 
subsets of B-cell clones expressing discrete immunoglobulin variable (IgV) gene 
subfamilies, the involvement of complement factors and the specific role of some HCV 
proteins. In this review, we will analyze the host and viral factors taking part in the 
development of MCII in order to give a general outlook of the molecular mechanisms 
implicated. 
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1. Introduction 
 

Hepatitis C virus (HCV) infection is a major public health problem with an estimated three to four 
million people infected each year worldwide and about 170 million carriers [1]. More than 350,000 
people die annually from HCV-related liver disease, as current therapies are ineffective in a relevant 
percentage of cases, and also correlated with several side effects [1]. These estimates are even 
burdened by the extrahepatic aspects of HCV infection. In particular, about 60% of HCV-infected 
patients present cold-precipitable (cryoprecipitable) and noncryoprecipitable immune complexes that 
could be associated with the clinical onset of type II mixed cryoglobulinemia (MCII) [2]. This immune 
complex-mediated vasculitis is characterized by a primary B-cell clonal proliferation accompanied by 
the deposition of immune complexes composed of complement factors, mono/oligoclonal IgMs with 
rheumatoid factor (RF) activity bound to oligo/polyclonal IgGs that, in the case of HCV infection, are 
mostly directed against HCV proteins [3]. These data support a direct role of HCV in the pathogenesis 
of this lymphoproliferative disorder, together with the fact that 60%–80% of patients with MCII are 
infected with HCV and that effective anti-HCV treatment induces significant remissions of MCII [4]. 
However, not surprisingly, a reduction in MCII symptoms was shown also after anti-B-cell treatment 
(e.g. rituximab) suggesting a concomitant role of the pathogen and the host in the establishment of this 
autoimmune disorder [5]. 

It has been reported by several studies that about 10%–60% of HCV-infected patients presenting 
cryoglobulins are at risk of contracting symptomatic cryoglobulinemia, clinically characterized by 
association of purpura, weakness, and arthralgia, possibly complicated by severe renal and 
neurological involvement [5,6]. In more than 50% of these symptomatic patients, the clinical course is 
relatively benign with a good prognosis and survival rate [7]. However, it is not clear why some 
patients develop the above complications, even if several epidemiological risk factors have been 
identified, such as female gender (female/male ratio of about 2:1), advanced age, other associated 
autoimmune diseases, longer disease duration, or higher cryocrit levels [8–12]. Moreover, 5–10% of 
patients with cryoglobulinemic vasculitis will develop B-cell malignancies, especially B-cell non-
Hodgkin lymphoma (B-NHL), differently to the general HCV-infected population (0.2%–2.6%) [7,13]. 
It is actually accepted that HCV persistence contributes to oncogenesis by greatly favoring the biased 
proliferation of immunoglobulin (Ig)-secreting B-cells clones, which together with genetic and 
environmental factors may lead to mutational events that cause the onset of a malignant lymphoma 
[7,14–17]. 

In this review, we will analyze the host and viral factors that have been described to participate in 
HCV-induced MCII pathogenesis, in order to give an overview of the molecular mechanisms 
implicated (Figure 1). 

 
2. HCV in Induction of MCII 
 
2.1. HCV 
 

HCV is an enveloped, positive-stranded RNA virus belonging to the Hepacivirus genus of the 
Flaviviridae family, causing in the majority of cases (about 80%) a chronic infection [18]. On the basis 



Viruses 2012, 4                            
 

 

2926 

of some conserved regions it can be divided in seven major genotypes and numerous subtypes, 
differently distributed in the world. In single infected patients, it circulates as a group of highly 
diversified viral variants, called quasispecies [19]. 

HCV genome is approximately 9,600 base pairs long and encodes a polyprotein precursor of about 
3,000 amino acids. It is cleaved by viral and host proteases, resulting in a series of structural (core, E1 
and E2) and nonstructural proteins (p7, NS2, NS3, NS4A, NS4B, NS5A and NS5B) [20]. Virions enter 
into the host cells, in particular hepatocytes, through a complex and finely regulated multistep process. 
In brief, the viral envelope type I membrane glycoproteins, E1 and E2 (HCV/E1-E2), allow clathrin-
mediated virus endocytosis interacting consecutively with several entry cellular cofactors such as 
glycosaminoglycans [21–23], low-density lipoprotein receptor [24,25], scavenger receptor class B type 
I [26], the tetraspanin CD81 [27], the tight-junction proteins claudin-1 and occludin, and the recently 
described Niemann-Pick C1-like 1 cholesterol absorption receptor [28–32]. As expected, the envelope 
glycoproteins, in particular HCV/E2, are the major targets of the humoral anti-HCV response and, 
therefore, the most hypervariable HCV proteins [33–35]. Recently, increasing data have been 
evidencing a very complex interplay among different regions of this protein and antibodies (Abs) 
endowed with highly diverging biological activity, suggesting “novel” mechanisms of HCV escape 
[36–39]. 

