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ABSTRACT
Computer-aided drug screening by molecular docking, molecular dynamics (MD) and structural–activ-
ity relationship (SAR) can offer an efficient approach to identify promising drug repurposing candi-
dates for COVID-19 treatment. In this study, computational screening is performed by molecular
docking of 1615 Food and Drug Administration (FDA) approved drugs against the main protease
(Mpro) of SARS-CoV-2. Several promising approved drugs, including Simeprevir, Ergotamine,
Bromocriptine and Tadalafil, stand out as the best candidates based on their binding energy, fitting
score and noncovalent interactions at the binding sites of the receptor. All selected drugs interact
with the key active site residues, including His41 and Cys145. Various noncovalent interactions includ-
ing hydrogen bonding, hydrophobic interactions, pi–sulfur and pi–pi interactions appear to be domin-
ant in drug–Mpro complexes. MD simulations are applied for the most promising drugs. Structural
stability and compactness are observed for the drug–Mpro complexes. The protein shows low flexibil-
ity in both apo and holo form during MD simulations. The MM/PBSA binding free energies are also
measured for the selected drugs. For pattern recognition, structural similarity and binding energy pre-
diction, multiple linear regression (MLR) models are used for the quantitative structural–activity rela-
tionship. The binding energy predicted by MLR model shows an 82% accuracy with the binding
energy determined by molecular docking. Our details results can facilitate rational drug design target-
ing the SARS-CoV-2 main protease.
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1. Introduction

A novel coronavirus was identified in Wuhan, China in
December 2019 spreading an infectious pneumonia-like dis-
ease (Huang et al., 2020). The International Committee on
Taxonomy of Viruses (ICTV) named the novel coronavirus
(2019-nCoV) as SARS-CoV-2 (Gorbalenya et al., 2020). The
World Health Organization (WHO) officially named the dis-
ease caused by SARS-CoV-2 as Coronavirus disease (COVID-
19) on 11 February 2020. On the basis of ‘alarming levels of
spread and severity, and by the alarming levels of inaction’,
on 11 March 2020, the Director-General of WHO character-
ized the COVID-19 situation as a pandemic (Bedford et al.,
2020). To date, the total numbers of reported cases have
reached over 5 million and the number of death is more
than 300 thousand (Worldometer, 2020). Earlier, epidemics of
severe acute respiratory syndrome coronavirus (SARS-CoV) in
Guangdong, China in 2003 and Middle East respiratory syn-
drome coronavirus (MERS-CoV) in 2012 have shown a high
fatality rate (Hilgenfeld & Peiris, 2013; Ton et al., 2020). SARS-
CoV-2 was found to be an enveloped positive-sense, single-

strained RNA virus belonging to the genus betacoronavirus
(Beta-CoV) (Chan et al., 2020; Lu et al., 2020). Phylogenetic
analysis showed that SARS-CoV-2 is closely related to (with
88% identity) two bat-derived severe acute respiratory syn-
drome (SARS)-like coronaviruses, bat-SL-CoVZC45 and bat-SL-
CoVZXC21, collected in 2018 in Zhoushan, Eastern China, but
are more distant from SARS-CoV (about 79%) and MERS-CoV
(about 50%) (Lu et al., 2020). CoVs have the largest known
RNA virus genomes, ranging from 27 to 34 kb (Sexton
et al., 2016).

Inside the host cell, coronavirus genomes are translated
into two groups of proteins; structural proteins, such as
Spike (S), Envelope (E), Matrix (M) and Nucleocapsid (N) and
nonstructural proteins, such as 3C-Like Protease (3CL-PRO,
nsp5), RNA Dependent RNA Polymerase (RdRp, nsp12) (Elfiky,
2020). Coronavirus genome replication and transcription
takes place at cytoplasmic membranes and involves a coordi-
nated process of both continuous and discontinuous RNA
synthesis that is mediated by the viral replicate (Sola et al.,
2015). The main protease (Mpro) of SARS-CoV-2 plays an
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important role in cutting down polyproteins into functional
pieces (Chen et al., 2020; Shaghaghi, 2020). Thus, the main
protease plays a vital role in viral replication. The main prote-
ase (also known as 3C-like protease) can be an attractive
drug target to inhibit coronavirus. Inhibiting the activity of
the main protease could block the replication of the virus
inside infected cells.

