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Çaǧlayan Ç, Barnes SL, Pineles LL,

Harris AD and Klein EY (2022) A

Data-Driven Framework for Identifying

Intensive Care Unit Admissions

Colonized With Multidrug-Resistant

Organisms.

Front. Public Health 10:853757.

doi: 10.3389/fpubh.2022.853757

A Data-Driven Framework for
Identifying Intensive Care Unit
Admissions Colonized With
Multidrug-Resistant Organisms
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Background: The rising prevalence of multi-drug resistant organisms (MDROs), such as

Methicillin-resistant Staphylococcus aureus (MRSA), Vancomycin-resistant Enterococci

(VRE), and Carbapenem-resistant Enterobacteriaceae (CRE), is an increasing concern in

healthcare settings.

Materials and Methods: Leveraging data from electronic healthcare records and

a unique MDRO universal screening program, we developed a data-driven modeling

framework to predict MRSA, VRE, and CRE colonization upon intensive care unit (ICU)

admission, and identified the associated socio-demographic and clinical factors using

logistic regression (LR), random forest (RF), and XGBoost algorithms. We performed

threshold optimization for converting predicted probabilities into binary predictions and

identified the cut-off maximizing the sum of sensitivity and specificity.

Results: Four thousand six hundred seventy ICU admissions (3,958 patients) were

examined. MDRO colonization rate was 17.59% (13.03% VRE, 1.45% CRE, and 7.47%

MRSA). Our study achieved the following sensitivity and specificity values with the

best performing models, respectively: 80% and 66% for VRE with LR, 73% and 77%

for CRE with XGBoost, 76% and 59% for MRSA with RF, and 82% and 83% for

MDRO (i.e., VRE or CRE or MRSA) with RF. Further, we identified several predictors

of MDRO colonization, including long-term care facility stay, current diagnosis of

skin/subcutaneous tissue or infectious/parasitic disease, and recent isolation precaution

procedures before ICU admission.

Conclusion: Our data-driven modeling framework can be used as a clinical decision

support tool for timely predictions, characterization and identification of high-risk patients,

and selective and timely use of infection control measures in ICUs.

Keywords: multidrug-resistant organisms (MDROs), carbapenem-resistant Enterobacteriaceae

(CRE), vancomycin-resistant enterococci (VRE), Methicillin-resistant Staphylococcus aureus (MRSA),

healthcare-associated infections (HAIs), machine learning (ML), data-centric analytics, predictive analytics
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INTRODUCTION

The increasing prevalence of multidrug resistant organisms
(MDROs), bacteria that are resistant to one or more classes of
antibiotics, is an increasingly concerning issue in the community,
and in particular, in healthcare settings, where admitted patients
are especially susceptible to developing an infection (1–3). These
organisms (also known as multidrug-resistant bacteria) pose a
significant threat to patient safety in the form of healthcare-
associated (i.e., nosocomial) infections (HAIs) (4), which are
associated with considerable morbidity, mortality, and healthcare
costs (5), and have the potential to spread within the community
(6, 7).

Two MDROs that are the most prevalent causes of HAIs
are Methicillin-resistant Staphylococcus aureus (MRSA) and
vancomycin-resistant Enterococcus (VRE) (8, 9), which are
currently classified as serious threats by the U.S. Centers for
Disease Control and Prevention (CDC) (10). MRSA is reported
to cause an estimate of 80,461 infections and 11,285 deaths per
year, and VRE is estimated to cause 20,000 infections and 11,300
deaths per year (1), with bothMDROs being associated with poor
treatment outcomes following infections (11, 12), longer length
of hospitalization, and higher healthcare costs (13–15).

In recent years, Carbapenem-resistant Enterobacteriaceae
(CRE), an MDRO class that is highly resistant to carbapenems
and other antibiotics reserved for treatment of severe infections,
have reached concerning levels in healthcare facilities in the U.S.
(16), and around the world (17). This trend has prompted the
CDC to classify CRE as an urgent threat to public health, its
highest risk category (1). CRE is currently less prevalent than
MRSA and VRE, estimated to cause 9,000 infections and 600
deaths per year (1), but is an immediate public health threat
because infections caused by CRE (e.g., pneumonia, urinary tract
infections, bloodstream infections and wound infections) are
very difficult to treat (18, 19) and have been associated with poor
treatment outcomes (20–23), and high costs (24).

Besides the high morbidity and mortality rates, multidrug-
resistant pathogens can also place a heavy economic burden
on individual healthcare facilities, as well as on the entire
U.S. healthcare system. Among other factors, MDRO-related
costs are increased due to prolonged hospital stay, additional
treatments, post-discharge complications, and implemented
infection controlmeasures including the set-up of isolationwards
and cleaning or replacement of contaminated materials (25). In
particular, earlier studies reported average additional hospital
costs attributable to each VRE infection as high as $77,558,
whereas the lower bound estimate was around $10,000 (in 2003)
(14, 26). Despite its lower prevalence, a single CRE infection
was also estimated to be costly for hospitals ($22,484–$66,031),
and third-party payers ($10,440–$31,621). Further, including
out-of-pocket costs and labor and productivity losses, CRE was
estimated to cost society $37,778–$83,512 per infection (24).
Finally, averaging around $60,000–$70,000 per infected patient,
total healthcare spending for MRSA was estimated to be around
$10 billion per year in the U.S. (27). These estimates not only
show the heavy financial burden of MDROs at an individual and
a population level, but also demonstrate the value of prevention,

early detection, and early intervention. If MDRO colonization
are detected and intervened upon before they harm patients and
drive up costs, then the valuable resources spent for MDRO
treatments (28) could be allocated to other pressing public health
problems for the greater good of the U.S. society.

Colonized patients carry an MDRO at a detectable level,
meaning that a cultured swab sample would test positive, but
the patient would not show clinical indications (i.e., signs or
symptoms) of illness caused by an MDRO. Harboring MDROs,
these patients are at a risk for subsequent infection, as a
significant fraction of MDRO colonization will eventually cause
clinically apparent infections that are difficult and costly to
treat (28–30). They also pose a threat to other patients, as
healthcare workers who interact with these patients can become
contaminated with the organism and transmit it to other patients.
As a result, it is important to rapidly identify and then monitor
colonized patients to reduce the risk of disease transmission and
subsequent infections (31).

The importation of MDROs into hospitals and other
healthcare settings is a major determinant for (the rate and
magnitude of) transmission and outbreak (32–34). Among
hospital departments, intensive care units (ICUs) are the wards
where the prevalence of MDROs has reported to be higher (35,
36). Further, patients admitted to the ICUs are more vulnerable
to develop infections from these organisms (37, 38). Accordingly,
ICUs have become a central point of focus for the control
and prevention of MDRO colonization and infection within
hospitals (39).

A variety of interventions have been proposed and
implemented in order to prevent the transmission of MDROs
in ICUs. Effective and commonly utilized interventions include
(i) hand hygiene, especially when healthcare workers contact
colonized or infected patients (40), (ii) contact precautions (e.g.,
wearing gloves and gowns) when caring for colonized or infected
patients (41), and (iii) isolation or cohorting of colonized or
infected patients (42). Despite their effectiveness, however, these
preventive measures are often not applied in a timely manner
due to imperfect compliance and the delay (or even failure) to
detect patients colonized with an MDRO (9).

Surveillance for MDRO colonization is an instrumental
practice for detecting patients who may require an intervention
(43, 44). Yet, the implementation and cost-effectiveness of
universal (i.e., active) surveillance and testing strategies, such
as screening of all newly admitted ICU patients, has been
a controversial topic (45). Some critics argue that the costs
associated with universal screening, including the opportunity
costs of the human and physical resources being utilized,
are likely to outweigh the benefits of active surveillance (46).
Accordingly, universal surveillance of all patients may not
be feasible to implement in many healthcare facilities due
to resource constraints (47–49). Instead, targeted surveillance
strategies, which offer a cost-effective compromise for detecting
asymptomatic colonization, have been advocated by national
guidelines (50–52) when a sufficiently accurate method for
identifying high-risk individuals is available. Accordingly, rapid
and accurate identification of patients who are at high risk
for MDRO colonization is critical for timely and targeted
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implementation of screening protocols and other preventive
measures, as well as administration of appropriate treatments
(e.g., avoiding the misuse of antibiotics).

