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a b s t r a c t

The COVID-19 pandemic has posed an unprecedented threat to the global public health system,
primarily infecting the airway epithelial cells in the respiratory tract. Chest X-ray (CXR) is widely
available, faster, and less expensive therefore it is preferred to monitor the lungs for COVID-19
diagnosis over other techniques such as molecular test, antigen test, antibody test, and chest computed
tomography (CT). As the pandemic continues to reveal the limitations of our current ecosystems,
researchers are coming together to share their knowledge and experience in order to develop new
systems to tackle it. In this work, an end-to-end IoT infrastructure is designed and built to diagnose
patients remotely in the case of a pandemic, limiting COVID-19 dissemination while also improving
measurement science. The proposed framework comprises six steps. In the last step, a model is
designed to interpret CXR images and intelligently measure the severity of COVID-19 lung infections
using a novel deep neural network (DNN). The proposed DNN employs multi-scale sampling filters
to extract reliable and noise-invariant features from a variety of image patches. Experiments are
conducted on five publicly available databases, including COVIDx, COVID-19 Radiography, COVID-
XRay-5K, COVID-19-CXR, and COVIDchestxray, with classification accuracies of 96.01%, 99.62%, 99.22%,
98.83%, and 100%, and testing times of 0.541, 0.692, 1.28, 0.461, and 0.202 s, respectively. The obtained
results show that the proposed model surpasses fourteen baseline techniques. As a result, the newly
developed model could be utilized to evaluate treatment efficacy, particularly in remote locations.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

COVID-19 was originally identified in China in December 2019
nd has infected over a hundred million people around the world.
he World Health Organization (WHO) declared a pandemic on
arch 11, 2020. In almost 74% of the cases, the infections are
ither minor (18%) or severe symptoms (56%). However, the
emaining 26% vary from critical (20%) to an extreme symp-
oms (6%) [1]. As of today (28/05/2021), the world’s cumulative
umber of COVID-19 infections is more than 169 million, and
he death toll overpasses 3.52 million, while 151 million cases
ecovered completely. Moreover, the number of active instances
s 14.74 million, among which 14,648,154 events are in minor
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condition, and 93,863 events are in serious condition [2]. Table 1
summarizes some major statistical parameters related to the
pandemic COVID-19 in several countries. The novel COVID-19
disease emerges with throat inflammation, fever, and respiratory
distress, then progresses to breathing difficulties. The infection
could cause the severe acute respiratory syndrome, pulmonary
hypertension, organ failure, and, ultimately, death of the pa-
tient [3]. Recent studies suggest that men are more likely to
get affected than women. In this perspective, men represent 60%
of the cases, and there were no reported substantial mortality
rates among children younger than nine years [4]. Furthermore,
COVID-19 infected patients must isolate themselves and adopt
appropriate preventive steps to safeguard healthy individuals,
thereby breaking the infection chain [4,5]. Historical data have
shown that the infection rate grows exponentially rather than

linearly if preventive measures are not utilized effectively, and
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Table 1
Statistics on COVID-19 outbreaks.
Countries Confirmed Deaths Recovered

USA 33,999,680 607,726 27,701,879
India 27,555,457 318,895 24,893,410
Brazil 16,342,162 456,753 14,786,292
Russia 5,044,459 120,406 4,661,234
UK 4,473,677 127,758 4,310,572
France 5,635,629 109,165 5,284,264
Turkey 5,220,549 46,970 5,070,815
Germany 3,673,969 88,689 3,461,700
Italy 4,205,970 125,793 3,826,984

in some cases, the pandemic may reach a tipping point beyond
which the infection rate becomes uncontrollable. In many circum-
stances, it would put a strain on the limited medical resources
available for diagnosis. COVID-19 is diagnosed using at least one
of the three methods listed below:

• RT-PCR: For antigen detection testing, [6,7] uses a nose
blood sample and a venous blood sample. In some countries,
such as India, these procedures necessitate contact between
patients and physicians, which might take anything from
a few hours to three days to receive results. Some studies
have found that the results of numerous RT-PCR tests per-
formed at different times for the same patient can differ,
resulting in a high false negative (FN) diagnostic rate [8].
Many researchers suggested combining the RT-PCR test with
additional clinical exams, such as computed tomography
(CT), to improve the accuracy of the diagnosis.

• CT scan: COVID-19 patients mostly become infected with
lung disease at an early stage of the disease. The most preva-
lent COVID-19 lung symptoms are consolidation, i.e. fluid
and bone accumulations in lung blood vessels that pre-
vent ground-glass opacity, gas exchange, and nodular shad-
owing. These symptoms are frequently present in the
middle and lower lung regions and can be used to dis-
tinguish between people infected with non-COVID-19 and
COVID-19 [9,10]. In comparison to RT-PCR, CT equipment
generates images for faster COVID-19 screening [11]. CT
scan-based measurement entails assessing 3D radiographic
imaging of the lungs from multiple perspectives. Manual
examination of COVID-19 from chest CT scans, on the other
hand, is a labor-intensive, and time-consuming procedure
since medical practitioners must find lesions slice-by-slice
from volumetric CT images.

• Chest X-ray (CXR): In comparison to CT, CXR equipment
is smaller and more portable. In hospitals, this type of re-
source is usually more accessible than RT-PCR and CT-scan.
Furthermore, because the CXR test lasts around 15 s per
subject [12], it is one of the most cost-effective pieces of
evaluation equipment.

In medical treatment, a reliable computer-aided diagnostic
ystem that analyzes CXR for precise, rapid screening and diag-
osis of COVID-19 patients is required, reducing the workload
n the medical staff. However, such a diagnosis is difficult to
utomate because CXR images of pneumonia exhibit similar types
f defects in the lung territories. Therefore, relying only on classi-
al computer vision techniques which are based on hand-crafted
escriptors might be deemed to failure due to the difficulty to
andle the distinctive features of pneumonia targets.