The crystallized structure of the main protease (Mpro) or
Chymotrypsin-like protease (3CL-Pro) of SARS-CoV-2 was
identified and repositioned at the RCSB Protein Data bank
(PDB) (Jin et al., 2020). The crystallized structure (PDB ID:
6LU7) contains two chains, A and B, which form a homo-
dimer. Chain A was used for macromolecule preparation. The
protein chain is composed of 306 residues. His41 and Cys145
form an uncharged catalytic dyad (Paasche et al., 2014). The
active site of the protease is activated by a protonation reac-
tion in the catalytic site (Paasche et al., 2014). Inhibiting the
activity of the catalytic dyad will ultimately help to inhibit
the activity of the main protease.

Currently, no effective drugs targeting SARS-CoV-2 are
available. Drug repurposing, a strategy to identify new uses
of approved drugs, could shorten the time and reduce the
cost for identifying effective drugs against COVID-19 (Zhou
et al., 2020). We have selected 1615 FDA approved drugs
from the ZINC database (Irwin & Shoichet, 2005). The focus
of this study is to identify the binding affinities and molecu-
lar interactions of these drugs against the main protease
using computational and statistical tools. Molecular docking,
molecular dynamics (MD), principal components analysis
(PCA) and quantitative structure–activity relationships (QSAR)
were executed to evaluate the performance of the drugs.

2. Computational methods

2.1. Virtual screening and molecular docking protocols

The structures of 1615 FDA approved drugs are obtained from
the ZINC database. The database was then checked for redun-
dant molecules. The three-dimensional crystal structure of
SARS-CoV-2 main protease (Mpro,3CLpro) was collected from

the RCSB Protein Data Bank (PDB) database (PDB-ID:6LU7,
Resolution ¼ 2.16 Å, Method: X-ray diffraction, Organism: Bat-
SARS like coronavirus) (Zhang et al., 2020). The crystal struc-
ture of Mpro was prepared according to previously published
methods for molecular docking (Islam et al., 2020). Potential
active site residues were specified by their vicinity to the lig-
and, N3 (Sekhar, 2020). PyRx Virtual Screening Tools incorpo-
rated with Autodock Vina was used for virtual screening
(Dallakyan & Olson, 2015). Structural optimization of the drugs
was carried out with universal force field (UFF) using the steep-
est descent optimization algorithm, a total of 2000 minimiza-
tion steps (Ahmed et al., 2020). These drugs were converted to
AutoDock ligand (PDBQT format) for docking. The grid center
points were set to X ¼ �11.5693, Y¼ 14.9663, Z¼ 67.9041 and
box dimensions (Angstrom) X¼ 34.6857, Y¼ 45.2264,
Z¼ 42.8980. Grid box center points and dimensions were set
to target the substrate binding-binding pocket of the protein
(Chen et al., 2006). The binding affinities of the drugs were
measured in kcal/mol unit and sorted according to the higher
negative values, which imply the best binding affinities (de
Sousa et al., 2020). Based on calculated binding affinities, the
31 top-ranked potential drugs were chosen for further analysis.
The top-ranked drugs were then optimized by Gaussian 09
software using semi-empirical PM6 method (Frisch, 2009).
These optimized drug structures are then docked again using
AutoDock Vina software and GOLD (Jones et al., 1997) docking
programs. The molecular interactions of the drugs as predicted
by docking simulation were analyzed in BIOVIA Discovery
Studio Visualizer (Studio, 2015).

2.2. MD simulation protocols

The MD simulations for the main protease were conducted
(6LU7) in apo-form (protein without ligand) and in holo-form
(protein–drug complex) to assess any probable conform-
ational changes to and interactions with their structures over
the 100 nanoseconds (ns). AMBER14 force field (Dickson
et al., 2014) was used on YASARA Dynamics (Krieger et al.,
2013) for the simulation. Water molecules were added and
the system was neutralized by the addition of NaCl salt of
0.9% concentration at a temperature of 310 K (Krieger et al.,
2006). The particle-mesh Ewald method was used for calcu-
lating long-range electrostatic interactions. A periodic bound-
ary condition was utilized to carry out the simulation. In all
cases, the cell size was larger than the protein by 20Å. The
temperature of the simulation was controlled by the
Berendsen thermostat. The initial energy minimization pro-
cess of each simulation was performed by the simulated
annealing method, using the steepest gradient approach
(5000 cycles). Normal simulation speed (1.25 fs time step)
was maintained during all the simulations (Krieger & Vriend,
2015). A snapshot was saved in every 100 ps during simula-
tions. After completion of 100 ns MD simulation for all sys-
tems, the results were analyzed in YASARA. During the
analysis of the simulations, time, energy, bond distances,
bond angles, dihedral angles, solvent–accessible surface area
(SASA), molecular surface area (MolSA), coulombic and Van
der Waals interactions, root mean square fluctuation (RMSF)