Given the aforementioned challenges, a system that facilitates
timely and reliable identification of newly admitted patients who
are likely to be colonized with anMDROwould be quite useful to
improve patient safety and effective utilization of critical hospital
resources (53). By accurately identifying significant risk factors,
this system can help define high-risk subpopulations and hence,
could enable the implementation of a cost-effective targeted
screening program. Moreover, if highly predictive, it can further
be used to immediately initiate clinical interventions, such as
contact precautions, as soon as a high-risk individual is admitted
to the ICU. Such a real-time system would be particularly useful
in ICUs because, currently, identification of colonized patients
relies on costly and labor intensive clinical laboratory results that
usually require at least 1–2 days to process and hence, delay
subsequent necessary actions to prevent and control the spread
of MDROs.

A particular challenge for the design of a reliable prediction
framework is the class imbalance problem that is commonly
observed in clinical datasets. Clinical datasets are often not
balanced in their class labels, where the predictors and/or
prediction outcomes do not make up an equal portion of the
data. The imbalance can be particularly large when the prediction
outcomes are MDROs, as their prevalence is usually < 15% and
can be as low as < 2% as observed in our data. Given that
ignoring the class imbalance, especially when it is large, yields
poor predictions, it is necessary to consider and address this
challenge up front while developing a prediction framework for
accurate and reliable results.

In this study, we developed a data-driven framework to
identify patients who are likely to be colonized with VRE,
CRE, or MRSA upon ICU admission, leveraging 2 years of
electronic health record (EHR) data from a large academic
medical center. The objective of our study was to develop
a modeling framework that can cope with significant class
imbalance, commonly observed in clinical datasets, and can
be used (1) to generate timely and accurate predictions for
newly admitted ICU patients, and (2) to identify the key socio-
demographic and clinical factors affecting the incidence of
MDRO colonization. The developed framework relied on three
supervised machine learning algorithms (namely, regularized
logistic regression, random forest, and XGBoost), which were
trained on the EHR data to make timely and accurate predictions
for the patients newly admitted to the ICU.

Our study achieved the following results for the primary
MDRO colonization outcomes: 80% sensitivity and 66%
specificity for VRE, 73% and 77% for CRE, 76% and 59%
for MRSA, and 82% and 83% for colonization with any
MDRO (i.e., VRE, CRE, or MRSA). Moreover, our modeling
approach identified long-term care facility stay, current diagnosis
of skin/subcutaneous tissue conditions or infectious/parasitic
disease, and recent isolation precaution procedures before ICU
admission as key predictors. The proposed modeling framework
was able to detect over 80% of positive MDRO cases upon
ICU admission with less than a 20% false-positive rate, which

would enable timely and targeted implementation of preventive
measures for infection control in ICUs.

Currently most hospitals lack (or choose not implement)
universal screening programs for MDROs. The practical utility
and impact of this study was to translate EHR data into
insights and real-time predictions to effectively guide VRE, CRE,
and MRSA-related infection control decisions in ICUs. The
means to achieve this impact was to build a robust predictive
analytics framework that produces reliable and evidence-based
predictions with high sensitivity, ensuring timely detection of
MDRO colonization, and high specificity, preventing inefficient
use of limited resources. This was the primary objective of our
study. Once thoroughly and externally validated, this modeling
framework would allow hospitals to implement a clinical decision
support system that could serve as a cost-effective universal
MDRO screening tool at ICU admission without using any
hospital resources except for EHR data.

The remainder of this article is organized as follows: In
Section Materials and Methods, we present our data and describe
our methodology. In particular, in Section Data Description,
we introduce our data and describe the clinical and socio-
demographic predictors included in our models. Then, in
Section Prediction Models, Model Training and Validation, and
Threshold Optimization, we introduce the predictive models
and describe the techniques we utilize to improve prediction
accuracy and address class imbalance. In Section Results, we
present our prediction results and report the key predictors for
MDRO colonization in our data set. In Section Discussions, we
summarize our results, and discuss the policy implications of our
approach and findings. Finally, in Section Conclusion and Future
Work, we propose directions for future research, and conclude
our study.

MATERIALS AND METHODS

In this section, we first describe our data source, in Section
Data Description, and present the variables and prediction
outcomes in our dataset. Then, in Section Prediction Models,
Model Training and Validation, and Threshold Optimization, we
introduce our modeling framework and describe our methods.
In particular, first, we introduce the prediction models we
used, and then, discuss our model specification (training) and
performance evaluation (testing) stages, describing how we
performed hyperparameter tuning, stratified cross-validation,
threshold optimization, and finally, out-of-sample evaluations.

Data Description
In this study, we used electronic healthcare record (EHR) data
from the University of Maryland Medical Center (UMMC),
an academic teaching hospital located in Baltimore, Maryland.
Our dataset contained records for 3,958 patients admitted to a
surgical or medical ICU in 2017 or 2018. In total, we observed
4,670 individual admissions. Our dataset included the following
variables: (1) hospital admission source and type, (2) age, (3)
sex, (4) race and ethnicity, (5) region/state of residency, (6)
total time of prior ICU stays and hospital inpatient stays
within the previous year, (7) prior antibiotic prescriptions,
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(8) diagnoses for prior hospital and/or ICU stays within the
previous year, (9) diagnoses for current hospital stay before
ICU admission, (10) surgical and medical procedures conducted
during prior hospital and/or ICU stays within the previous
year, and (11) recent procedures conducted for current hospital
stay prior to ICU admission. We treated all predictors utilized
in the models as categorical. Descriptive statistics regarding
these variables and their categories can be found in the
Supplementary Material (Appendix A).

The prediction outcomes were colonization with VRE, CRE,
or MRSA upon ICU admission, both separately and as an
aggregate (union) outcome. Conducting active surveillance in the
ICUs, UMMC screened newly admitted patients for colonization
upon admission and periodically during their stay. At UMMC,
active surveillance involves taking routine peri-rectal cultures for
VRE and nasal cultures for MRSA on all patients admitted to an
ICU at the time of admission, weekly, and upon discharge. CRE
detection was also primarily done via perirectal swabs and also
included clinical cultures (e.g., blood, urine, wound cultures).
We identified the positive (i.e., colonized) and negative (i.e.,
uncolonized) results based on the laboratory tests conducted
within 2 days (i.e., both before and after) of ICU admissions. We
limited the time window for the screening results within 2 days
(54, 55) in an attempt to avoid inclusion of acquisition cases,
for which initially susceptible (i.e., colonization-free) patients
acquire an MDRO during their ICU stay. Screening outcomes
were not available for all 4,670 ICU admissions. The total number
of screening results available was 3,860 for VRE, 3,661 for CRE,
4,446 for MRSA, and 4,503 for MDRO. In the dataset, 503
(13.03%) of ICU admissions tested positive for VRE, 53 (1.45%)
for CRE, 332 (7.47%) for MRSA, and 792 (17.59%) for any one of
these MDROs.