 
2.2. HCV Infection and MCII 
 

Every HCV genotype have been found in infection-related MCII, even if different reports describe 
its higher prevalence among patients infected with HCV of genotype 1 and 2a/c [40–46]. The reported 
differences in the prevalence of HCV genotypes in different regions of the world could bias this 
observation, which should be therefore interpreted with caution. 

The mechanisms by which HCV infection leads to RF production, MCII and B-NHL, as well as 
whether these conditions are related to the lack of some branches of the antiviral immune response are 
still unknown. The duration of HCV infection required for the development of cryoglobulinemic 
vasculitis is not well defined but appears to be at least a decade [47]. However, MCII does not display 
the molecular features of an in situ or occult B-cell lymphoma, as evidences show that the B-cell 
clonal expansion is not a consequence of a true neoplastic process but is probably the result of a 
pathogenic dysregulation of the host’s immune system. Cryoglobulins are thus the product of  
virus–host interactions, whose potential pathogenicity derives from several cofactors [48]. 

As anticipated, in HCV-induced MCII, cryoprecipitates are usually formed by polyclonal IgGs, 
frequently directed against the HCV core protein and the nucleic acid of HCV, as well as 
mono/oligoclonal IgM with RF activity [49,50]. Other constituents include also C1q, C-reactive 
protein (CRP), other HCV antigens (Ags), and molecules of the lectin complement pathway (MBL and 
MBL-associated serine protease-1), with the latter mostly associated with membranoproliferative 
glomerulonephritis [51]. 
Importantly, cryoprecipitation was directly correlated with anticore IgG concentration in the 
cryoprecipitate, thus inferring that its production is dependent on their selective binding to the Ag in 
the presence of IgM molecules with RF activity. Indeed, the concentration of HCV RNA in the 
cryoprecipitate was found to be 10 to 1,000-fold greater than in the supernatant [52,53]. This evidence 
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has suggested a direct role of the HCV core protein in the cryoprecipitation phenomenon [49].  
In fact, IgM RF acts as an incomplete cryoglobulin, precipitating at low temperature, probably 
following a conformational change induced by their binding to IgG with anticore reactivity.  
In particular, the core is supposed to be the most involved viral protein in cryocrit formation, as 
demonstrated in the skin and renal tissues of HCV-infected patients with MCII-associated active 
vasculitis and nephropathy, respectively [54]. In fact, nonenveloped core protein is overproduced 
during the viral life cycle, and in MCII patients, its plasmatic levels have been associated to 
cryoglobulinemia-associated symptoms [54]. Moreover, both IgG and IgM may be recognized by the 
globular heads of C1q interacting with their CH2 and CH3 or CH4 domains, respectively, and for this 
reason identified as a constituent of cryoprecipitates in some studies. In particular, IgM molecules are 
good acceptors of C1q and indeed can favor indirect binding of HCV core protein to endothelial cell 
surface [55,56]. 

Finally, HCV core protein has also been shown to promote immortalization in different cell lines, as 
well as being capable of blocking c-myc induced apoptosis and indeed could have a direct role in the 
pathogenesis of HCV-related lymphomas [57]. At this regard, focusing on animal models, core 
transgenic mice developed lymphoma with a high frequency (80%) at ages over 20 months [58]. 