Figure 1. Frequency distribution of FDA approved drugs over the range of
docking score (Cutoff value –5.1 kcal/mol).
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and root mean square deviation (RMSD) values for backbone,
alpha carbon and heavy atoms were recorded. For more
accuracy, the 100 ns MD simulation was conducted twice for
every complex and the average result was used for analysis.

For binding free energy calculations, molecular mechanics/
Poisson–Boltzmann surface area (MM/PBSA) method was used
in YASARA Dynamics software (Baker et al., 2001; Chirag et al.,
2020; Massova & Kollman, 2000). The AMBER14 force field was
used during the binding free energy calculation. The default
macro file was modified for the calculation. The following
equation was used for the binding free energy calculation:

DGbind ¼ DGcomplexðminimizedÞ–
h
DGligandðminimizedÞ

þ DGreceptorðminimizedÞ
i

DGbind ¼ DGMM þ DGPB þ DGSA�TDS

Here, DGMM is the molecular mechanics interaction (sum of
electrostatic and van der Waals interaction), DGPB and DGSA

correspond to polar and nonpolar solvation energyies,
respectively. TDS is the entropic contribution. Due to the
high computational time, the entropy contribution was not
considered. The final 50 ns data of MD simulation was used
for binding free energy calculations.

Principal component analysis (PCA) is applied to identify
similarities and dissimilarities among the collected energy
profiles of MD trajectory data (Martens & Naes, 1998). The
important components of a PCA model are highlighted in
the following equation: X¼ TkPk

T þ E, where the X matrix
expresses a product of two new matrices, i.e. Tk, Pk, Tk is the
matrix of scores that shows how samples relate to each
other, Pk is the matrix of loadings, which carries information
about how the variables relate to each other, k represents
the number of factors involved in the model and E is the
matrix of residuals.

The selected four drug–main protease complexes may
have dissimilarities with the apo–Mpro during MD simulation
regarding the energy profile. These dissimilarities can be
identified using the PCA algorithm (Islam et al., 2019, 2020).
All calculations were carried out on R platform employing in-
house developed codes and plots were produced using the
package ggplot2 (Kassambara, 2016). Data were prepro-
cessed employing autoscale function before applying the
PCA algorithm (Martens & Naes, 1998). The last 40 ns data of
the MD trajectory was utilized for PCA.

2.3. Structure–activity relationship protocols

Structure–activity relationship (SAR) is a method for estab-
lishing computational or mathematical models that aim to
detect a statistically significant correlation between structure
and function employing chemometric technique (Verma
et al., 2010). 31 initially selected drugs are explored in this
study. Topological polar surface area (TPSA, Å2), molecular
weight (MW, gmol�1), XLogP3-AA, hydrogen bond donor
(HBD), hydrogen bond acceptor (HBA), number of the rotat-
able bonds (ROTB), number of H, C, O, Cl, F atoms, single
bonds (SB) count, number of double bonds (DB) and number
of benzene rings of the drug candidates were studied as var-
iables. Along with calculated binding energies, these varia-
bles were applied to correlate with the SAR by multiple
linear regression (MLR) (Fakayode et al., 2009; Mark &

Table 1. AutoDock Vina predicted binding affinity (kcal/mol) and GOLD fitting
score of 31 drugs and 5 already reported drugs with SARS-CoV-2 Mpro.