In the UMMC dataset, all prior and current diagnoses
were coded using the International Statistical Classification of
Diseases and Related Health Problems (ICD)-10 codification.
We used the Agency for Healthcare Research and Quality’s
Clinical Classifications Software (CCS) to further categorize the
prior and current diagnoses that were present on admission
(PoA). The CCS is a diagnosis and procedure categorization
catalog (https://www.hcup-us.ahrq.gov/toolssoftware/ccs10/ccs10.
jsp), mapping the ICD-10 diagnosis codes into 18 categories: (1)
Infectious and parasitic diseases, (2) Neoplasms, (3) Endocrine,
nutritional, and metabolic diseases and immunity disorders, (4)
Diseases of the blood and blood-forming organs, (5) Mental
illness, (6) Diseases of the nervous system and sense organs, (7)
Diseases of the circulatory system, (8) Diseases of the respiratory
system, (9) Diseases of the digestive system, (10) Diseases of
the genitourinary system, (11) Complications of pregnancy,
childbirth, and the puerperium, (12) Diseases of the skin and
subcutaneous tissue, (13) Diseases of the musculoskeletal system
and connective tissue, (14) Congenital anomalies, (15) Certain
conditions originating in the perinatal period, (16) Injury and
poisoning, (17) Symptoms, signs, and ill-defined conditions
and factors influencing health status, and (18) Residual or
unclassified codes.

We labeled a procedure as recent if it was performed during
the current hospital stay. We recorded all recent procedures

performed in the hospital inpatient settings prior to the current
ICU admission with respect to the ICD-10 Procedure Coding
System (PCS), for which each character has a categorical
indication. Using the first character of the ICD-10 PCS codes,
we classify the recent procedures into eight categories as
follows: (i) Medical and Surgical (“0”), (ii) Placement (“2”),
(iii) Administration (“3”), (iv) Measurement and Monitoring
(“4”), (v) Extracorporeal or Systemic Procedures (“5” and
“6”), (vi) Other Procedures (“8”), (vii) Imaging (“B”), and
(viii) Other/Miscellaneous (“1”, “7”, “9”, “C”, “D”, “F”, “G”,
and “X”). Further, using the first two characters of the ICD-
10 PCS codes, we also map the recent procedures into 44
categories (see Supplementary Material Appendix A). In our
analysis, we include both the single- and double-character
based categorizations so that our algorithms can learn which
specifications are more important for predicting our MDRO
outcomes. We classified prior hospital procedures having the
ICD-10 PCS codes in a similar manner as the recent procedures.

Prior outpatient procedures were recorded using the Current
Procedural Terminology (CPT) system (https://www.ama-assn.
org/amaone/cpt-current-procedural-terminology), which we
classified into 6 categories: (i) Evaluation and Management,
(ii) Anesthesia (iii) Medicine (iv) Radiology (v) Pathology
and Laboratory, and (vi) Surgery. The CPT codes for surgery
include 18 sub-types, enabling us to construct a more detailed
categorization with 23 classes. We used both the 6-class and
23-class CPT codes as predictors for our descriptive and
predictive analyses.

Prediction Models, Model Training and
Validation, and Threshold Optimization
A variety of techniques have been utilized to analyze complex
disease dynamics and quantify its parameters (e.g., the estimation
of transmission rate), identify risk factors, and assess the impact
of infection control strategies (56). These approaches include
prediction modeling, computational simulation, and analytic-
formula based models such as decision trees (57), artificial
neural network (58), agent-based simulation for a hospital
ward (59, 60) or healthcare system (61), dynamic patient and
healthcare worker networks (62–64), compartmental systems
dynamics models (based on ordinary differential equations)
(65, 66), (approximate) Bayesian (computation) techniques (67),
and Markov chain based approaches (68, 69). Among these
techniques, data-driven prediction models, such as the ones we
used in this study, are particularly valuable tools for generating
real-time predictions, identifying the significant risk factors,
and quantifying their impact on the outcomes of interest (70).
In addition to these modeling-based approaches, there is also
rich clinical literature studying MDRO colonization. See the
Supplementary Material (Appendix B) for a summary of the
clinical studies that assessed the risk factors associated with
MDRO colonization, and developed simple clinical prediction
rules based on the identified predictors.

We utilized three supervised machine learning (ML)
algorithms to predict colonized patients upon ICU admission
and to identify significant clinical and socio-demographic factors
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FIGURE 1 | Threshold optimization formulation.

associated with the outcomes of interest: (1) logistic regression
(LR) (71, 72), (2) random forest (RF) (73), and (3) extreme
gradient boosting (XGBoost) (74). To perform regularization
and feature selection for our logistic regression models, we used
least absolute shrinkage and selection operator (LASSO), which
was originally developed for linear regression (75) and then
applied to other algorithms including LR (76).

For each model, we split the data into an 80% subset for
model training and cross-validation and a 20% subset for out-of-
sample evaluation. We used a 10-fold stratified cross-validation
scheme both for hyperparameters tuning for the algorithms
and threshold optimization for the conversion of predicted
colonization risks into binary predictions (see Figure 1). We
selected the 10-fold due to the relatively small sample size of our
data, in an effort to preserve as much data as possible for model
development and training. We selected the stratified scheme to
account for the class imbalance in our data, which preserves a
proportion of the positive outcome for each fold similar to the
complete dataset.

We defined a grid search for a core set of hyperparameters
for each algorithm, and used the area under the receiver
operating characteristic curve (AUC) as the objective function to
maximize (out-of-sample) model performance. We selected
the hyperparameters achieving the highest mean AUC
across the 10 folds for model training. In particular, the
hyperparameters were optimized and fine-tuned by the function
“LogisticRegressionCV” for LR, and “GridSearchCV” for RF and
XGBoost. For each machine learning algorithm, we summarize
the hyperparameters and model parameters corresponding to
the best performing machine learning models of our study in
Tables 1–3. The programming code samples of the supervised
ML algorithms utilized in this study are also provided in the
Supplementary Material (Appendix D).

TABLE 1 | Model parameters for best performing logistic regression models.

Best models-logistic regression

Parameter VRE CRE MRSA MDRO

Cs 100 100 100 100

class_weight None None None None

cv=StratifiedKFold n_splits=10 n_splits=10 n_splits=10 n_splits=10

dual False False False False

fit_intercept True True True True

intercept_scaling 1 1 1 1

max_iter 100 100 100 100

multi_class ’ovr’ ’ovr’ ’ovr’ ’ovr’

n_jobs 1 1 1 1

penalty L1 L1 L1 L1

random_state None None None None

refit True True True True

scoring roc_auc roc_auc roc_auc roc_auc

solver liblinear liblinear liblinear liblinear

tol 0.0001 0.0001 0.0001 0.0001

verbose 0 0 0 0

Threshold Bound 0.15 0.025 0.20 0.50

After choosing the hyperparameters, the next step of the
model specification was to identify the ideal cut-off (i.e., optimal
threshold) value for converting predicting probabilities into
binary predictions. As an initial output, the ML algorithms
generate predicted probabilities for the training instances,
indicating how likely each patient to be colonized with an
MDRO. These predicted probabilities are then translated into
binary prediction outcomes using a threshold value. Specifically,
observations for which the predicted probabilities are greater
than this threshold, denoted as τ , are classified as positive (i.e.,
colonized), and otherwise, the patient is assigned to the negative
(i.e., susceptible) class. Given the class imbalance observed in
our dataset, the default threshold value of 0.5 was unlikely
to be effective for our study (see Figure 2). Consequently, we
performed an optimization (77) to search for the best threshold
that classifies the predicted probabilities while maximizing the
Youden Index (i.e., sensitivity+ specificity - 1) for out-of-sample
predictions (78).

We performed the threshold optimization using the
same 10-fold stratified cross validation scheme used for the
hyperparameter tuning. The optimal threshold was determined
for each fold using the in-sample predicted probabilities from the
90% subset of training data. Then, we evaluated the performance
(i.e., Youden’s index) of this threshold over the 10% subset. We
repeated this process for each fold, and selected the mean of
these 10 optimal thresholds as the final cut-off value. We used a
bounded numerical search algorithm to solve the optimization
problem (79), using a lower bound of zero and varying the upper
bound for each algorithm to ensure an effective threshold is
found. It is noteworthy to emphasize that the upper bound values
we considered for each specific outcome were different because
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TABLE 2 | Model parameters for best performing random forest models.