.1. Motivation and contribution

In recent years, tremendous progress has been made in mea-
urement science by applying deep neural networks (DNN) tech-
iques to computer vision applications such as salient object
2

detection [13,14], facial expression recognition [15,16], and de-
ception detection [17], thus DNNmodels have become the defacto-
standard nowadays. DNN has specialized in learning-rich images
with high-level discriminatory semantic characteristics automat-
ically, eliminating the need for hand-crafted descriptors. These
breakthroughs have revealed that deeper models can improve
results [16]. Thus, it is viable to train a DNN model to obtain
promising performance in COVID-19 screening and monitoring.
Moreover, technological advancement has enabled the manufac-
turing of low-cost portable computing devices for consumers.
Cellular devices have advanced in terms of technical capabil-
ities and processing power, and they have become a source
of information, interaction, and sharing. They are now almost
indispensable in our daily lives. Internet of Things (IoT) with
cellular devices have permitted a far wider range of uses, not
only for entertainment but also for the treatment and monitor-
ing of health requirements, environmental surveillance, home
automation, and many more [18]. Therefore, the motivation for
this study is twofold. Firstly, there is a lack of resources and
screening tools for identifying and monitoring COVID-19 patients,
and secondly, DNN has a great potential for fetching features
and accurately classifying images without any manual interven-
tion. This work introduces a framework that includes a novel
DNN enabled IoT service to intelligently measure the severity of
COVID-19 lung infections by analyzing CXR images. The proposed
DNN module consists of multi-scale sampling filters that allow
extracting more reliable and noise-invariant features at different
image patches. We have circumvent the shortcomings of the ex-
isting DNN models and achieve superior performance by carefully
designing the proposed DNN model-based multi-scale sampling.
All the experiments are implemented on five databases, namely
COVIDx (D1) [19], COVID-19 Radiography (D2) [20], COVID-XRay-
5K (D3) [21], COVID-19-CXR (D4) [22], and COVID-chestxray
(D5) [23]. The proposed framework is compared with fourteen
existing approaches by utilizing four well-known classification
metrics viz., F1-score, recall, precision, and accuracy. Empiri-
cal evidence manifests that the proposed method outranks all
the fourteen existing approaches. The integration of the pro-
posed algorithm with an IoT framework results in an efficient
and precise real-time online service for COVID-19 diagnosis. The
contributions of this study can be summarized as follows:

• A detection and monitoring tool for the diagnosis of COVID-
19 patients is introduced. This framework is instrumented
with an IoT system that helps to oversee both potential
and real cases. Thus, the newly developed equipment can
be employed to observe patients efficiently, especially in a
remote location.

• A novel DNN framework is designed for distinguishing non-
COVID-19 from COVID-19 classes using CXR images. The
use of X-ray simplifies the implementation of the proposed
method in real-world scenarios. When compared to other
testing procedures, X-rays are less expensive and take less
time.

• The proposed DNN consists of multi-scale filters. The
strength of multi-scale sampling filters to fetch robust and
noise invariant facets with distinguishing power is exploited.
We hypothesize that by integrating multi-scale feature ex-
traction, we can learn more resilient convolutional filters
since the scale of features varies substantially among dis-
tinct ground objects captured from several sensing devices.
Moreover, our proposed DNN is simple as it has fewer layers
and learning parameters.

• We give insights into the theoretical enhancement made
to the DNN model and document their empowering
effect through experiments. The experimental results il-
lustrate that the computation cost is considerably lower
compared with some related approaches. This confirms that
our approach is more computationally efficient.
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he organization of the current study is structured as follows: A
oncise summary of a few notable previous approaches related
o COVID-19 classification is put forward in Section 2. Section 3
escribes the proposed work in depth. The obtained outcomes
f the proposed model along with other baseline approaches are
eported in Section 4. At last, Section 5 concludes the current
tudy.

. Related work

Some recent developments in diagnosis the COVID-19 utilizing
achine learning (ML) and deep learning (DL) techniques are

horoughly described in this section.
In the field of medical imaging, DL techniques have classi-

ally discovered a large set of applications ranging from diabetic
etinopathy, histological examination, cardiac imaging, tumor de-
ection, to mention a few. An emerging application of DL is to
iagnose COVID-19 using CXR images, CT-scans [24], etc. Several
esearchers have published a set of pre-print papers tackling the
roblem of COVID-19 detection from CXR [19]. The reported re-
ults from the latter study document promising outcomes, how-
ver, they are based on small databases, which is far from the real
mplementation. These solutions would need to be thoroughly
ested and improved before they could be put into use.

Typically, researchers rely on DL techniques to classify any
pecific characteristics of COVID-19 patients from CXR images.
L is known to be efficient in the detection of different lung-
elated diseases based on chest radiography images. A plethora
f legacy studies applying ML and DL algorithms to analyze
he X-ray and CT images can be found in the literature [19,
5,26]. With the upsurge of the COVID-19, many recent pieces
f research have investigated the usefulness of radiological im-
ges for COVID-19 detection. In [19], Wang et al. presented a
OVID-Net for COVID-19 detection. Further, Hemdan et al. [26]
uggested an alternative approach named COVIDX-Net, consisting
f seven DNN variants to detect COVID-19 from CXR images.
owever, these methods suffer from overfitting problem and
re hard to implement in real-time applications since it has a
arger network. To make it evident, the training and validation
osses obtained by these two methods are analyzed and it is
bserved that the gap between training and validation losses is
reater. Ohata et al. [27] employed transfer learning to further
rain various pre-trained DL models to fetch facets and accurately
redict COVID-19. Tabik et al. [28] suggested a COVID-SDNet,
hich consists of several DNN networks for COVID-19 classifi-
ation. However, these methods are very time-consuming. Arias
t al. [29] presented an automatic detection of COVID-19 (AD-
OVID19) using DNN with a segmentation approach. In [30],
ang et al. used a prior residual learning approach for classifying
OVID-19 robustly. However, it has a large number of param-
ters, hence it is hard to implement in real-time applications,
specially in health care for monitoring COVID-19 patients. Khan
t al. [22] utilized pre-trained XCeption architecture and further
rained it on CXR images of COVID-19 and other chest pneumonia
rom two separate publicly accessible databases. Furthermore,
ian et al. [25] presented a DL model that directly used pre-trained
odels like ResNeXt, XCeption, and Inception-V3 for COVID-19
etection from CXR images. Similarly, Apostolopoulos et al. [31]
sed a transfer learning approach with VGG-19 and MobileNet.
hese methods, have a large number of parameters and require
omplex computational resources to train. In [32], DarkCovid-
et is presented for classification and detection of COVID-19.
n [33], five pre-trained models, namely ResNet50, ResNet101,
esNet152, InceptionV3 and Inception-ResNetV2, are employed
or classifying COVID-19 effectively.

Some researchers have presented IoT-based diagnosis systems
hat collect relevant sensor data and process it in the cloud. With
3

the advent of IoT, it has become a critical component of many
environmental monitoring and healthcare applications.