 
3. Molecular Mechanisms Involved in the Establishment of HCV-Related MCII 
 
3.1. Molecular Mimicry 
 

The expression of proteins structurally similar to host defense proteins and immunomodulators is an 
important immune evasion strategy leading to persistence, a mechanism already described for several 
viruses [59,60]. Moreover, in the case of HCV, this evasion mechanism has been considered also as a 
possible factor involved in the development of MCII. In particular, some motifs on HCV/E2 
glycoprotein have been suggested to be involved in a molecular mimicry of specific Ig portions.  
More in details, the N-terminal hypervariable region (HVR1) of HCV/E2 shares some conserved 
motifs with selected human Ig variable (IgV) domains, as well as with the T-cell receptor (TCR) α- 
and β-chains [61]. This observation, together with the fact that HVR1 acts as an immunodominant 
“decoy” region diverting the humoral response, would make the frequently elicited anti-HVR1 Abs 
potentially capable of cross-reacting with other Abs or with TCR [62]. In fact, a lower rate of HVR1 
mutations in HCV-positive patients with MCII and presenting a monoclonal IgM expansion with RF 
activity has been observed [61]. This lower variability in the main target of anti-HCV humoral 
response was interpreted as a clear sign of impaired immune response, as already observed in 
agammaglobulinemic or in otherwise immunosuppressed patients [63,64]. Moreover, this low 
variability at the level of classically hypervariable regions on envelope glycoproteins has been 
observed also in the case of other viruses, like influenza viruses, suggesting a complex and well-
regulated equilibrium between host immune response and viral evasion through variability [65]. 
Interestingly, a direct correlation has been observed between the degree of similarity of HVR1 to Ig 
and TCR molecules and the degree of immune escape and persistence in humans and experimentally 
infected chimpanzees [61]. This indicates that variation in HVR1 sequence is not only correlated with 
escape from neutralizing Abs, but also to an increased similarity to Ig, suggesting an additional 
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immune evasion strategy through mimicry [66]. As a consequence, this mimicry could determine a 
chronic stimulation induced also by self-Ags, thus leading to the HCV-related lymphoproliferative 
disorders. 

In addition, a similar mimicry of Ig motifs, not based on identical linear sequences, has been 
observed between the 1238-1334 amino acid region of HCV/NS3 (in particular in the 1238-1279 and 
1251-1270 residues), the viral protease, and the CH3 domain on the Fc portion of human IgG  
(amino acid residues 345-355) [67]. This region is conserved among all IgG classes except for a single 
mutation in IgG4. Interestingly, the crystal-structure analysis of a complex between IgM RF and its 
IgG auto-Ag revealed relatively few Ab contact residues between the potential combining sites of IgM 
and IgG [68]. In particular, these residues are located on only one side of the combining site surface, 
indicating that IgM has another, entirely different, specificity than that featured by its RF activity. 
Autoreactive IgM may thus have originated in response to another Ag, such as HCV/NS3, and the 
reactivity with IgG Fc may be an unfortunate coincident cross-reactivity phenomenon. 

At this regard, certain VH subfamily genes, like the VH4-34, have been described as endowed of 
binding activity outside the CDRs as clearly evidenced in the case of cold agglutinin-related disease 
[69,70]. This feature is characteristic of B-cell super-Ags that are supposed to directly activate B cells. 
As explained more in details below, this could be the case also for the HCV/E2 glycoprotein, due to its 
ability to stimulate the expansion of a restricted set of VH and VL subfamily expressing B cells 
[17,71,72]. A similar behavior has also been described for staphylococcal enterotoxins A and D, that 
function as human B-cell super-Ags rescuing B cell-expressing VH3 and VH4 (including VH4-34) 
genes inducing cell survival in in vitro experiments, and has also been suggested for HIV gp120 [73]. 
Moreover, certain portions of the FRs seem to be important for super-Ag binding, and thus determinant 
in the case of a super-Ag-driven selective pressure [70]. 

Finally, considering the HCV core protein participation in the formation of immune complexes and 
suppression of T-cell response by interacting with the globular domain of C1q complement receptor 
(gC1qR), it has been suggested that this interaction may play a key role in determining complement 
activation, a critical interdependent regulator of the size and solubility of immune aggregates 
[55,56,74]. In particular, the structural similarity between HCV core Ag and C1q may explain the 
presence of cross-reactive anti-C1q in HCV-associated MCII [56]. 

 
3.2. HCV Lymphotropism and Interaction with CD81 
 

Early after its discovery, it was shown that HCV is also a lymphotropic virus, thus suggesting its 
direct role in lymphoproliferative disorders [75,76]. Interestingly, a lymphotropic isolate of HCV  
(SB strain) has been obtained from an infected B-cell lymphoma that produces IgM displaying 
reactivity against the HCV/NS3 protein [77]. Moreover, several studies have described the presence of 
negative-stranded HCV RNA in B lymphocytes, but these observations were not confirmed in other 
works [78,79]. 