Best models-random forest

Parameter VRE CRE MRSA MDRO

cv=StratifiedKFold n_splits=10 n_splits=10 n_splits=10 n_splits=10

estimator=RandomForestClassifier Yes Yes Yes Yes

bootstrap True True True True

max_depth None None None None

max_leaf_nodes None None None None

min_impurity_decrease 0 0 0 0

init_min_samples_leaf 1 1 1 1

init_min_samples_split 2 2 2 2

n_estimators 200 200 200 200

n_jobs 4 4 4 4

param_grid={’min_samples_leaf’} [5, 10,..., 250] [5, 10,..., 250] [5, 10,..., 250] [5, 10,..., 250]

param_grid={pre_dispatch} 2*n_jobs 2*n_jobs 2*n_jobs 2*n_jobs

param_grid={scoring} roc_auc roc_auc roc_auc roc_auc

optimal_min_samples_leaf 5 30 10 5

Threshold Bound 0.20 0.05 0.30 0.40

TABLE 3 | Model parameters for best performing XGBoost models.

Best models-XGBoost

Parameter VRE CRE MRSA MDRO

colsample_bytree 0.8 0.8 0.8 0.8

gamma 0 0 0 0

learning_rate 0.05 0.05 0.05 0.05

max_depth 5 5 5 5

min_child_weight 1 1 1 1

n_estimators 200 200 200 200

nthread 4 4 4 4

objective binary:logistic binary:logistic binary:logistic binary:logistic

seed 1337 1337 1337 1337

subsample 0.8 0.8 0.8 0.8

Threshold Bound 0.15 0.015 0.10 0.30

the prevalence of the colonized (i.e., positive) instances among
VRE, CRE, MRSA, and MDRO were different, which directly
affected the outcome of the threshold optimization procedure.

Model specification was completed when we determined the
hyperparameters, chose the threshold value (for each model),
and re-trained the models on the full (80%) training set. Next,
we evaluated the (out-of-sample) performance of the trained
models on the (20%) test sets, reporting the AUC, sensitivity,
and specificity values obtained. For each MDRO, we conducted
a systematic numerical experiment with a range of upper bound
values for threshold optimization, and obtained predictions with
varying sensitivity and specificity values for VRE, CRE, MRSA,
and MDRO (the aggregate prediction outcome). We provide
these results in Section Discussions for each outcome (e.g., VRE)

and algorithm (e.g., XGBoost), and separately, discuss the best
performing models for each MDRO.

We also used our modeling framework to identify the
key socio-demographic and clinical factors for predicting
colonization with VRE, CRE, and MRSA separately and in
aggregate. For the LR models, we used odds ratios (ORs), which
quantify the associated increase (for values >1) or decrease (for
values <1) in the likelihood of colonization. For the tree-based
models (i.e., RF and XGBoost), we used feature importance (FI),
which quantifies the relative frequency that each factor is used to
construct the ensemble. Using these twometrics (i.e., OR and FI),
we ordered the identified predictors for each MDRO and report
the top five key predictors that are highly ranked across all of the
best performing ML models, calculated by the average ranking
across the best models.

RESULTS

In a total of 4,670 ICU admissions corresponding to 3,958
patients examined, the rate of colonization was 17.59% for
MDRO (13.03% VRE, 1.45% CRE, and 7.47% MRSA). This
study separately predicted VRE, CRE, and MRSA colonization
upon ICU admission. In addition, combining these three
antibiotic-resistant bacteria, the models we developed also
predicted colonization with any of these MDROs (i.e., VRE,
CRE, or MRSA) upon ICU admission without specifying the
particular organism. As a result, our modeling framework
generated separate predictions for four cases (namely, VRE,
CRE, MRSA, and MDRO) using logistic regression (with LASSO
regularization), random forest, and XGBoost algorithms. In
Table 4, we summarize the model results for these four outcomes
under different upper bound values corresponding to the
threshold optimization process.
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FIGURE 2 | Threshold value for converting predicted probabilities to binary predictions.

After considering all of the models that we trained for
each outcome, we selected the ones with the highest (out-of-
sample) Youden index, which we summarize in Table 5. For
VRE, the best performing model generated a Youden index of
0.46, achieved via the LR model. By comparison, the RF and
XGBoost models generated Youden index values of 0.41 and
0.39, respectively. For CRE, the XGBoost algorithm generate
the highest Youden index (0.50), followed by LR (0.45) and
RF (0.42). The performance for MRSA was noticeably lower
than the other outcomes, for which RF achieved the highest
Youden index (0.34). Finally, the prediction models for the
aggregate MDRO outcome produced the highest Youden index
values when compared to the individual MDRO outcomes, with
the RF model (0.65) outperforming the XGBoost (0.57) and
LR models (0.30). We note here that the tree-based models
performed significantly better than the linear LR model for
this aggregated outcome, which was likely due to the former’s
natural ability to capture nonlinear and complex interactions.
In an effort to provide support for this hypothesis, we also
tested the performance of a single classification tree (80) (0.54),

which also performed significantly better than the LR model for
this particular outcome. On the other hand, for separate VRE,
CRE, and MRSA predictions, the single tree models were always
dominated by (at least one of) the other algorithms, and hence,
not presented in Table 4.

For each model presented in Table 5, the difference between
the (out-of-sample) AUC for the (cross-validated) training
and testing sets were typically small, suggesting well-trained
models without significant overfitting. The LR and RF models
for CRE demonstrated larger gaps, suggesting that these
models might be slightly less robust than others; however, this
volatility is likely explained by the extremely low prevalence
of positive cases on which to train the models. The best
predictions for VRE colonization upon ICU admission were
generated by the LR model, which achieved 80% sensitivity
and 66% specificity. For CRE, XGBoost produced the best
model, having 73% sensitivity and 77% specificity. For MRSA,
the RF model performed best, yielding 76% sensitivity and
59% specificity. Finally, the most effective model for the
aggregate MDRO outcome was a random forest model, which
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TABLE 4 | Performance summary of the machine learning models for VRE, CRE, MRSA, and MDRO colonization predictions.

Threshold opt. upper bound = 0.05 VRE (503/3860 = 13.03%) Threshold opt. upper bound = 0.010 CRE (53/3661 = 1.45%) Threshold opt. upper bound = 0.03 MRSA (332/4446 = 7.47%) Threshold opt. upper bound = 0.1 MDRO (792/4503 = 17.59%)

Log. XGBoost Rand. Log. XGBoost Rand. Log. XGBoost Rand. Log. XGBoost Rand. Dec.
Reg. Forest Reg. Forest Reg. Forest Reg. Forest Tree

Training AUC 0.76 0.77 0.77 Training AUC 0.70 0.76 0.78 Training AUC 0.65 0.66 0.66 Training AUC 0.72 0.86 0.88 0.75
Testing AUC 0.80 0.77 0.77 Testing AUC 0.78 0.72 0.71 Testing AUC 0.66 0.66 0.69 Testing AUC 0.70 0.87 0.89 0.76
Testing sensitivity 0.99 0.97 1.00 Testing sensitivity 1.00 0.73 0.82 Testing sensitivity 1.00 0.88 1.00 Testing sensitivity 0.92 0.97 1.00 0.93
Testing specificity 0.09 0.33 0.15 Testing specificity 0.31 0.68 0.37 Testing specificity 0.02 0.22 0.00 Testing specificity 0.30 0.39 0.21 0.51

Threshold opt. upper bound = 0.1 VRE (503/3860 = 13.03%) Threshold opt. upper bound = 0.015 CRE (53/3661 = 1.45%) Threshold opt. upper bound = 0.075 MRSA (332/4446 = 7.47%) Threshold opt. upper bound = 0.2 MDRO (792/4503 = 17.59%)