In [34], Nguyen provided a review of the artificial intelli-
gence (AI) methods used in COVID-19 analysis. These approaches
were divided into several categories, including the use of IoT.
Maghdid [35] explored that sensors on smartphones can be used
to acquire health information such as temperature. Rao and
Vazquez [36] investigated the utility of ML techniques on user
data gathered via a web-based survey obtained from smartphones
for quick COVID-19 screening. In [37], Allam and Jones suggested
a method to detect potential COVID-19 patients using images
from a thermal camera. Otoom et al. [38] presented an IoT-based
real-time detection, observation, and inspection of COVID-19
system using eight ML algorithms, namely k-nearest neighbor
(KNN), support vector machine (SVM), artificial neural network
(ANN), Naive Bayes, decision stump, decision table, one rule
(OneR), and zero rule (ZeroR). Zhang et al. [39] presented a
residual learning diagnosis detection (RLDD) system for COVID-19
classification. A residual block was used in this method to train a
DNN, which is quite large, therefore complex calculations are re-
quired. Furthermore, they presented an industrial IoT framework,
but no comprehensive definition of how or where it should be
implemented was provided. However, the performance of these
methods falls short on small databases.

3. Proposed method

This section offers a brief overview of the proposed DL-based
IoT service for evaluating CXR images and diagnosing COVID-19
effectively. Due to the reliance on classical ML approaches on hu-
man skill for feature creation, as well as DL advancements in the
domain of computer vision, we propose a DL model for automatic
feature engineering in this study. We will also demonstrate how
our DL-based algorithm can be linked to an IoT service to create
a complete diagnosis chain.

3.1. The IoT framework

Social distancing is a non-pharmaceutical method of preven-
tion. When we are forced to stay locked up in our homes, the
IoT revolution plays an important role in modern healthcare
systems in terms of professional, social, and economic prospects.
As a result, in the context of the current pandemic, IoT-enabled
applications can be used to reduce the potential spread of COVID-
19 through early and remote diagnosis. As a result, the present
study introduces an end-to-end IoT framework to help virtually
the patients in remote locations in the event of a pandemic. The
challenges associated with each layer of the proposed framework
are addressed, and design guidelines for dealing with them are
discussed. This sub-section describes the developed IoT-based
framework for observing and recognizing COVID-19 cases. This
framework can also be used to track how well-reported patients
respond to treatment and learn more about the COVID-19 disease.
The proposed IoT framework is shown in Fig. 1, consisting of six
steps labeled from 1–6. The doctor can upload a COVID-19 X-
ray image or a group of images to an internet application from
this screen. This method will extract information from images
and classify them as non-COVID-19 or COVID-19. The proposed
method extracts features from an image using the DNN model,
followed by a softmax classifier that uses the extracted features as
inputs to classify COVID-19. This method makes use of the LINDA,
which is available as a web service. It consists of a processing
flow that can (i) extract, (ii) train, (iii) predict, and (iv) store
the statistics and results obtained for COVID-19 recognition. All
computational processing for this IoT system is done in the cloud.
The server is housed at the Instituto Federal de Educaço, Ciência,
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Fig. 1. Schematic illustration of the LINDA approach for IoT-based COVID-19 detection and classification in CXR images. (1) new images can be sent for training or
prediction using the same software. (2) users can define system parameters using a web application; (3) training results are displayed in plots and tables; and (4)
API prediction is in charge of image processing based on the parameters set in the web application, (5) medical analysis by the doctors, and, finally, (6) Diagnostic
process by the proposed DNN model.
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Fig. 2. Diagram showing the processing steps starting from five X-ray databases,
xtracting facets of the COVID-19 X-ray images based on DNN, and the
lassification step with softmax classifiers.

Tecnologia do Ceará. LINDA has recently gained popularity, and
t has been used to develop not only medical IoT services such as
troke classification based on cerebral vascular accident images,
elanocytic lesion classification based on skin images [40,41], but
lso machine condition monitoring [42].
When patients exhibit COVID-19-related symptoms, smart-

hones, computers, and other electronic devices are permitted
o transmit information and X-ray images to LINDA. A user can
erform a variety of operations in LINDA, including defining
he number of classes, configuring the extraction and classifier
haracteristics, and changing the extractors and classifiers used.
INDA also includes a graphical dashboard with metrics for eval-
ating the performance of the extractor and classifier. The IoT
ystem supports the Python programming language, the Post-
reSQL database, the TensorFlow, and Keras frameworks. The flow
f the developed LINDA-based IoT system is depicted in Fig. 2: the
irst phase entails integrating the five X-ray image databases, as
ell as the feature extraction and classification procedures.
The data flow of the LINDA system is depicted in detail in

ig. 1. The information flow of the LINDA system will begin by
ending an image from a device, as shown in Fig. 1 by the number
. A security hash code will also be sent to the system. The
ystem will then call the prediction API, which will select the
lgorithms to use based on the secure hash. The required models
ill be loaded into memory. If the system settings have not been
ompleted and some changes are required, the web application
number 2) will be used to upload and categorize images. The
 c

4

proposed DNN is deployed on this platform, and the algorithm
was trained on five databases. Section 3.2 contains a detailed de-
scription of DNN. To learn more about LINDA, interested readers
should visit [43]. The proposed method has three advantages:

• There is no need for face-to-face communication between
physicians and subjects, which reduces medical staff expo-
sure to infection.

• The proposed application diagnoses the X-ray image in less
than a second, allowing faster response in case of positive
cases.

• By virtue of enjoying a short development cycle, the pro-
posed IoT-based service can be easily upgraded at a minimal
cost without disrupting the service.

3.2. The proposed DNN architecture

In this study, we developed a multi-scale DNN system for
extracting and recognizing COVID-19 features from CXR images.
DNN automatically learns the various features from X-ray images
using different scales, and these facets are learned by training the
network over several iterations. In previous research, researchers
discovered that convolutional sampling on fixed scales frequently
limits a DNN’s ability to find local invariant patterns, whereas
multi-scale sampling allows a DNN to find more reliable and
noise-invariant features at different image patches. To address
this scope in the context of the current study, a variable filter size
(7 × 7, 5 × 5, 3 × 3) is used at various convolutional layers with
trides of 1 × 1. Before training the network, pre-processing is
erformed on X-ray images as shown in Fig. 3. Fig. 4 displays the
rchitecture of the proposed DNN. The DNN extracts robust and
eometrically invariant patterns from different patches of X-ray.
he input to the DNN is gray-scale images. The proposed DNN
onsists of 5 blocks. The first block contains 3 convolutional layers
ith different filter banks and Block2 consisting of pooling layers,

which are stacked with Block1 convolutional layers as shown in
Fig. 4. The features obtained from the Block2 are concatenated
into a single feature vector. Later, three convolution operations
are applied with various filter banks (i.e. Block3) on concatenated
vector and combined all the features obtained from Block3, then,
hey are stacked with a single convolutional layer consisting of
× 1 filter bank followed by max-pooling operation with filter

ize 4 × 4. Finally, we find Block5 which is composed of two fully

onnected (FC) layers and a softmax layer of sizes 256, 512, and
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Fig. 3. Preprocessing stages for X-ray images. The preprocessing step includes the normalization of X-ray pixels between 0 and 1, image resize, and image
augmentation.
Fig. 4. Illustration of the phases of the proposed DNN framework for COVID-19 detection. First, the network is trained with labeled data. We input the images to
be tested into the network in the testing phase, compute the class probability (CP) of COVID-19 and non-COVID-19, and provide the diagnostic results.
2. Technically, the first four blocks (Block1, Block2, Block3, Block4)
are considered for feature extraction and the last block (Block5) is
employed for classifying COVID-19 using X-rays i.e. final mapping
to the output. Table 2 reports the comprehensive description of
each layer and its parameters.