Drug
Binding affinity

(kcal/mol) GOLD fitting score

Simeprevir –10.3 73.83
ZINC000164760756
Ergotamine –9.8 81.8
ZINC000052955754
Bromocriptine –9.6 70.66
ZINC000053683151
Tadalafil –9.5 59.32
ZINC000003993855
Dihydroergotamine –9.2 75.46
ZINC000003978005
Perampanel –9.2 74.57
ZINC000030691797
Nilotinib –9.2 84.77
ZINC000006716957
Rolapitant –9.1 72.66
ZINC000003816514
Naldemedine –8.9 70.68
ZINC000100378061
Irinotecan ZINC000001612996 –8.9 72.3
Raltegravir –8.9 64.33
ZINC000013831130
Lumacaftor –8.8 68.84
ZINC000064033452
Eltrombopag –8.8 69.34
ZINC000011679756
Saquinavir –8.7 87.79
ZINC000003914596
Sildenafil –8.7 80.21
ZINC000019796168
Pimozide –8.6 77.44
ZINC000004175630
Paliperidone –8.5 62.18
ZINC000004214700
Suvorexant –8.5 62.23
ZINC000049036447
Nintedanib –8.5 79.48
ZINC000100014909
Maraviroc –8.5 74.25
ZINC000100003902
Paliperidone –8.4 58.75
ZINC000001481956
Conivaptan –8.4 69.76
ZINC000012503187
Pazopanib –8.4 66.93
ZINC000011617039
Ibrutinib –8.4 76.69
ZINC000035328014
Tipranavir –8.4 79.31
ZINC000100022637
Dabrafenib ZINC000068153186 –8.3 68.28
Telotristat –8.3 74.89
ZINC000084758235
Teniposide –8.2 58.82
ZINC000004099009
Apixaban –8.2 72.74
ZINC000011677837
Rifaximin –7.7 42.56
ZINC000169621200
Lifitegrast –7.5 73.73
ZINC000084668739
Montelukast (Contini, 2020) –8.3 93.62
GHRP-2 (Contini, 2020) –8.1 95.49
Indinavir (Contini, 2020) –8 88.35
Cobicistat (Contini, 2020) –7.5 86.53
Angiotensin II (Contini, 2020) –6.9 89.85
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Workman, 2007). MLR was carried out with XLSTAT
(Adinsoft, 2010).

3. Results and discussions

3.1. Virtual screening and molecular docking

The structure of 1615 FDA approved drugs is considered for
virtual screening using Autodock Vina. Considering �5.1 kcal/
mol as a cutoff value, the binding affinities of the drugs are
distributed between �5.1 to �6.0, �6.1 to �7.0, �7.1 to
�8.0, �8.1 to �9.0 and �9.1 to �10.4 kcal/mol (Figure 1).
Most drugs are found to have binding affinities between
�6.1 to �7.0 kcal/mol. The top 31 candidates are selected for
further analysis according to their binding affinities. The
binding affinity of two already reported drugs Remdesivir
and Lopinavir were observed �7.5 and �7.4 kcal/mol,
respectively. After optimizing by PM6 level of theory, the
selected drugs are screened again in AutoDock Vina. GOLD
suit was also employed to understand the binding fitness
using the CHEMPLP fitness score. Here, a higher fitness score
suggests better docking interaction between protein and lig-
and. Along with 5 previously suggested FDA approved drugs
(Contini, 2020), the binding affinities and GOLD fitting scores
of 31 drugs are summarized in Table 1. According to best

binding affinities, Simeprevir, Ergotamine, Bromocriptine and
Tadalafil are selected for further analysis (Figure 2).
Remdesivir and Lopinavir are also considered as control
drugs for MD simulations.

3.2. Molecular interactions of the selected drugs with
the main protease

Noncovalent interactions of the selected drugs which are
detected by Autodock Vina reveals that all of them interact
with either both catalytic residues (His41 and Cys145) or at
least one of them, as shown in Figure 3.

Simeprevir, Ergotamine, Bromocriptine and Tadalafil form
a number of hydrogen bonds and hydrophobic interactions
with the protein (noncovalent interactions detected by GOLD
are reported in (Table S2, supporting information). Among
them, most of the interactions with the active site residues
are categorized as hydrophobic (Table 2). Both Simeprevir
and Ergotamine form a hydrogen bond with at least one of
the catalytic residues.

Simeprevir is observed to show three hydrophobic interactions
with Pro168, two with Leu50 and one with each of the Thr190 and
Ala191. Ergotamine exhibits one pi–alkyl and one pi–pi T-shaped
hydrophobic interaction with Met165 and His41, respectively.