Log. XGBoost Rand. Log. XGBoost Rand. Log. XGBoost Rand. Log. XGBoost Rand. Dec.
Reg. Forest Reg. Forest Reg. Forest Reg. Forest Tree

Training AUC 0.76 0.77 0.76 Training AUC 0.70 0.76 0.80 Training AUC 0.65 0.66 0.67 Training AUC 0.72 0.86 0.88 0.76
Testing AUC 0.80 0.77 0.77 Testing AUC 0.78 0.72 0.71 Testing AUC 0.66 0.66 0.71 Testing AUC 0.70 0.87 0.89 0.81
Testing sensitivity 0.89 0.79 0.88 Testing sensitivity 0.82 0.73 0.73 Testing sensitivity 0.76 0.71 0.82 Testing sensitivity 0.68 0.82 0.90 0.93
Testing specificity 0.49 0.57 0.48 Testing specificity 0.57 0.77 0.51 Testing specificity 0.45 0.53 0.45 Testing specificity 0.59 0.74 0.69 0.58

Threshold opt. upper bound = 0.15 VRE (503/3860 = 13.03%) Threshold opt. upper bound = 0.020 CRE (53/3661 = 1.45%) Threshold opt. upper bound = 0.1 MRSA (332/4446 = 7.47%) Threshold opt. upper bound = 0.3 MDRO (792/4503 = 17.59%)

Log. XGBoost Rand. Log. XGBoost Rand. Log. XGBoost Rand. Log. XGBoost Rand. Dec.
Reg. Forest Reg. Forest Reg. Forest Reg. Forest Tree

Training AUC 0.76 0.77 0.76 Training AUC 0.70 0.76 0.80 Training AUC 0.65 0.66 0.66 Training AUC 0.72 0.86 0.87 0.76
Testing AUC 0.80 0.77 0.78 Testing AUC 0.78 0.72 0.73 Testing AUC 0.66 0.66 0.68 Testing AUC 0.70 0.87 0.89 0.81
Testing sensitivity 0.80 0.73 0.78 Testing sensitivity 0.73 0.55 0.73 Testing sensitivity 0.64 0.67 0.73 Testing sensitivity 0.65 0.75 0.85 0.89
Testing specificity 0.66 0.65 0.59 Testing specificity 0.69 0.83 0.63 Testing specificity 0.60 0.60 0.57 Testing specificity 0.63 0.82 0.79 0.65

Threshold opt. upper bound = 0.2 VRE (503/3860 = 13.03%) Threshold opt. upper bound = 0.025 CRE (53/3661 = 1.45%) Threshold opt. upper bound = 0.15 MRSA (332/4446 = 7.47%) Threshold opt. upper bound = 0.4 MDRO (792/4503 = 17.59%)

Log. XGBoost Rand. Log. XGBoost Rand. Log. XGBoost Rand. Log. XGBoost Rand. Dec.
Reg. Forest Reg. Forest Reg. Forest Reg. Forest Tree

Training AUC 0.76 0.77 0.77 Training AUC 0.70 0.76 0.79 Training AUC 0.65 0.66 0.67 Training AUC 0.72 0.86 0.87 0.76
Testing AUC 0.80 0.77 0.77 Testing AUC 0.78 0.72 0.71 Testing AUC 0.66 0.66 0.69 Testing AUC 0.70 0.87 0.89 0.79
Testing sensitivity 0.66 0.63 0.75 Testing sensitivity 0.73 0.36 0.64 Testing sensitivity 0.48 0.56 0.71 Testing sensitivity 0.57 0.69 0.82 0.79
Testing specificity 0.76 0.75 0.66 Testing specificity 0.73 0.89 0.67 Testing specificity 0.75 0.71 0.58 Testing specificity 0.73 0.86 0.83 0.64

Threshold opt. upper bound = 0.3 VRE (503/3860 = 13.03%) Threshold opt. upper bound = 0.030 CRE (53/3661 = 1.45%) Threshold opt. upper bound = 0.2 MRSA (332/4446 = 7.47%) Threshold opt. upper bound = 0.5 MDRO (792/4503 = 17.59%)

Log. XGBoost Rand. Log. XGBoost Rand. Log. XGBoost Rand. Log. XGBoost Rand. Dec.
Reg. Forest Reg. Forest Reg. Forest Reg. Forest Tree

Training AUC 0.76 0.77 0.77 Training AUC 0.70 0.76 0.79 Training AUC 0.65 0.66 0.66 Training AUC 0.72 0.86 0.88 0.76
Testing AUC 0.80 0.77 0.77 Testing AUC 0.78 0.72 0.71 Testing AUC 0.66 0.66 0.69 Testing AUC 0.70 0.87 0.89 0.80
Testing sensitivity 0.66 0.65 0.61 Testing sensitivity 0.64 0.36 0.64 Testing sensitivity 0.70 0.45 0.67 Testing sensitivity 0.56 0.70 0.85 0.77
Testing specificity 0.78 0.72 0.74 Testing specificity 0.78 0.91 0.74 Testing specificity 0.55 0.78 0.59 Testing specificity 0.75 0.84 0.79 0.70

Threshold opt. upper bound = 0.5 VRE (503/3860 = 13.03%) Threshold opt. upper bound = 0.050 CRE (53/3661 = 1.45%) Threshold opt. upper bound = 0.3 MRSA (332/4446 = 7.47%) Threshold opt. upper bound = 0.6 MDRO (792/4503 = 17.59%)

Log. XGBoost Rand. Log. XGBoost Rand. Log. XGBoost Rand. Log. XGBoost Rand. Dec.
Reg. Forest Reg. Forest Reg. Forest Reg. Forest Tree

Training AUC 0.76 0.77 0.77 Training AUC 0.70 0.76 0.79 Training AUC 0.65 0.65 0.66 Training AUC 0.72 0.86 0.88 0.77
Testing AUC 0.80 0.77 0.78 Testing AUC 0.78 0.72 0.72 Testing AUC 0.66 0.66 0.70 Testing AUC 0.70 0.87 0.89 0.80
Testing sensitivity 0.61 0.59 0.63 Testing sensitivity 0.55 0.27 0.64 Testing sensitivity 0.48 0.24 0.76 Testing sensitivity 0.58 0.70 0.84 0.89
Testing specificity 0.82 0.77 0.74 Testing specificity 0.82 0.94 0.79 Testing specificity 0.75 0.89 0.59 Testing specificity 0.72 0.85 0.79 0.62
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TABLE 5 | Performance summary of the supervised machine learning models with the highest Youden’s index.

Models with the

best Youden index

VRE (503/3860 = 13.03%) Models with the

best Youden index

MRSA (332/4446 = 7.47%)

Log. Reg. XGBoost Rand. Forest Log. Reg. XGBoost Rand. Forest

Training AUC 0.76 0.77 0.77 Training AUC 0.65 0.66 0.66

Testing AUC 0.80 0.77 0.77 Testing AUC 0.66 0.66 0.70

Testing sensitivity 0.80 0.73 0.75 Testing sensitivity 0.70 0.67 0.76

Testing specificity 0.66 0.65 0.66 Testing specificity 0.55 0.60 0.59

Youden index 0.46 0.39 0.41 Youden index 0.24 0.27 0.34

Threshold opt. bound 0.15 0.15 0.20 Threshold opt. bound 0.20 0.10 0.30

Models with the

best Youden index

CRE (53/3661 = 1.45%) Models with the

best Youden index

MDRO (792/4503 = 17.59%)

Log. Reg. XGBoost Rand. Forest Log. Reg. XGBoost Rand. Forest Dec. Tree

Training AUC 0.70 0.76 0.79 Training AUC 0.72 0.86 0.87 0.76

Testing AUC 0.78 0.72 0.72 Testing AUC 0.70 0.87 0.89 0.81

Testing sensitivity 0.73 0.73 0.64 Testing sensitivity 0.56 0.75 0.82 0.89

Testing specificity 0.73 0.77 0.79 Testing specificity 0.75 0.82 0.83 0.65

Youden index 0.45 0.50 0.42 Youden index 0.30 0.57 0.65 0.54

Threshold opt. bound 0.025 0.015 0.05 Threshold opt. bound 0.50 0.30 0.40 0.30

was capable of detecting 82% of colonized patients with
83% specificity.