Furthermore, filters 7 × 7, 5 × 5, and 3 × 3 are utilized to
capture the enriched contextual information. Moreover, the 1 × 1
filter is used as an identity function.

L1=f 11,p(size:7×7),b1p(size:1×1),p=1,2,...,32

L2=f 11,q(size:5×5),b1q (size:1×1),q=1,2,...,32

L3=f 11,r (size:3×3),b1r (size:1×1),r=1,2,...,32

L4=f 2p,x(size:7×7),b2x (size:1×1),s=1,2,...,64

L5=f 2q,y(size:5×5),b2y (size:1×1),u=1,2,...,64

L6=f 2r,z (size:3×3),b2z (size:1×1),v=1,2,...,64

L7=f 3c,w (size:1×1),b3w (size:1×1),w=1,2,.128

(1)

Smaller window sizes (i.e., 2 × 2) are used for the pooling layer
in the proposed method as the highest information loss occurs
due to the pooling layers. A max-pooling scheme is considered
in this work. The formal description of the model is defined
mathematically by Eq. (1). The filter initialization values f ii,k is
selected at random from the distribution defined by the filter
size, input, and output number of the specific layer’s feature maps
where a uniform distribution with upper and lower bounds of ±k
5

is defined by U(±k). The mathematical formulation for uniform
distribution of filter initialization is shown in Eq. (2).

f 11,p∼U

(
±

√
32

(1+32)×7×7

)
,f 11,q∼U

(
±

√
32

(1+32)×5×5

)
f 11,r∼U

(
±

√
32

(1+32)×3×3

)
,f 2p,x∼U

(
±

√
64

(1+64)×7×7

)
f 2q,y∼U

(
±

√
64

(1+64)×5×5

)
,f 2r,z∼U

(
±

√
64

(1+64)×3×3

)
f 2c,w∼U

(
±

√
128

(1+128)×1×1

)
(2)

The total number parameters are the sum of the parameters of
each layer, where the number of parameters of each convolution
layer is (f × f × (wp + b)) × fo, where f is a filter bank size, p is
the input number of feature maps, and b is a bias i.e., 1 and fo is
the output number of feature maps. The representation of the ith
convolutional layer, Li is shown in Eq. (3). Where ∆(.) denotes
an activation function of a layer. Rectified linear unit (ReLU) is
an activation function adopted in this work, where fm ∈ (1, fo),
fo defines the number of facets maps exist in the layer Li, e is
the number of input facets maps in previous layer i.e., Li−1

e . a, b
denotes the coordinates of the feature maps, and ⋆ indicates
convolution operation. Eq. (3) is further elaborated as shown in
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Table 2
Demonstration of the network parameters employed in the proposed DNN architecture. Here, BN → batch
normalization.
R. NO Layer Type Filter size Stride Padding Activation Output

1. I Input – – – – 128 × 128 × 1
2. L1 Convolution 7 × 7 1 Same ReLU 128 × 128 × 32
3. L2 Convolution 5 × 5 1 Same ReLU 128 × 128 × 32
4. L3 Convolution 3 × 3 1 Same ReLU 128 × 128 × 32
5. M1 Max-pooling + BN 2 × 2 2 Valid – 64 × 64 × 32
6. M2 Max-pooling + BN 2 × 2 2 Valid – 64 × 64 × 32
7. M3 Max-pooling + BN 2 × 2 2 Valid – 64 × 64 × 32
8. C1 Concatenation – – – – 64 × 64 × 96
9. L4 Convolution 7 × 7 1 Same ReLU 64 × 64 × 64
10. L5 Convolution 5 × 5 1 Same ReLU 64 × 64 × 64
11. L6 Convolution 3 × 3 1 Same ReLU 64 × 64 × 64
12. C2 Concatenation – – – – 64 × 64 × 192
13. L7 Convolution 1 × 1 1 Valid ReLU 64 × 64 × 64
14. M4 Max-pooling + BN 4 × 4 4 Valid – 16 × 16 × 64
15. F Flatten – – – – 16384 × 1
16. FC1 Full-connection – – – ReLU 512 × 1
17. FC2 Full-connection – – – ReLU 256 × 1
18. CP Class probabilities – – – Softmax 2 × 1
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Eq. (4).

Lifm=∆

(
Li−1
e ⋆f ie,fm+bifm

)
, (3)

Lifm (a,b)=

∆

(∑m
u=−m

∑m
v=−m Li−1

e (a−u,b−v)·f ie,fm (u,v)+bifm

)
(4)

The filter bank size of the layer Li is (2 × m + 1) × (2 × m + 1).
n the proposed model, the ‘‘same’’ padding is applied to keep
he size of the feature map constant. Max-pooling operation is
erformed on the output of convolutional layer Lifm with filter
ank of size 2 × 2. From each feature map, max-pooling measures
he utmost importance of each patch to highlight the primary
eature represented within the patch. Max-pooling also reduces
he number of parameters to make the model simple, In addition,
t provides feature maps that are invariant to translation, rotation,
nd scale. As shown in Fig. 4, the input images of 128 × 128 pixels
re down-sampled by the max-pooling layer, resulting in filter
aps of various sizes after each layer of convolution in the Block2,

ater concatenated, with C1 being the output obtained by the
ax-pooling layer. Further, Block3 is stacked with C1, containing
ariable sizes of filter banks for convolution operation. Followed
y concatenation operation, C2 is applied on outputs of Block3,
hich is called Block4. The convolution operation with filter bank

of 1 × 1 is applied on output feature maps of Block4 followed by a
ax-pooling operation, then all the feature maps are flattened to
single vector of size 16384 × 1, where Wi and bi are the weight
nd bias of the ith FC layer. The output of the second FC layer, FC2,
s further fed into the softmax layer. The softmax layer consists
f two neurons and produces a probability vector, Ẑ = [ẑc, ẑnc],
here, ẑc is the prediction score of COVID-19 class and ẑnc of non-
OVID-19 class. The jth probability value is obtained by Eq. (5).