Figure 2. Two dimensional (2D) structures of the selected drugs.
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Among all the protein–drug complexes, Bromocriptine demon-
strates the most noncovalent interactions with the main protease.
It shows two hydrophobic interactionswith His41, twowith Leu27,
three with Met165 and one with each of the Met49, Cys145 and
Gln189 residues. Tadalafil exhibits hydrophobic interactions with
both catalytic residues. Both Ergotamine and Tadalafil show one
pi–sulfur interaction with Met165 and Met49 residues,
respectively.

3.3. MD simulation

MD simulation for all complexes of the main protease (6LU7)
with the top four selected drugs and apo–form is performed for
100ns. RMSD of alpha carbon atoms, RMSF of all amino
acid residues, solvent accessible surface area, radius of gyration
and the number of hydrogen bonds of all the drug–protein
complexes and apo–Mpro are investigated.

The RMSD of Simeprevir–Mpro and Ergotamine–Mpro are
stabilized after 20 ns of simulation, with an average value of
1.81 ± 0.30 Å and 1.90 ± 0.32 Å, respectively (Table 3). Figure 4a
reveals that Bromocriptine–Mpro follows a similar trend in MD
trajectory like apo–Mpro. Tadalafil–Mpro complex shows fluc-
tuation until 30 ns, while it reaches a peak of 3.01 Å at 26.8 ns.
It exhibits structural stability after 30 ns of MD simulation.
These drug–Mpro complexes exhibit better stability in the
RMSD trajectory than the control drugs. Unstable nature is
observed for the RMSD of Remdesivir–Mpro after 70 ns of MD
simulation, while the Lopinavir–Mpro complex followed the
similar trend like the Bromocriptine–Mpro complex. Figure 4b
displays root-mean-square fluctuation as a function of the

residue number of the apo–Mpro and drug–Mpro complexes.
This is explored to understand how the binding of drug mole-
cules changes the behavior of the amino acid residues of the
protein. A low RMSF is observed for the apo–Mpro which sug-
gests low flexibility of protein even without a ligand. It also
shows flexibility at Ser46 to Asn53, Tyr154, Val303, Thr304,
Phe305 and Gln306. The residues Arg188 to Asp197 show high
flexibility in Tadalafil–Mpro complex. RMSF of
Simeprevir–Mpro, Ergotamine–Mpro, Bromocriptine–Mpro,
Remdesivir–Mpro and Lopinavir–Mpro complexes are almost
similar in most areas.

The radius of gyration (Rg) is the root mean square dis-
tance of various atoms of a protein from the axis of rotation,
and it illustrates structural compactness. A greater change in
Rg value may occur due to the folding or conformational
changes of protein structure, while a lower degree of fluctu-
ation over the simulation period indicates rigidity and higher
compactness of a structure. According to the observed Rg
value, the apo–Mpro and Simeprevir–Mpro complex showed
almost similar structural compactness over the phase of the
100 ns simulation. The apo–Mpro complex experienced a
fluctuation in Rg value during 80–90 ns. Ergotamine showed
structural compactness all over the simulation time with an
average of 22.32 ± 0.11 Å. Bromocriptine–Mpro followed a
similar trend like the Remdesivir–Mpro complex after 45 ns. A
loose packing is observed for Tadalafil–Mpro during 60 ns to
90 ns. Except for this time frame, Tadalafil–Mpro and
Lopinavir–Mpro followed a similar trend in MD trajectory.
Based on the overall Rg, the average values are 22.35 ± 0.14
Å, 22.39 ± 0.14 Å, 22.20 ± 0.13 Å, 22.57 ± 0.24 Å, 22.22 ± 0.12 Å

Figure 3. Nonbonding interactions of top drug candidates with the main protease of SARS-CoV-2 (pose predicted by AutoDock Vina). (a) Simeprevir, (b)
Ergotamine, (c) Bromocriptine, and (d) Tadalafil.