In addition to generating predictions, we also used our
modeling framework to identify the key predictors for
separate and aggregate VRE, CRE, and MRSA colonization.
In Table 6, we summarize the top five predictors for the
models reported in Table 2, and provide their ranking in the
corresponding models as indicated by OR and FI. See the
Supplementary Material (Appendix C) for the OR and FI
values of the factors presented in Table 6.

Among the recent ICD-10 procedures that were performed
during the current hospital stay before ICU admission, the
procedures categorized as “Other Procedures” in the ICD-10
PCS were among the top five predictors for VRE, CRE, MRSA,
and MDRO. In our dataset, a significant proportion of these
procedures were “8E0ZXY6”, an ICD-10 code designated for
isolation precautions. The patients having a history of a prior
colonization or infection for a given MDRO (or are at risk for
another indication) were flagged with this code upon admission
to the hospital so that they were closely monitored (and if needed,
isolated) during their hospital stay. Our results presented in
Table 6 show that these patients were at a higher risk for being
colonized with an MDRO at ICU admission regardless of the
specific indication for which the close monitoring and isolation
precautions were put in place.

Another key predictor for VRE, CRE, MRSA, and MDRO
colonization is the CCS-based diagnosis category “skin and
subcutaneous tissue disease” that was PoA (Table 6). The
diagnoses that fall under this CCS category were determined
for the current hospital admission and included rash, cellulitis,
cutaneous abscess, pressure ulcer, non-pressure chronic ulcer,

and other skin conditions. Our finding resonates with the clinical
literature and practice, as skin and soft tissue infections are
amongst the most common bacterial infections, are mostly
treated with antibiotics that might cause antimicrobial resistance
(81). Further, skin and soft tissue infections are the most
frequently reported clinical manifestations of community-
acquired MRSA (82).

For MDRO and in particular MRSA, the CCS-based current
diagnosis category “infectious and parasitic diseases” was one of
the critical factors that increase the risk of colonization. This
category included diseases such as chronic viral hepatitis C,
bacteremia, human immunodeficiency virus (HIV), and sepsis.
Patients with these diseases might be at higher risk for MDRO,
and in particular MRSA, colonization due to a compromised
immune system.

For VRE and CRE, having a prior long-term care
facility (LTCF) stay was one of the key predictors for
colonization upon ICU admission. This association
between VRE or CRE colonization and a previous LTCF
stay has been reported by other studies (83, 84) (also see
the Supplementary Material Appendix B). High rates of
MDRO colonization, debilitating diseases, and the receipt of
multiple antibiotics among LTCF residents are likely to be
the primary causes of this association both for VRE and CRE
colonization (85).

Other key predictors for VRE were recent procedures
“administration circulatory” (ICD-10-PCS ‘30’), such as
transfusion, and “medical and surgical anatomical regions,
general” (‘0W’), such as drainage, insertion, removal, and
transplantation procedures. For CRE, a prior ICU stay longer
than 20 days and a total number of diagnoses PoA (i.e., current
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TABLE 6 | Top five common predictors for VRE, CRE, MRSA, and MDRO colonization identified by the machine learning models.

Top five common predictors for VRE colonization upon ICU admission

VRE colonization upon ICU admission Relative ranking

Factors Features Log. Reg. XGBoost Rand. Forest

Long-term care facility stay Yes 1 3 1

Recent 1-digit ICD10

procedure

Other procedures 2 1 2

Current diagnosis CCS

class

Skin and subcutaneous

tissue

3 2 3

Recent 2-digit ICD10

procedure

Medical/surgical

anatomical

6 5 8

Recent 2-digit ICD10

procedure

Administration

circulatory

8 4 6

Top five common predictors for CRE colonization upon ICU admission

CRE Colonization upon ICU Admission Relative Ranking

Factors Features Log. Reg. XGBoost Rand. Forest

Current diagnosis CCS

class

Skin and subcutaneous

tissue

2 2 1

Recent 1-digit ICD10

procedure

Other procedures 3 3 2

Prior ICU stay > 20 days 4 6 5

Long-term care facility stay Yes 5 6 6

Number of current diagnosis

PoA

> 30 and ≤ 50 6 8 3

Top five common predictors for MRSA colonization upon ICU admission

MRSA colonization upon ICU admission Relative ranking

Factors Features Log. Reg. XGBoost Rand. Forest

Recent 1-digit ICD10

procedure

Other procedures 1 2 1

Current diagnosis CCS

class

Skin and subcutaneous

tissue

2 9 2

Current diagnosis CCS

class

Injury and poisoning 7 1 8

Current diagnosis CCS

class

Infectious and parasitic 9 8 5

Recent 1-digit ICD10

procedure

Administration −3 3 14

Top five common predictors for MDRO colonization upon ICU admission

MDRO colonization upon ICU admission Relative ranking

Factors Features Log. Reg. XGBoost Rand. Forest Dec. Tree

Recent 1-digit ICD10

procedure

Other procedures 7 1 1 2

Current diagnosis CCS

class

Skin and subcutaneous

tissue

16 2 2 14

Current diagnosis CCS

class

Mental illness 35 6 3 12

Current diagnosis CCS

class

Infectious and parasitic 57 12 4 16

Sex Female 89 3 5 9
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diagnoses) >30 were two critical factors increasing the risk of
colonization. For MRSA, the current diagnosis for “injury and
poisoning”, mostly consisting of procedural injuries such as
accidental puncture or dural laceration during a procedure, is
associated with an increased colonization risk. On the contrary,
the recent procedure code for “administration” (i.e., ICD-10 PCS
codes with first character “3”) was found to lower the risk of
colonization. Finally, female sex and the “mental illness” category
for current diagnosis, including diagnosis for cocaine abuse,
opioid abuse, poisoning by heroin and psychological disorders,
were two other key factors associated with an increased risk for
MDRO colonization. Patients in this category (i.e., the “mental
illness”) are at higher risk for using injections and causing
damage to their skin, which might explain the increased risk for
MDRO colonization.

DISCUSSIONS

Leveraging a rich dataset and supervised ML algorithms,
we developed an accurate and interpretable framework for
predicting VRE, CRE, and MRSA colonization upon ICU
admission. The developed predictive analytics framework
achieved the following sensitivity and specificity values for VRE,
CRE, and MRSA colonization: 80% and 66% for VRE with
LR, 73% and 77% for CRE with XGBoost, and 76% and 59%
for MRSA with RF. Further, we predicted MDRO (i.e., VRE,
CRE, or MRSA) colonization as an aggregate outcome with 82%
sensitivity and 83% specificity for MDRO using RF.

These results indicate that predicting MDRO colonization
in aggregate, rather than separately predicting VRE, CRE, and
MRSA, achieved the highest prediction accuracy in terms of
both AUC and Youden’s index. On the one hand, predicting
a specific MDRO would be preferable, as it would enable
more customized interventions such as tailored antibiotic
therapy. On the other hand, accurately predicting MDRO
colonization without specifying whether it is VRE, CRE, or
MRSA is still quite important for clinical practice. This is
because the key interventions for these MDROs are the
same or similar, such as contact precautions and enhanced
environmental cleaning, and can later be followed up by
more specific testing protocols to identify the underlying
organism. Accordingly, many infection control measures can be
implemented rapidly upon ICU admission for the patients who
are suspected to be colonized, and treatment strategies and more
advanced interventions can be tailored later as more information
becomes available.