ˆj =
eFC

j
2∑2

j=1 e
FC j

2

, j = 1, 2. (5)

3.2.1. Network training
The proposed network trains on X-ray images and computes

the probability of each class, CP . The weights of the proposed
network are initialized randomly with the help of uniform distri-
bution as shown in Eq. (2) and the adaptive momentum (Adam)
optimization technique employed to tune the hyperparameters
to minimize the loss between predicted class probabilities, Ẑ =
6

[ẑc, ˆznc] and actual class probabilities, Z = [zc, znc] of COVID-19.
The initial learning rate and weight decay are fixed as 0.00001 in
Adam. As a loss function for the classifier, we use cross-entropy.
Eq. (6) is employed to compute the cross-entropy.

ψ(Z, Ẑ) = −Z log Ẑ
= −[zc, znc] log[ẑc, ẑnc]

= −zc · log(ẑc) − znc · log(ẑnc)
(6)

with the batch size S, the loss function is given in Eq. (7).

ψ(Z, Ẑ) = −

(
1
S

S∑
i=1

zc · log ẑc + (znc) · log(ẑnc)
)
, (7)

where Z(= [z1, z2]) is one-hot encoding vector of the actual
abels. Batch size 16 is considered while training the proposed
NN since the network can occupy less memory in the proposed
ystem.

. Empirical evidence

This section delves into the specifics of the proposed DNN’s
mplementation, as well as the database’s details, before conclud-
ng with the empirical findings.

.1. Experimental setting

This sub-section describes the resources used for experiments.
or the training and testing of the proposed and existing models,
he Keras framework and Anaconda Python 3.6 package are con-
idered in this study. The specifications of the working system
re NVIDIA Quadro P5000 graphics processor, 256-bit memory
nterface, 16 GB GPU RAM, Cuda core-2560, GDDR5X memory,
nd 288.5 GB/s bandwidth.

.2. Experimental data

In this sub-section, we discuss about the databases and evalu-
tion procedure of the proposed DNN model for diagnosing the
OVID-19 is described. All the experiments are performed on
he five publicly available databases, namely D1 [19], D2 [20],
3 [21], D4 [22], and D5 [23]. The statistical information of these
atabases is reported in Table 3. When dealing with a database
ontaining a small number of images, overfitting or excessive
ariance of ML algorithms is common. The overfitting problem
s addressed in this study by considering horizontal flip, random
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Table 3
Statistical information according to the database and class.
Database Before augmentation

Train Validation Test

COVID-19 non-COVID-19 COVID-19 non-COVID-19 COVID-19 non-COVID-19

D1 1299 3027 163 378 163 378
D2 960 1073 120 134 120 134
D3 148 2960 18 370 18 370
D4 256 355 32 45 32 45
D5 99 400 13 50 13 50

After augmentation

D1 5196 12108 163 378 163 378
D2 3840 4292 120 134 120 134
D3 592 11840 18 370 18 370
D4 1024 1420 32 45 32 45
D5 396 1600 13 50 13 50
rotation by 10 degrees, and zoom range 0.4 as image augmen-
tation strategies. Moreover, to maintain the consistency of the
proposed model, all the X-ray images of five databases are resized
into 128 × 128 and each database is divided into three groups:
rain, validation, and test sets. For all of the investigations, a
(=10)-fold cross-validation methodology is adopted to assess the
erformance of the proposed method. In other words, out of ten
ubsets, eight are employed for training, one is used for valida-
ion, and the remaining one is utilized for testing. The underfitting
nd overfitting problems may solve by considering the 10-fold
ross-validation technique. Table 3 reports the number of X-ray
mages employed in the train, validation, and test in the ratio
f 0.8, 0.1, and 0.1, respectively. The upper and lower part of
able 3 denotes the number of samples before and after image
ugmentation. Moreover, four well-known evaluation metrics,
amely accuracy, precision, recall, and F1-score are employed for
valuation of the proposed DNN and comparative methods. The
etailed description of evaluation metrics is beyond the scope of
his study.

.3. Results

In this sub-section, the empirical results of five databases
re discussed. The proposed DNN is evaluated on five databases,
amely D1, D2, D3, D4, and D5. Fig. 5 depicts the training proce-
ure for five datasets. As seen in Fig. 5, accuracy improved rapidly
uring training until it reached an average of 10 to 20 iterations,
nd then progressively increased. After multiple iterations, the
erformance of the training and validation sets appeared to be
mooth and did not grow any further. Similarly, training and
alidation losses decreased until it reached 10 to 20 epochs. The
raining loss assesses how well the model fits the training data,
hereas the validation loss assesses how well the model fits new
ata. We discovered that the proposed DNN can achieve nearly
00% accuracy in training and the best results in validation. The
raining and validation losses of the proposed DNN are 0.1003,
.1291 for D1, 0.0019, 0.0167 for D2, 0.0186, 0.01426 for D3,
.0096, 0.0201 for D4, 0.0099, and 0.0213 for D5. As a result,
t is clear that the proposed DNN structure offers considerable
enefits in terms of COVID-19 identification.
To illustrate the robustness of the proposed DNN structure

n five databases, metrics such as precision, recall, F1-score are
easured, which is noted in Table 4. Furthermore, the accuracy
f the proposed method is compared with the fourteen existing
orks on the five databases, and the results are noted in Table 4.
We can summarize the following:

• Table 4 clearly indicates that the proposed DNN framework
obtains an average detection F1-score, recall, and precision
of 96% on D1, 100% on the D2, 99% on D3, 99% on D4,
7

and 100% on D5 databases respectively. This indicates that
the proposed model learns well on X-ray images and it is
able to distinguish the features belonging to COVID-19 and
non-COVID-19.

• It is observed from Table 4 that the detection accuracy of
the proposed method is 96.01% on the D1, 99.61% on D2,
99.22% on D3, 98.83% on D4, and 100% on D5 databases
respectively, which is far better than the accuracies obtained
by the existing methods. Besides, the error rate incurred by
the proposed method on the testing set is 0.1391, 0.0057,
0.0996, 0.0178, and 0.0124 on D1, D2, D3, D4, and D5
databases, which is impressive enough in comparison with
the existing methods.