HCV/E2 Ag binding to the ubiquitously expressed CD81 receptor on B-cells, as part of the 
CD81/CD19/CD21 complex, and concomitantly to close anti-HCV/E2 B cell receptors (BCR), could 
induce a strong B-cell proliferation signal. [80,81]. The binding of HCV/E2 to CD81 induces  
double-strand DNA breaks and hypermutation of VH (that has been observed also using anti-CD81 
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Abs) that lower Ab affinity and Ab-mediated complement-dependent cytotoxicity and consequently 
Ab-mediated neutralization, suggesting a novel escape mechanism of HCV [82]. This process was 
demonstrated to be dependent on activation-induced cytidine deaminase and related to an increase in 
the production of TNF-α [83,84]. Moreover, an Ig cloned from B-NHL biopsy specimens have been 
found to bind HCV/E2 [85]. 

Indeed, it has been postulated that also anti-HCV IgG complexes with the virus and HCV 
lipoproteins (VLDL) complexes may act as another B-cell super-Ags inducing the synthesis of non-
HCV reactive IgM with RF activity [86]. Then, these auto-Abs, in turn, form immune complexes, 
which circulate throughout the body and are deposited in small to medium blood vessels, resulting in 
complement activation and extrahepatic injury. 

 
3.3. HCV-Restricted Induction of Determined Ig VH and Vκ Subfamily Genes 
 

Several studies demonstrated the presence, in patients with HCV-related MCII, of IgV gene 
mutations compatible with a germinal center (GC) or post-GC derivation, a replacement/silent (R/S) 
mutation ratio consistent with the maintenance of a functional structure of the BCR, and the presence 
of intraclonal heterogeneity. Conceivably, the similarity in the structure of the variable BCR region 
and the restricted recruitment of certain IgV gene subfamilies, both for heavy and light chains, may 
account for selection of B cells expressing specific and similar reactivity. This suggests the possible 
role of a common Ag, possibly endowed of super-Ag-like features [87–91]. 

In particular, the WA cross-idiotype Abs, frequently encountered among IgMκ type II mixed 
cryoglobulins, possess heavy chains belonging to discrete VH subfamily genes, such as VH1-69 and 
VH3-7 paired with specific Vκ products, such as Vκ3-20 and Vκ3-15, respectively [92]. In fact, it has 
been observed a major involvement of Vκ expressing B cells, as demonstrated by highly skewed κ/λ 
ratios and as corroborated by the Vκ usage belonging to these restricted subfamily gene segments.  
In particular, Vκ3 genes utilize a Jκ1 joining segment for expression, while VH1 genes preferentially 
use a D3-22 diversity gene segments, with VH1-69 rearranging to JH4 and D region consensus 1, and 
VH3-7 rearranging to JH3 or JH4 gene segments and D region consensus 2 [93]. Other restricted Ig 
VH subfamilies have been described in HCV infection and HCV-related lymphoproliferative 
disorders. Among them the mostly described are the previously mentioned VH4-34 as well as the 
VH4-59, VH3-7, VH3-21, VH3-23, VH3-30 and VH3-48 [94,95]. 

VH1-69 is certainly the most recurrent and described Ig VH subfamily induced during anti-HCV 
infection [96–99], as well as against other viral pathogens determining acute infections, like influenza 
viruses [100–106], and chronic infections, like HIV [107,108]. This VH subfamily gene commonly 
encodes polyreactive natural Abs and, in HCV-associated cryoglobulinemic patients, it frequently 
undergoes somatic mutation, probably during affinity maturation. Again, this observation further 
suggests that HCV-associated MCII and lymphomas may originate in B cells responding to a common 
Ag. In particular, the VH1-69 gene is highly represented in the anti-HCV/E2 humoral response 
[71,109]. Preferential use of this gene has also been seen in 10%–20% of patients with CD5+ B cell 
chronic lymphocytic leukaemia [45,110]. In addition, biased use of VH1-69 has been demonstrated for 
salivary gland mucosa-associated lymphoid tissue (MALT) lymphomas in which 61% of the patients 
express this gene [111].  
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Moreover, a significant homology among CDR3 belonging to VH1-69 expanded memory B cells of 
a patient with HCV-associated MCII and the correspondent region amplified from a monoclonal 
nonneoplastic B-cell expansion of a Sjögren’s syndrome patient has been described [111].  
This suggests that the stimulatory agents underlying these disorders may share common antigenic 
determinants. Moreover, in the same report, in all the analyzed patients with HCV-associated MCII, 
18%–98% of circulating B cells express the VH1-69 gene and, in one-third of these patients, these 
cells coexpress the Vκ3-20 gene, constituting the previously mentioned WA cross-idiotype 
[47,71,110,112]. In fact, it has been described that in HCV-infected patients, although the absolute 
number of circulating B cells was within the normal limits, in some cases, they were almost 
completely represented by VH1-69 monoclonal B cells and, in patients that had in addition to HCV-
associated MCII a splenic lymphoma, a leukemia-like monoclonal expansion of VH1-69 B cells was 
present [111,113]. This evidence indicates that a clonal population of VH1-69-expressing B cells 
progressively invades the circulating B cell repertoire of patients with HCV-associated MCII. 
Moreover, some of these clones have CDR3 sequences identical to RF IgMs isolated from patients 
with MALT neoplasms [114]. Thus, these nonneoplastic B cells appear to evade the homeostatic 
mechanisms that regulate the Ag-driven clonal expansion and genetic events may cause further escape 
from control leading to an absolute lymphocytosis. 