In addition to producing timely predictions for newly
admitted ICU patients, our ML-based modeling framework
can also be utilized to identify the key predictors for VRE,
CRE, and MRSA colonization upon ICU admission. We
identified several important predictors of MDRO colonization,
including long-term care facility exposure, a current diagnosis
of skin/subcutaneous tissue or infectious/parasitic disease, and
a recent ICD-10 procedure “Other Procedures”, including
isolation precaution procedures, as the key predictors for
MDRO colonization upon ICU admission. These predictors

can help characterize and identify ICU patients at high-
risk for MDRO colonization and hence, facilitate timely
implementation of infection control measures such as selective
use of contact precautions, targeted surveillance, and tailored
antibiotic therapy.

The primary limitation of our study was that we did
not utilize any data on patient medical history outside of
UMMC. For example, we did not take into account antibiotic
consumption outside of UMMC or during outpatient visits.
Similarly, we did not have information about patients who could
have been admitted elsewhere, thus censoring any information
about whether they received or underwent additional treatments
and procedures in other healthcare facilities. As we utilized
administrative data for procedures and diagnoses, which are
primarily used for billing, we did not have full access to exact
clinical conditions and we did not know the exact reason
why a specific procedure was performed or diagnosis was
established. Our discussions with clinicians shed some light on
these uncertainties but we could not determine the exact details
for each individual patient other than what the data conveys.
Finally, our data were derived from a single source and we were
only able to observe the performance of our modeling framework
on an out-of-sample subset from the same facility.

The machine learning algorithms we used in this study had
additional limitations. Specifically, logistic regression models
assume predictors to have a linear relationship with the log
odds (i.e., the logit form) of the prediction variable and
may have difficulty in capturing complex non-linear relations.
Furthermore, in their standard forms, logistic regression models
require minimal or no multicollinearity between independent
variables, and hence, the presence of highly correlated predictors
might be problematic. Overfittingmight also be a significant issue
for the logistic regression algorithm but this can be avoided by
the use of a regularization technique. XGBoost (i.e., eXtreme
Gradient Boosting) can also easily overfit if its parameters are
not tuned properly. Further, like any other boosting method,
XGBoost models are quite sensitive to outliers since the XGBoost
method relies on the sequential ensemble of decision trees and
every decision tree classifier attempts to fix the errors of its
predecessor learners. Finally, assuming no formal parametric
structure or distribution and relying on the parallel ensemble
of decision trees, random forest models can cope with skewed
data and can capture complex non-linear relationship. Yet,
using a random forest algorithm with the default values can
also generate suboptimal results (86), and hence, parameter
and hyperparameters tuning should be performed to increase
model performance. Moreover, generated feature importance
scores, demonstrating the relevant importance of each feature for
prediction, are not sufficient to capture all forms of dependencies
between predictors and prediction outcome. Partial dependence
plots have been recommended to be used to address this
shortcoming (86). Last but not least, random forest models are
biased in favor of categorical predictors having noticeably more
levels and hence, general conclusions solely based on feature
importance scores might not always be reliable.

It is noteworthy to emphasize that our study, which focused on
predicting MDRO colonization for newly admitted ICU patients,
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would not prevent the importation of VRE, CRE, and MRSA
into the ICU setting. However, by producing reliable predictions
and identifying key risk factors for colonization, our approach
could enable early detection of colonized patients and facilitate
timely and targeted implementation of preventive measures
on asymptomatic MDRO carriers. That is, once implemented
as a clinical decision support system, our predictive analytics
framework could alert healthcare providers in real-time when a
high-risk patient, characterized by the predictors identified by
this study, is admitted to the ICU so that the medical team can
apply the necessary precautions, such as contact precautions,
in a timely manner to prevent potential transmissions. This
approach could help reduce transmission of these so-called
“superbugs” in ICUs, and would particularly be useful for
healthcare settings where active surveillance is not performed.
In future efforts, we plan to examine the practical utility of
our modeling framework via a comprehensive computational
simulation study that investigates and quantifies the estimated
value of early detections flagged by our model both in hospital
and region settings by separately using agent-based and network-
based simulation models (87).

Several recent studies also proposed or assessed a predictive
modeling approach for MDROs. Studying MDRO infections
in emergency department settings, González del Castillo et
al. (88) proposed a prediction model, developed by using
backward logistic regression. The model achieved an AUC
of 0.76 and 0.72 in the model training and testing sets,
respectively. Splitting patients into six risk categories, the authors
also examined different cut-off values for the risk scores. The
model with the optimal cut-off value achieved 59% sensitivity
and 74% specificity. Faine et al. (89) performed an external
validation study to test the performance of the predictive clinical
decision rule they previously developed via logistic regression to
identify multidrug-resistant urinary pathogens in the emergency
department. The model yielded a sensitivity of 56% and
specificity of 66% in the validation cohort. Tseng et al. (90)
utilized a multivariate logistic regression to develop a statistical
model for predicting multidrug-resistant gram-negative bacteria
colonization and infections at the time of hospital admission.
The AUC values of their model were 0.75 and 0.80 in the
model development and validation sets, respectively. The authors
also identified the best threshold value maximizing the Youden
index with 57% sensitivity and 85% specificity. Goodman et
al. (91) derived and compared a ML-based decision tree (i.e.,
classification and regression tree) with a logistic regression-
derived risk score for extended-spectrum beta-lactamase (ESBL)
bacterial infections. The sensitivity and specificity values of the
classification and regression tree (CART) were 51.0 and 99.1%,
respectively. The AUC was 0.77 for the CART model, 0.87
for the multivariable LR model, and 0.87 (and 0.89 following
cross-validation) for the LR-based risk score. The risk score
achieved a sensitivity of 49.5% and a specificity of 99.5% with
the cutoff value that maximizes the overall ESBL classification
accuracy. Sullivan et al. (92) developed a regression model to
predict carbapenem resistance among patients with Klebsiella
pneumoniae bacteremia. The mean AUC of the model was 0.73,
which achieved 73% sensitivity and 59% specificity in the testing

set. Lee et al. (93) assessed the performance of an artificial
neural network (ANN)-based prediction model for predicting
bacteremia in comparison with naïve Bayesian, support vector
machine (SVM), and RF models. Among the compared models,
the multi-layer perceptron, a feedforward ANN model, the
authors developed exhibited the highest sensitivity (81%) and
had a specificity rate 59% with an AUC 0.73. Finally, Lewin-
Epstein et al. (94) applied several ML algorithms, consisting of
LR with LASSO, neural networks, gradient boosted trees, and
an ensemble of these three ML algorithms, to predict antibiotic
resistance profiles of bacterial infections among hospitalized
patients. The ensemble model achieved AUC values ranging
from 0.73 and 0.79 for different types of antibiotics, which
were improved to 0.80–0.88 if the infecting bacterial species was
assumed to be known. As a comparison with these studies, the
best performing model in our study (RF for MDRO prediction)
achieved 0.87 and 0.89 AUC in training and testing sets,
respectively, and yielded 82% sensitivity and 83% specificity in
the validation/testing cohort. In general, the use of tree-based
ensemble algorithms, such as XGBoost and random forest, played
an important role in achieving higher predictive accuracy in
our study.

Prediction models have been previously reported to perform
worse when they are implemented in clinical practice and applied
to new individuals that are different than the original study
population that the model was derived (95). Therefore, before
being integrated into practice for clinical decision support,
the robustness of the proposed approach must be thoroughly
examined and externally validated in different populations. To
address this critical concern, we are currently studying the
transportability, generalizability, and external validation of our
ML models and predictive analytics framework by leveraging
retrospective EHR data from another academic teaching hospital,
located in Baltimore, Maryland, USA. We plan to publish the
findings of this ongoing study in a separate article.