JOURNAL OF BIOMOLECULAR STRUCTURE AND DYNAMICS 5



and 22.42 ± 0.11 Å for apo–Mpro, Simeprevir–Mpro,
Bromocriptine–Mpro, Tadalafil–Mpro, Remdesivir–Mpro and
Lopinavir–Mpro complexes, respectively. To anticipate the
solvent accessibility of all complexes, the solvent-accessible
surface area (SASA) of apo–Mpro and complexes are calculated
(Figure 4(c)). Binding of a drug to the protein may impact its
structural properties, thus, SASA may also change. A higher
SASA value suggests the expansion of protein structure. A low
fluctuation of SASA value is expected during the simulation.
All the examined complexes exhibit a similar trend until 40 ns
of MD trajectory. Simeprevir–Mpro and Ergotamine–Mpro

showed lower SASA value than the control drug–Mpro com-
plexes. The overall average SASA value suggests Lopinavir
could induce protein expansion, and thus, increase the solvent
accessible surface of the protein (Table 3).

Since intermolecular hydrogen bonds between protein–drug
complexes have a significant contribution to the conformational
stability of the complex, the total number of hydrogen bonds is
calculated (Figure 4(e)). The average number of hydrogen
bonds observed in apo–Mpro is 510.2 ± 11.80. The
Bromocriptine–Mpro complex has the most hydrogen bonds
over the 100ns simulation time (Table 3).

Binding free energy calculations for each complex were con-
ducted by employing the MM/PBSA method. The
Simeprevir–Mpro shows the highest average binding free
energy of �77.44±2.43 kcal/mol. All our selected drug–Mpro
complexes demonstrate better binding free energy than the
Remdesivir–Mpro complex (Figure 4(f)). The binding free energy
of the Remdesivir–Mpro complex persisted as positive most of
the time, which indicates loose binding between the drug and
the protein. The binding free energy of Ergotamine–Mpro,
Bromocriptine–Mpro, Tadalafil–Mpro and Lopinavir–Mpro com-
plexes remained negative most of the time, which also indicates
good binding (Figure S2, supporting information). The average
binding free energy was observed �26.33±0.39, �33.69 ±0.11,
�14.46±0.63, �0.31±0.06 and �27.89±0.35 kcal/mol for
Ergotamine, Bromocriptine, Tadalafil, Remdesivir and Lopinavir,
respectively.

The snapshots of Mpro–drug complexes are visualized at
different time intervals to explore the drugs pose during MD
simulation. All our selected drugs stayed at the binding
pocket of the protein over the phase of 100 ns MD simula-
tion (Figure 5). Additionally, all drugs interact with at least
one of the catalytic residues during most of the time of MD
simulation (Table S4, supporting information).

3.4. Principal components analysis

PCA is applied to observe the structural properties and
energy profiles of apo–Mpro and the selected four
drug–Mpro complexes. A single PCA model consisting of five
training sets (Mpro and four drug–Mpro complexes) was con-
structed for analysis. The first two PCs explained 91.74% of
the total variance, where PC1 contributed 75.07% and PC2
contributed 16.67% of the variance. It is observed from the
scores plot (Figure 6(a)) that the apo–Mpro (violet) and
Simeprevir–Mpro complex (cyan) overlap with each other,
thus, indicating similarity in energy and structural profile.
Moreover, Ergotamine–Mpro (green) and Tadalafil–Mpro
(orange–red) shifted slightly toward the right in the PC1

Table 3. Average RMSD, SASA, Rg, number of hydrogen bonds and binding free energy of the selected drugs–Mpro complexes.

Complex RMSD (Å) SASA (Å2) Radius of gyration (Å) Number of hydrogen bonds Binding free energy (kcal/mol)

Apo–Mpro 2.07 ± 0.32 14137.41 ± 217.54 22.35 ± 0.14 510.2 ± 11.80 –
Simeprevir–Mpro 1.81 ± 0.30 13889.76 ± 295.20 22.39 ± 0.14 502 ± 12.72 –77.44 ± 2.43
Ergotamine–Mpro 1.90 ± 0.32 13800.03 ± 243.83 22.32 ± 0.11 503.36 ± 11.36 –26.33 ± 0.39
Bromocriptine–Mpro 2.07 ± 0.36 14035.29 ± 208.71 22.20 ± 0.13 512.50 ± 12.33 –33.69 ± 0.11
Tadalafil–Mpro 2.24 ± 0.41 14197.53 ± 390.24 22.57 ± 0.24 510.86 ± 14.66 –14.46 ± 0.63
Remdesivir–Mpro 1.89 ± 0.36 13892.51 ± 252.63 22.22 ± 0.12 507.96 ± 12.04 –0.31 ± 0.06
Lopinavir–Mpro 2.03 ± 0.41 14168.63 ± 226.90 22.42 ± 0.11 508.66 ± 12.10 –27.89 ± 0.35

Table 2. Noncovalent interactions of selected four drugs with main protease
of SARS-CoV-2 (pose predicted by AutoDock Vina) where, H¼Hydrogen bond,
CH¼ Conventional Hydrogen bond, C¼ Carbon Hydrogen bond.