In this regard, our group previously reported that the restricted VH1-69 gene usage could be 
responsible for the B-cell expansion of restricted clones that share the capability of reacting against Igs 
belonging to this VH subfamily [94]. In particular, it has been observed that the immune repertoire of a 
patient with HCV-associated MCII contains IgM clones able to react specifically against anti-HCV/E2 
Abs belonging to VH1-69 subfamily and derived from the same patient [115]. Indeed, we found that 
61% of IgM reactive to anti-HCV/E2 VH1-69 Fab fragments belonged only to two VH subfamilies, 
VH3-23 (39%) and VH3-21 (22%), that are frequently described in autoimmune disorders [116]. 
Furthermore, the mutational pattern of selected anti-HCV/E2 IgM showed that almost all clones had a 
natural origin, evidenced by the high homology to the germline counterpart. Finally, more in details, 
we found that the VH3-23 subfamily showed a preferential binding of the VH1-69-derived IgG1 Fabs. 
These data suggest that VH3-23 IgM may be naturally prone to recognize some conserved regions of 
specific VH subfamilies, as VH1-69, the VH gene described to be elicited in the humoral response 
against HCV/E2 [35,96,98,99,117]. Considering these data, the HCV/E2-driven stimulation of the 
immune system may cause the expansion of specific B cells expressing Abs encoded by the VH1-69 
subfamily gene and recognized by some natural IgM-encoded subfamily Abs. This could lead to the 
formation of circulating immune complexes and the cross-linking of BCR by auto-Abs that may allow 
a chronic activation and a clonal expansion of anti-HCV/E2 B cells. Indeed, a widely held hypothesis 
is that with increased duration of HCV infection, monoclonal IgM RFs arise from the population of 
polyclonal IgM RFs that are present before the development of type III cryoglobulins, consisting of 
polyclonal IgGs and polyclonal IgM RFs, a condition that is believed to precede MCII, characterized 
by a monoclonal expansion of IgM RF and hypothesized to derive from the population of polyclonal 
IgM RFs in type III cryoglobulins. However, in this regard, there are conflicting studies [47]. 

Finally, to reconcile the fact that expansion of B-cell clones carrying the VH1-69 subfamily BCR 
characterizes the HCV humoral response, as well as that against other viral pathogens, and patient-
derived monoclonal IgGs belonging to this subfamily are frequently endowed of a neutralizing activity 
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against their respective pathogens, while IgMs belonging to this subfamily frequently harbor RF 
characteristics, recent evidences suggest that somatic hypermutation, as well as class switching, 
abrogate germline BCR reactivity, revealing additional or altered antigenic specificities [118–121]. 
In this regard, a pauciclonality of the peripheral memory B-cell population has been described as a 
unique feature of spontaneous resolving acute HCV-infected patients compared to chronically evolving 
patients. This finding, considered characteristic only of patients with HCV-associated 
lymphoproliferative disorders, suggests that the B-cell clones potentially involved in clearance of the 
virus may also be subjected to abnormal proliferation [122]. However, it is widely accepted that the 
intrinsic genetic instability of B cells during somatic hypermutation and class-switching processes, 
may favor genetic aberrations responsible for prolonged B-cell survival and proliferation, thus 
allowing them to escape from the homeostatic balance controlling clonal expansion. In particular, 
among chromosomal aberrations, loss of chromosome 2q, gain of the long arm of chromosome 3, 7q 
deletion and gains of 1q and 8q, have been described [123–125]. All these events could lead the 
lymphoproliferation to become independent of antigenic stimulation, exposing the patients to the risk 
of developing a frank B-cell malignancy. 