Traditionally, many prediction rules, developed as a decision
support tool for clinicians, are designed to be very simple, relying
on only a small number of variables, for practicality. Yet, with
the increasing availability of electronic healthcare record data
and the expansion of modern database and software systems,
the use of data-driven prediction models and other analytical
and computational methods for the identification, control, and
prevention of MDROs and other HAIs has been increasing (56).
As a result, a growing number of healthcare facilities are capable
of generating more complex prediction models in an automated
fashion. Accordingly, taking advantage of the advances in
computational and data recording technologies, many healthcare
organizations can use our data-driven prediction framework to
produce real-time predictions and identify the high-risk patients
for MDRO colonization.

Finally, we touch upon the topic of the general trade-
off between the predictive power of ML algorithms and the
interpretability of ML models and their results. This trade-off
derives from the fact that the best performing algorithms are
often the most complex ones. That is, while simpler models such
as regressions and decision trees, are transparent and explainable
by design, more advanced models that can capture and cope
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TABLE 7 | Predictors and coefficients (i.e., odds ratios) of the best performing logistic regression models.

Predictor/factor Categorical level CRE VRE MRSA

Prior diagnosis CCS class Neoplasms 2.00 - -

Blood and blood-forming organs - 1.36 -

Infectious and parasitic - 1.18 -

Mental illness 0.84 - -

Symptoms, signs, ill-defined conditions 0.79 - -

Circulatory system - - 0.81

Current diagnosis CCS class Skin and subcutaneous tissue 1.92 1.55 1.52

Nervous system and sense organs 1.26

Respiratory system 1.25

Injury and poisoning 1.15

Infectious and parasitic 1.07

Genitourinary system - 1.18 -

Mental illness - 1.02

Circulatory system - - 0.85

Endocrine, nutritional, metabolic, immunity 0.88 - 0.65

Neoplasms 0.75 - 0.83

Recent 1-digit ICD 10 procedure Other procedures 1.76 1.80 1.76

Extracorporeal/systemic 1.30 - -

Administration - - 0.68

Medical and surgical - - 0.90

Prior ICU stay > 0 Days and < 5 Days 1.20 1.02 -

10–20 Days - 1.39 -

> 20 Days 1.73 - -

Prior 2-digit ICD 10 procedure Medical/surgical gastrointestinal 1.35 - 1.05

Medical/surgical upper veins - 1.03 -

Medical/surgical respiratory - - 1.33

Recent 2-digit ICD 10 procedure Medical/surgical gastrointestinal - - 1.32

Medical/surgical anatomical - 1.33 -

Medical/surgical heart and vessels 1.21 - -

Administration circulatory 1.27 1.28 -

Medical/surgical hepatobiliary - 1.13 -

Prior antibiotics use Yes 1.25 - -

Prior antibiotics Fluoro use 1.28 - -

Prior antibiotics Ceph use - 1.09 -

Number of different types used = 3 1.19 - -

Number of recent procedures ≤ 2 0.92 - 0.87

> 2 and ≤ 5 - 0.91 -

> 5 and ≤ 10 - 0.89 0.96

Number of prior diagnosis ≤ 10 - - 0.91

> 10 and ≤ 20 - 1.01 -

> 50 and ≤ 100 - 1.04 -

Number of prior procedures > 20 - 1.31 -

Number of current diagnosis ≤ 10 - 0.72 0.67

> 10 and ≤ 20 0.74 0.89 -

> 30 and ≤ 50 1.38 1.03 -

Admission type or source Elective 0.96 0.78 -

Home or self referral 0.73 0.83 -

Physician referral 0.65 0.70 -

Race/ethinicity Black 0.91 0.94 -

Sex Female - - 0.89

Age group Age 30–40 - 0.97 -

Age 40–50 0.93 - -

Long-term care facility stay Yes 1.69 1.95 -
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with higher levels of complexities (e.g., neural network, random
forest, XGBoost) are typically more complex and of “black-
box” nature (96). Clinicians are more accustomed to simpler
traditional models (e.g., logistic regression), as these models
usually provide better understanding for the reasoning chain
behind the predictions made. Therefore, we summarize the odds
ratios of the best performing LR models in Table 7, separately for
CRE, VRE, and MRSA colonization. As known, an odds ratio
value > 1 indicates positive correlation whereas an odds ratio
value < 1 means that the presence of the corresponding feature
reduces the risk of colonization.We note that the best performing
LRmodels are not necessarily the best performingMLmodels but
their outputs (i.e., the odds ratios for each feature) offer an easier
interpretation of the results.

There are several other analyses that can be performed
to improve the interpretability of the models and better
communicate results with clinicians. One approach is to
utilize the significant predictors and predicted probabilities
identified and estimated by the best performing ML model
and to link them with a linear regression. That is, after the
predictive analytics study is performed, the modeler can fit a
linear regression model to the significant predictors (i.e., the
features with non-zero coefficients) to explain the predicted
probabilities (i.e., MDRO colonization risks that the ML model
predicts for each patient) and as a result, can provide a direct
means to quantify the impact of each predictor on MDRO
colonization risk. If desired, this approach can be taken a
step further by developing a simple clinical decision rule
based on the weights the linear regression model provides
for each significant predictor (though, usually, at the expense
of predictive power). Alternatively, another approach that can
facilitate the interpretability of the results is to conduct a
univariate sensitivity analysis, again, on the significant predictors
and predicted probabilities of the best performing ML model.
By taking this approach, the modeler can set the value of
a single feature equal to zero (or equivalently, momentarily
exclude it from the analysis) and then calculate the predicted
probabilities by using the already trained ML model and all
other significant predictors. The average decrease in the predicted
probabilities (due to the absence of the feature of interest) can,
then, be used to quantify the impact of (missing) feature on
MDRO colonization risk. By doing this univariate sensitivity
analysis on each and every significant feature, the modeler can
again provide a numeric value quantifying the strength of the
association between each predictor and the (predicted) MDRO
colonization risk.

CONCLUSION AND FUTURE WORK

Timely detection of MDRO colonization, prevention of MDRO
infections, and early implementation of counter-measures are of
utmost importance to alleviate the harms and minimize the costs
associated with MDROs at patient, hospital, and national levels.
Following the advances in database management technologies,
increased computational power of computers, and the availability
of user-friendly software packages, descriptive and predictive

analytics methods can now play a pivotal role for the analysis
of patient data and the identification of patients with MDRO
colonization. This was the primary objective of our study in this
paper, which showcased the use and the practical utility of such
data-driven methods to correctly predict the presence of VRE,
CRE, and MRSA colonization at the time of ICU admission.

In this paper, we proposed a data-centric modeling framework
to predict VRE, CRE, and MRSA colonization upon ICU
admission and identify the associated risk factors. Our study
achieved the highest prediction accuracy, measured by Youden’s
index, when VRE, CRE, and MRSA colonization were combined
and predicted as an aggregate outcome. Capable of coping
with significant class imbalance, a feature commonly observed
in clinical datasets, the framework described in this study
can be used as a clinical decision support tool to provide
accurate on-time predictions especially if it is regularly updated
and trained off-line as additional (i.e., more recent) data
become available. This predictive analytics approach can
further be used to identify the key risk factors and define
high-risk populations, for which targeted interventions can
be implemented rapidly to reduce transmission of MDROs
in ICUs.

There are three research directions that we plan to pursue in
near future: First, we will study the acquisition outcomes, where
we focus on the ICU patients who were initially colonization-
free but acquired VRE, CRE, or MRSA colonization during
their ICU stay. Second, we will develop a comprehensive agent-
based simulation model to analyze MDRO colonization and
infection in ICUs and assess the impact of commonly utilized
prevention and control measures on MDRO transmission.
Finally, we are in the process of acquiring more data from
another major healthcare facility to conduct a similar study
by leveraging this additional dataset. This will not only enable
us to enlarge the size our dataset, leading to more accurate
predictions, but will also give us an opportunity to assess
the generalizability of our findings and help us develop more
robust predictions.
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