Interacting residue Distance Bond category Bond type

Simeprevir
CYS145 2.7202 H CH
GLN189 2.29 H CH
GLY143 2.19455 H CH
THR190 3.81766 Hydrophobic Amide-Pi Stacked
PRO168 4.48443 Hydrophobic Alkyl
LEU50 5.06348 Hydrophobic Alkyl
LEU50 4.94019 Hydrophobic Alkyl
PRO168 4.58666 Hydrophobic Pi-Alkyl
ALA191 4.47775 Hydrophobic Pi-Alkyl
PRO168 3.91598 Hydrophobic Pi-Alkyl
Ergotamine
HIS41 2.88425 H C
MET165 1.89419 H C
MET165 4.81695 Hydrophobic Pi-Alkyl
HIS41 4.81113 Hydrophobic Pi-Pi-T Shaped
MET165 5.65835 Other Pi-sulfur
Bromocriptine
GLY143 2.32271 H CH
GLY143 1.86614 H CH
ARG188 2.28318 H CH
ASN142 2.55112 H C
GLY143 2.91712 H C
GLN189 1.99597 H C
LEU27 3.98094 Hydrophobic Alkyl
MET165 5.33935 Hydrophobic Alkyl
LEU27 4.43789 Hydrophobic Alkyl
CYS145 3.95427 Hydrophobic Alkyl
MET49 4.83683 Hydrophobic Alkyl
HIS41 5.27854 Hydrophobic Pi-Alkyl
MET165 4.15194 Hydrophobic Pi-Alkyl
MET165 4.68951 Hydrophobic Pi-Alkyl
GLN189 2.38092 Hydrophobic Pi-Sigma
HIS41 5.13653 Hydrophobic Pi-Pi-T Shaped
Tadalafil
ASN142 2.16312 H C
GLY143 2.66564 H C
MET165 2.64728 H C
CYS145 5.22621 Hydrophobic Alkyl
MET49 5.50154 Other Pi-Sulfur
MET49 5.03037 Hydrophobic Pi-Alkyl
CYS145 5.47403 Hydrophobic Pi-Alkyl
MET49 4.6017 Hydrophobic Pi-Alkyl
HIS41 5.18874 Hydrophobic Pi-Alkyl
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direction and resided very close to apo–Mpro and
Simeprevir–Mpro complex. Thus, by forming a complex with
Ergotamine and Tadalafil, Mpro showed a similar structural
profile compared to Mpro alone. However, the
Bromocriptine–Mpro complex (blue) shifted significantly
toward the positive direction of PC1. This indicates greater
dissimilarity of Bromocriptine–Mpro with apo–Mpro and
other complexes. The loading plot (Figure 6(b)) revealed that
the variables are separated in the PC1 direction, which
explains different cluster formation in the PC1 direction.
Therefore, it is evident from the PCA scoring plot that
Simeprevir has the best binding stability with Mpro, while
Ergotamine and Tadalafil also demonstrate almost similar
behavior in MD simulation.

3.5. Structure–activity relationship

SAR has been used for decades by researchers as a cheaper way
to develop relationships between physiochemical properties of
chemicals and their bioactivities (Santos-Filho et al., 2009;
Verma et al., 2010). It is a widely used tool in bioinformatics,
drug discovery for clinical research, pharmaceutical industry,
petrochemical and agrochemical sectors for modeling and pre-
dictive pattern analysis (Alam & Khan, 2017; Fakayode et al.,
2014; Funar-Timofei et al., 2017). For further analysis, MLR has
been employed. For instance, TPSA (Å2), molecular weight,
XLogP3, H-bond donor count, H-bond acceptor count of the
drugs are the most significant variables on QSAR contributors
to the MLR model (Table S3, supporting information).