Analogously to VH1-69, the VH4-34 subfamily usage has been observed in several autoimmune 
and lymphorpoliferative disorders, such as diffuse large-cell lymphoma, primary central nervous 
system lymphoma, B-chronic lymphocytic leukemia, and autoimmune disorders [115]. Moreover, it 
has also been implicated in HCV response and HCV-associated MCII and lymphomas. Additionally, it 
is well known that, independently from the DH and JH gene segments, as well as light chains from 
different subfamilies and isotype associated, the VH4-34 is a naturally autoreactive subfamily [70].  
In fact, the VH4-34 gene is found in virtually all cases of cold agglutinin disease in which the red 
blood cell I/I Ags bind to the FR1 domain of Ig, with a minor involvement of the CDR3 region [69]. 
Therefore, the high frequency of the VH4-34 gene usage and the intrinsic molecular features of its FR 
and CDR domains, suggest a possible role of yet unknown B-cell super-Ag in driving HCV-related 
lymphoproliferative disorders [79]. 

 
3.4. Complement Factors and Proteins 
 

Low levels of complement components, such as C1, C4 and C2, have been reported in 
cryoglobulinemic patients, suggesting ongoing complement activation and consumption both via the 
classical pathway as well as via the MBL pathway. In particular, the C4 level provides a “signature” 
which may be used to anticipate the presence of significant (> 1 mg/mL) amounts of type II 
cryoglobulins in the blood [126]. 

Moreover, in MCII the IgM and IgG deposits are frequently accompanied by the glomerular 
deposition of MBL, C4, C3 and C1q as a consequence of complement activation at the level of 
cryoprecipitates, consisting in immune complexes of Ig, Ags of HCV particles and other serum 
components, such as CRP and complement components [127]. Moreover, possibly present IgMs with 
RF activity could cover the Fc fragments of IgGs, thus altering their interference with Fc receptors as 
well as complement activation that is necessary for immune precipitates solubilization with a 
consequent augmented risk of inflammatory tissue damage. Furthermore, this phenomena could be 
accentuated with temperature drops or saturation and accumulation of IgM RF-IgG complexes [51]. 
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4. B-cell Subsets Involved in MCII 
 

Immunophenotyping and cell-size analysis demonstrated that the expanded B-cell clones induced 
by HCV infection have a prevalent IgMκ+/CD27+ memory phenotype and, as previously mentioned, 
with a restricted usage of RF-encoding IgV gene segments in individuals suffering from MCII [113]. 
As previously seen for the VH1-69-expressing B cells, these expanded B-cell clones frequently replace 
the entire pool of circulating B cells, although the absolute number of B cells remains within normal 
limits in the majority of MCII patients, albeit a decrease in naïve B cell population has been observed 
[128]. This homeostasis of B-cell number is probably maintained by the high rate of B-cell apoptosis 
induced by HCV, which counterbalances B-cell expansion. However, Racanelli et al., showed that 
there was a decrease in peripheral blood CD27+ memory B cells in patients with persistent HCV 
infection and that these cells differentiated into Ig-secreting cells independent of BCR engagement in 
vitro [129]. Moreover, Fournillier and colleagues showed that the levels of naïve and memory B cells 
and their signaling via BCR stimulation were normal in HCV-infected individuals [130]. 

Figure 1. Viral and host molecular factors involved in the development of MCII. 

 
Conversely, Roughan et al., reported that some expanded IgM+ CD27+ memory B cells in HCV-

infected patients are autoreactive, as evidenced by their functional and genetic characterizations, 
probably resulting from a lowered immune tolerance due to chronic HCV infection [128]. In fact, Igs 



Viruses 2012, 4                            
 

 

2933 

secreted from this B-cell subset and isolated from HCV chronically infected patients recognized 
nuclear Ags and presented long CDRH3 with a net positive charge, typical of autoreactive Abs, and 
these features were not observed in healthy controls or in infected patients without IgM memory B-cell 
expansion. Moreover, these expanded B cells have undergone somatic hypermutation concentrated at 
the level of CDRs, absence of isotype switching and a R/S ratio suggesting of an Ag-driven memory 
expansion of the IgM subset in the HCV-infected individuals. Finally, the authors observed an increase 
in ALT or viral load in this group of patients, thus suggesting a possible pathogenetic role concerning 
the expansion of this B-cell subset [128]. 