4.3.1. Comparative results
In this sub-section, our aim is to compare the performance

of fourteen baseline approaches such as XCeption net [25], In-
ception_V2 [44], SVM [38], Coronet [22], COVID-SDNet [28], AD-
COVID19 [29], transfer learning approach [27], Prior attention
network [30], VGG-19 [31], DarkCovidNet [32], ResNet50 [33],
RLDD [39] with the proposed method in the last experiment. The
short description of these approaches are discussed in Section 2
however, its detailed explanation is beyond the scope of this
work. In this study, all the models adopted for comparison are im-
plemented based on specifications as stated in the original papers.
Table 4 reports the average classification accuracies achieved by
these methods on five publicly available databases. Also notes the
values of precision, recall, and F1-score of these approaches.

Table 4 demonstrates that the proposed method is the best
and it happens due to the use of the proposed DNN to fetch more
reliable and noise-invariant facets at different image patches.
Using this approach, we design an end-to-end IoT-enabled DL
framework for fast and remote diagnosis which is our main
objective. The achieved accuracy of the proposed DNN on five
databases, namely D1, D2, D3, D4, and D5 are 96.01%, 99.61%,
99.22%, 98.83%, and 100%, respectively. Moreover, the measure-
ment of the running time is a significant aspect of analyzing
the proposed DNN. The training and testing time for implement-
ing the proposed DNN, as well as comparative approaches, are
detailed in Table 5. Normally, the training time of a DL model
relies on the size of the input, the size of the network, number
of folds, number of epochs, and other parameters. Moreover,
all the experiments are conducted in the same environment to
measure time efficiency. Table 5 clearly states that the proposed
DNN requires an average training and testing time across all
the databases. Moreover, a comparative analysis is employed to
examine the false negatives predicted by the existing methods
and the proposed DNN. False negatives refer to cases when a
person, who has the COVID-19 disease screens negative rather
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c

Fig. 5. Training and loss curves on five database. (a), (c), (e), (g), and (i) represents accuracy curve on D1, D2, D3, D4, and D5, (b), (d), (f), and (h) indicates loss
urve on D1, D2, D3, D4, and D5.
Table 4
Analysis of state-of-the-art methods on test set of five databases using other metrics, namely accuracy, precision, recall, and F1-score in terms of%.
Ref. Method Year D1 D2 D3 D4 D5

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

[25] XCeption net 2020 90.19 90 91 91 99.22 99 99 99 96.83 97 97 97 94.85 96 95 95 90.19 89 91 90
[19] COVID-Net 2020 94.90 96 94 95 93.05 95 93 94 91.12 91 91 91 79.89 81 80 79 90.33 91 89 90
[44] Inception_V2 2020 94.15 95 94 94 99.01 97 99 98 97.05 97 97 97 82.49 82 82 82 95.97 96 98 97
[38] SVM 2020 91.36 90 90 90 98.03 98 98 98 98.88 99 90 94 73.19 85 73 76 91.36 91 91 91
[22] Coronet 2020 92.03 92 92 92 99.50 99 99 99 98.01 98 99 98 85.00 85 85 85 92.03 92 92 92
[28] COVID-SDNet 2020 94.91 96 95 95 96.01 96 96 96 95.72 97 95 96 91.33 90 92 91 94.00 94 94 94
[29] AD-COVID19 2020 90.34 90 93 91 89.09 89 89 89 91.86 93 91 92 83.67 86 83 84 95.06 96 94 95
[27] Transfer learning 2020 88.86 89 89 89 98.02 98 98 98 93.75 96 92 94 89.33 90 89 89 97.73 97 97 97
[30] Prior attention 2020 90.06 92 90 91 91.99 92 92 92 96.58 98 96 97 87.63 88 86 87 93.00 93 93 93
[31] VGG19 2020 89.96 91 90 90 96.68 97 97 97 97.61 98 98 98 88.39 88 86 87 98.00 98 98 98
[32] DarkCovidNet 2020 88.31 88 88 88 95.37 95 95 95 98.08 98 98 98 93.18 92 94 93 95.01 95 95 95
[33] ResNet50 2021 92.05 92 92 92 97.34 97 97 97 98.32 98 98 98 94.11 96 95 94 98.86 99 99 99
[39] RLDD 2021 93.33 93 93 93 96.02 97 95 96 97.07 98 97 96 90.91 91 91 91 95.66 97 95 96
– Proposed method – 96.01 96 96 96 99.61 100 99 100 99.22 99 99 99 98.83 98 99 99 100 100 100 100
Table 5
Execution time in seconds on five databases viz. D1, D2, D3, D4, and D5 by various methods.
Ref. Method Training time Testing time for all the Images

D1 D2 D3 D4 D5 D1 D2 D3 D4 D5

[25] XCeption net 495.0 480.0 270.0 330.0 316.13 5.0 16.0 10.0 3.01 2.0
[19] COVID-Net 939.0 987.0 438.33 402.01 386.99 25.0 27.05 11.76 8.33 4.09
[44] Inception_V2 4700.0 850.0 925.0 625.0 600.01 12.0 19.0 18.02 11.23 10.0
[38] SVM 16.75 13.2675 19.62 17.34 15.091 2.3145 1.3167 2.891 1.8472 1.2710
[22] Coronet 2488.0 2676.0 1336.0 1720.0 1201.09 86.0 42.0 51.0 36.701 24.42
[28] COVID-SDNet 451.00 526.66 357.92 380.06 365.66 86.0 35.0 38.33 23.64 14.96
[29] AD-COVID19 98.01 101.03 78.72 67.00 43.94 9.04 11.35 3.78 2.00 1.33
[27] Transfer learning 92.98 17.63 19.09 5.092 4.66 3.014 3.63 1.302 1.001 0.78
[30] Prior attention 245.33 260.04 201.33 166.66 102.11 67.27 30.98 23.02 19.00 13.109
[31] VGG19 2205.0 2782.06 1618.0 1920.0 1386.0 6.0 8.2 7.01 5.11 3.03
[32] DarkCovidNet 200.0 250.0 180.0 185.0 150.0 1.03 1.769 1.25 0.996 0.841
[33] ResNet50 934.0 960.0 700.08 658.00 500.0 17.0 19.0 15.0 14.07 10.2
[39] RLDD 104.65 99.09 84.68 58.88 38.01 11.09 4.330 3.810 3.002 1.109
– Proposed method 95.4 96 66 20.9 12.3 0.541 0.692 1.28 0.461 0.202
than positive which is included in Fig. 6. In this regard, we wish
to mention that all the five databases are considered together
while computing false-negative cases. It is clear from Fig. 6 that
the proposed DNN has very few false negatives to existing state-
of-the-art methods. In addition to this, in this study, the number
8

of parameters involved and memory size (in MB) required for
an image are used to determine the complexity of the proposed
DNN. The proposed DNN’s complexity is compared to 12 current
state-of-the-art DL approaches and results are reported in Table 6.
Table 6 demonstrates that the number of parameters in the
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Fig. 6. A comparative analysis on number of false negatives of existing approaches as well as the proposed DNN.
Table 6
Computational efficiency analysis of the proposed DNN with other DL approaches.
Ref. Method No. parameters (in millions (M)) Memory size (in MB)