Figure 4. Analysis of RMSD, RMSF, SASA, Rg and total number of hydrogen bonds of apo–Mpro and selected four drug–protein complexes at 100 ns. (a) Root-
mean-square deviation (RMSD, Å) of the Ca atoms over the phase of 100 ns, (b) RMSF values of the alpha carbon over the entire simulation, where the ordinate is
RMSF (Å), (c) Solvent accessible surface area (SASA), (d) Radius of gyration (Rg) over the entire simulation, (e) Total H-bond count throughout the simulation and (f)
Binding Free Energy during the last 50 ns of simulation.
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The drugs with similar functional groups are found to stay
side by side on the score plot (Figure 7). For example, drugs
(D2, D3 and D5) containing indole ring, amide group and
alcohol group are clustered together on the fourth quadrant
of the score plot. On the other hand, drugs (D23, D7, D16,
D13, D22 and D24) with diazole ring attached to the ben-
zene ring are clustered on the second and third quadrants.
The grouping on the score plot was highly significant.

The MLR model is generated and employed to predict the
binding energy obtained from molecular docking.
Additionally, a test set is utilized for the validation of drug

candidates. The observed results of validation reveal similar-
ity in the binding energies (Table 4).

The ability of the MLR model to accurately anticipate
the binding energy of the validated drugs is evaluated by
the root-mean-square-relative percent-error (RMS%RE). The
result obtained from MLR is 82% accurate while comparing
to the binding energy. Yet, findings from this analysis can
help researchers predict the drug performances against the
main protease considering the binding energy, chemical
behavior and pharmacological efficacy of upcoming
drug candidates.

Figure 5. Binding pose of drugs during 100 ns MD simulation. The crystal structure of Mpro is shown in beige color with (a) Simeprevir (cyan), (b) Ergotamine
(green), (c) Bromocriptine (blue) and (d) Tadalafil (orange red).
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4. Conclusion

In this study, several computational and statistical tools
such as molecular docking, MD simulation, SAR and PCA are
used to detect the best existing drugs against the main

protease of SARS-CoV-2. Among the 1615 studied drugs,
Simeprevir, Ergotamine, Bromocriptine and Tadalafil are
found to have the highest binding affinity. As these drugs
are already certified for human use, they do not require
long-term clinical trials. These drugs show a significant num-
ber of noncovalent interactions including hydrogen bond,
hydrophobic interaction and electrostatic interaction with
the binding site residues of Mpro. All the selected drugs
interact either with both (His41 and Cys145) or at least one
of the catalytic residues. Furthermore, MD simulations
exhibit that Simeprevir, Ergotamine and Bromocriptine drugs
with Mpro protein preserve the structural stability over the
simulation period. Additionally, the MM/PBSA free energy
profiles of these drugs suggest strong binding with the
receptor. SAR pattern recognition reveals that drugs contain-
ing an indole ring, amide group and alcohol group are clus-
tered together in the fourth quadrant and drugs containing
an azole ring attached to benzene ring are assembled
together in the second and third quadrant of the scoring
plot. The predicted binding affinity values from MLR shows
82% accuracy compared to values obtained from molecular
docking. It can be concluded that the selected drugs are
promising and can be used to design effective drugs
against the SARS-CoV-2.
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Figure 6. (a) The score plot presented five data clusters in different color, where each dot represents one time point. The clustering is attributable as: apo–Mpro
(violet), Simeprevir–Mpro complex (cyan), Ergotamine–Mpro (green), Bromocriptine–Mpro (blue), Tadalafil–Mpro (orange red) (b) loading plot from principal
components analysis of the energy and structural data.

Table 4. Predicted binding energy by the MLR model and actual binding
energy from molecular docking.

Sample
Predicted binding
energy (kcal/mol)

Actual binding
energy(kcal/mol) %RE

D2 –8.89 –9.80 –2.99
D5 –8.92 –9.20 –0.91
D8 –8.90 –9.10 –0.66
D12 –8.76 –8.80 –0.13
D15 –8.99 –8.70 0.98
D20 –9.03 –8.50 1.77
D24 –8.68 –8.40 0.92
D26 –8.62 –8.30 1.07
D28 –9.02 –8.20 2.72
D29 –8.77 –8.20 1.90
D31 –8.64 –7.50 3.79
RMS%RE 1.95

Figure 7. Score plot of PCA analysis for quantitative structural–activity relation-
ship of drugs.
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