In addition, a polyclonal activation and expansion of CD5+ B cells has been observed during 
interaction between HCV and lymphocytes and as being associated with HCV infection and HCV-
related MCII [45]. The circulating innate CD5+ cells are believed to be equivalent to murine B-1 cells, 
which have restricted BCR gene segment usage and are primary source of auto-Abs (IgM).  
However, in this regard, there are conflicting data, as other groups reported that no correlation was 
found between the increase of CD5+ B cells and the presence of cryoprecipitates or RF in patients with 
HCV, as well as in those with a HCV-related lymphoproliferative disease [95,113,131]. 

Finally, as a possible consequence of HCV/E2 binding to CD81, an upregulation of this tetraspanin 
in HCV-infected patients, with a further upregulation in patients with MCII, has been observed. 
However, conflicting results have been published showing CD81 downregulation, whereas the 
cognate-complex CD19 molecule was upregulated on peripheral B lymphocytes in HCV-infected 
patients with MCII or B-NHL [83,84]. 

 
5. Conclusions  
 

Several chronic infections are involved in the development of systemic autoimmune-related 
diseases. It is now accepted that HCV interaction with B cells plays a critical role in providing valid 
explanations for the occurrence of autoimmune disorders in the course of chronic HCV infection, such 
as MCII. The state of the actual knowledge in this field has been reviewed in this paper.  
However, many dark areas are left in the comprehension of several aspects of their pathogenetic 
mechanisms. 

Firstly, the process of B-cell clonal expansion occurring in an environment favorable to the 
immortalization of one or few specific clones, and the predisposing factors leading to neoplastic 
transformation, should be clarified. Moreover, as HCV is not a genuine lymphotropic virus, the factors 
allowing HCV entry and replication in lymphoid cells should be better identified. 

Secondly, other factors implicated in the formation and maintenance of a pro-inflammatory and 
autoreactive environment, responsible of extrahepatic manifestations, like MCII, and to the subsequent 
development of malignancies need deeper investigations. In this regard, further considerations deserve 
the mechanisms of the interaction of HCV Ags with BCRs, as well as the subsequent Ag-mediated 
signaling that may occur, such as: (i) prolonged antigenic stimuli derived from HCV viral proteins that 
lead to BCR rearrangements and expansion of B-cell clones expressing a restricted set of VH and VL 
subfamily genes, in particular of those encoding natural Abs with RF activity; (ii) possible mechanisms 
of BCR revision, together with the specific production of cellular cofactors promoting B-cell 
proliferation and antiapoptotic signals (like certain overexpressed chemokines and cytokines as Fas, 



Viruses 2012, 4                            
 

 

2934 

BLyS, BCA-1 and BAFF) or the occurrence of their possible related polymorphisms [83,132–134]; 
(iii) additional events like genomic translocations as those involving the bcl-2 and myc genes  
(e.g., t(14;18) translocation) [132]. Interestingly, considering the host genetic background, certain 
HLA combinations have been found to be more prevalent in MCII HCV-infected patients, suggesting 
they may be associated with increased susceptibility to MCII and that B-cell proliferation could be the 
consequence of both IgM stimulation and HLA presentation. In this regard, there are some studies 
reporting an association between the presence of DR5 supertype of HLA-class II DRB1 and DQ3 
supertype HLA-class II DQB1 and a significantly increased risk of developing MCII in patients with 
chronic HCV infection, while other groups reported an association with the prevalence of HLA-class II 
DR8 and DR1 phenotypes [135,136]. On the contrary, other phenotypes, like HLA-class II DR7, seem 
to protect against the development of this HCV-related disease [136]. Thirdly, polymorphisms of 
proteins that tightly regulate the complement system might be deeply investigated in order to 
determine the environmental and genetic determinants of complement abnormalities characteristics for 
MCII. 

Finally, the wide spectrum of lymphomas that have been described in patients with HCV infection, 
ranging from lymphoplasmacytoid, to MALT-type, to follicle-center cell lymphomas, seems to 
indicate that more heterogeneous and complex processes are probably involved in the HCV-associated 
lymphomagenesis [137,138]. 
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