[25] XCeption net 29.2 38
[19] COVID-Net 11.75 106
[44] Inception_V2 55.9 296
[22] Coronet 33.9 240
[28] COVID-SDNet 40.3 386
[29] AD-COVID19 89.1 820
[27] Transfer learning 11.6 120
[30] Prior attention 15.9 110
[31] VGG19 20.5 385
[32] DarkCovidNet 1.12 8
[33] ResNet50 25.6 420
[39] RLDD 26 160
– Proposed method 9.04 94
proposed DNN is smaller than the number of parameters in nine-
teen state-of-the-art DL techniques, demonstrating the proposed
DNN’s simplicity. In comparison to existing DL techniques, the
memory size (in MB) required for an image is also smaller. It
could satisfy the needs of many real-time COVID-19 diagnosis
applications. After optimization in both time and space, the model
could be equipped with real-time edge devices, such as NVIDIA
TX2.

4.4. Robustness of the proposed DNN

In this sub-section, we conduct experiments to find the ro-
ustness of the proposed DNN. In basic terms, feature engineering
s the process of converting chest x-ray images into desirable
eatures using the proposed DNN in order to improve model
ccuracy. To compare the performance of the proposed DNN
ith some state-of-the-art approaches, accuracy, precision, re-
all, and F1-score are used, and the results are presented in
able 4. The proposed DNN outperforms all state-of-the-art tech-
iques, as reported in Table 4. It means the proposed DNN does
he feature engineering task well in comparison to other state-
f-the-art methods. Nowadays, the values of these evaluation
easures are no longer sufficient to demonstrate how good a
L model is. The t-SNE plots of the feature vectors obtained
y the proposed DNN along with state-of-the-art approaches on
ive different databases are shown in Figs. 7, 8, 9, 10, and 11 in
rder to illustrate the effectiveness of the proposed DNN model
ver some of the existing methods. The features in a 2-D plot
re depicted using t-distributed stochastic neighbor embedding,
dimensional reduction technique that allows us to perceive a
9

high-dimensional database in a low-dimensional environment.
Because such embedding incorporates categorization informa-
tion, it visualizes the learned proposed network’s most recent
embeddings. It is clear from Figs. 7, 8, 9, 10, and 11 that the pro-
posed DNN is the only method, which can extract distinguishable
features for five databases separately and forms well-separated
clusters when we are mapping them from higher-dimensional to
a two-dimensional plane. The t-SNE plots of a few of the existing
approaches are also well separated with a small margin on some
of the databases. Thus, the performances of these methods are not
always consistent. This experiment shows how efficient the pro-
posed method is. Furthermore, to show the proposed method’s
efficient feature learning capacity, the probability vector created
by the softmax layer is compared to a few existing DL techniques.
Initially, the five best state-of-the-art methods are selected based
on their accuracies [19,22,25,28,39]. We pick four CXR images
(two are from COVID-19 patients and two are from a healthy
person) randomly from the test sets. Then, the probability score
of each method along with the proposed approach to these four
images is estimated and displayed in Fig. 12. The label ‘0’ and ‘1’
in the graphs of Fig. 12 denote the probability of covid-19 infected
patients and healthy persons, respectively. The probability score
ranges between 0 to 1 and the ideal probability score of label ‘0’
and label ‘1’ for covid-19 infected patients is 1 and 0, respectively.
Similarly, it is vice versa for healthy people. It can be observed
from Fig. 12 that the proposed method predicts scores nearer
to ideal values for both covid-19 infected patients and healthy
persons. On the other hand, probability scores obtained by the
existing DNN based approaches for healthy persons and infected

patients are relatively far from the ideal values.
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Fig. 7. Feature visualization on D1 database. Here, (a) shows the input feature map, (b)–(m) depicts the feature maps obtained from existing methods, and (n) shows
the feature map obtained from the proposed DNN.
Fig. 8. Feature visualization on D2 database. Here, (a) shows the input feature map, (b)–(m) depicts the feature maps obtained from existing methods, and (n) shows
the feature map obtained from the proposed DNN.
In addition to this, we observe that the proposed DNN is
valuated using a 10-fold cross-validation procedure, in which
he original dataset is randomly divided into ten equal-size sub-
amples. Only one subsample of the ten is preserved as test data
or the algorithm, while the other nine are used for training and
alidation. The folds are then used to repeat the cross-validation
rocess ten times, with each of the ten subsamples serving as
10
validation data exactly once. The performance of the proposed
DNN can then be estimated by averaging (or otherwise combin-
ing) the evaluation metrics acquired from the 10 folds. However,
the proposed DNN’s overall accuracy differs from the individual
accuracy of each fold. To identify the variance in the obtained
accuracies on each database, the standard deviation of accuracies
acquired in ten different folds is assessed, as illustrated in Fig. 13.
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Fig. 9. Feature visualization on D3 database. Here, (a) shows the input feature map, (b)–(m) depicts the feature maps obtained from existing methods, and (n) shows
the feature map obtained from the proposed DNN.
Fig. 10. Feature visualization on D4 database. Here, (a) shows the input feature map, (b)–(m) depicts the feature maps obtained from existing methods, and (n)
hows the feature map obtained from the proposed DNN.
t is clear from Fig. 13 that the obtained low standard deviation on
database implies that 10-fold accuracies tend to be extremely
lose to the averaged accuracy of the proposed DNN.

.5. Ablation study

To develop a DNN model from scratch for a particular prob-
em is not an easy task especially when we are facing the data
11
scarcity problem with a database containing few images. An
ablation study is required to understand the contribution of each
module of the proposed DNN. Thus, an ablation study is con-
ducted to finalize the architecture of the proposed model in
such a way that it performs well with a test set. In accordance
with our experiments, the proposed DNN gives an accuracy of
96.01%, 99.61%, 99.22%, 98.83%, and 100% for the task of COVID-
19 classification of the X-ray images on D1, D2, D3, D4, and
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Fig. 11. Feature visualization on D5 database. Here, (a) shows the input feature map, (b)–(m) depicts the feature maps obtained from existing methods, and (n)
hows the feature map obtained from the proposed DNN.
Table 7
The performance in terms of accuracy (%) on the test set of five databases with and without batch
normalization layers & variation of pooling layers and without pooling layers are noted.
The seventh experiment belongs to batch normalization

BN D1 D2 D3 D4 D5

No 92.87 98.82 99.05 93.19 96.82
Yes 96.01 99.61 99.22 98.83 100
The eighth experiment belongs to pooling

Pooling D1 D2 D3 D4 D5
Max 96.01 99.61 99.22 98.83 100
Average 94.46 99.21 99.16 90.01 100
No 88.01 97.64 94.44 89.38 96.82
D5 databases respectively. In this sub-section, the effect of the
performance of the proposed DNN is assessed by varying the
model parameters. In the first experiment, the behavior of the
DNN model for different activation functions is shown in Fig. 14.
Fig. 14 indicates that ReLU activation gives a better performance
than others. In the second experiment, the effect of the batch
normalization layer on the performance of the proposed DNN is
evaluated. The results of the second experiment are presented
in the upper part of Table 7. In the third experiment, the effect
of change in pooling layers on the performance of the proposed
DNN is assessed. The results of this study are presented in the
lower part of Table 7. The proposed DNN is divided into five
blocks, namely Block1, Block2, Block3, Block4, and Block5. We have
xperimented i.e., the fourth experiment, to quantify the block-
ise performance of the proposed DNN. The results of the fourth
xperiment are shown in Table 8.
From Table 8, we can observe that although increasing layers

ontaining blocks the proposed model gives better performance.
oreover, we can observe from the last row of Table 8 is that
verfitting occurred after increasing more than 5 blocks. In ad-
ition, as seen in Fig. 15, there is a huge gap between training
nd validation losses when increasing more than 5 blocks. So, the
odel is overfitting.
12
Moreover, optimization plays a crucial role in the DL model
for updating the weights to reduce the losses of the DL model,
also called hyper-parameter tuning. There are many optimiza-
tion techniques available for parameter hyper-space search. Some
of the widely used optimization techniques for DL approaches
are stochastic gradient descent (SGD), adaptive gradient descent
(Adagrad), root mean square propagation (RMSprop), SGD with
momentum, and adaptive moment estimation (Adam). In the
fifth experiment, we have tested the aforementioned optimiza-
tion techniques. The performance analysis of various optimization
techniques is shown in Fig. 16. It can be observed from Fig. 16
that Adam optimization gave a better performance for COVID-19
classification from X-ray images. However, the proposed model
obtained a satisfactory performance for other optimization tech-
niques. Variations of different scales are examined by the sixth
experiment. Table 9, shows the performance of the proposed
DNN using different filter scales. To measure the importance of
the multi-scale approach, conducted a seventh experiment with
and without multi-scale blocks of the proposed DNN. The mea-
surement of the proposed DNN performance with and without
multi-scale is shown in Fig. 17.
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Fig. 12. The comparative probability scores of the proposed DNN along with existing methods. (a), (c) represents the COVID-19 CXR images and (b), (d) indicates the
non-COVID-19 CXR images. Each row represents the probability scores of two classes. (e), (f), (g), (h) is of [25], (i), (j), (k), (l) is of [19], (m), (n), (o), (p) is for [22],
(q), (r), (s), (t) is for [28], (u), (v), (w), (x) is for [39], (y), (z), (aa), (ab) is for the proposed method.
Fig. 13. The performance (averaged accuracy ±standard deviation) of the proposed DNN on five databases.
It is clear from Fig. 17 that the performance of the proposed
DNN without multi-scale is not satisfactory. Thus, we can con-
clude that multi-scale features provide significant features to
distinguish COVID-19 from non-COVID-19.
13
It can be observed from Table 9 that the combination of 3 ×

3, 5 × 5, 7 × 7 scales gave better performance than other scales.
In addition, an experiment is conducted on varying learning rates.
Fig. 18, shows the performance varying while changing learning
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Fig. 14. Variation of COVID-19 classification accuracies (%) obtained using different activation functions, where Selu → scaled exponential linear unit, Elu →

exponential linear unit, Tanh → hyperbolic tangent, ReLU → rectified linear unit.
Fig. 15. The training and validation losses incurred by the proposed DNN model after adding more layers to it on five databases. (a), (b), (c), (d), and (e) indicates
five databases, namely D1, D2, D3, D4, and D5. Here, B15 → Block1 + Block5 , B125 → Block1 + Block2 + Block5 , B1235 → Block1 + Block2 + Block3 + Block5 , B12345
→ Block1 + Block2 + Block3 + Block4 + Block5 , B1234E5 → Block1 + Block2 + Block3 + Block4 + Extrablock + Block5 .
Table 8
The performance in terms of accuracy (%) on the test set of five databases with varying blocks of
the proposed DNN (for example, Block1 + Block5 , Block1 is for feature extraction and Block5 is for
classification).
Blocks D1 D2 D3 D4 D5

Block1 + Block5 93.88 97.64 94.45 89.38 98.41
Block1 + Block2 + Block5 94.63 99.21 99.01 93.19 98.59
Block1 + Block2 + Block3 + Block5 94.91 99.21 99.22 94.16 96.82
Block1 + Block2 + Block3 + Block4 + Block5 96.01 99.61 99.22 98.83 100
Block1 + Block2 + Block3 + Block4 + ExtraBlock + Block5 74.63 73.09 78.43 65.89 84.21
14
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Fig. 16. Variation of COVID-19 classification accuracies (%) obtained on the test set using different optimization techniques.
Fig. 17. The effect of the proposed DNN with and without multi-scale approach, where, WMS → With multi-scale and WOMS → Without multi-scale.
Table 9
The performance in terms of accuracy (%) on the test set of five databases with
varying filter scales of the proposed DNN.
Blocks D1 D2 D3 D4 D5

11 × 11, 3 × 3, 5 × 5 95 98 71 86 100
11 × 11, 5 × 5, 7 × 7 94 97 94 82 100
11 × 11, 3 × 3, 7 × 7 82 98 95 80 100
9 × 9, 3 × 3, 5 × 5 95 98 94 84 100
9 × 9, 5 × 5, 7 × 7 85 96 94 86 95
9 × 9, 3 × 3, 7 × 7 92 97 89 83 100
1 × 1, 3 × 3, 5 × 5 92 98 98 90 98
1 × 1, 5 × 5, 7 × 7 91 98 98 84 98
1 × 1, 3 × 3, 7 × 7 91 98 97 85 76
3 × 3, 5 × 5, 7 × 7 96.01 99.61 99.22 98.83 100
Fig. 18. Evaluation of different learning rates on five databases.
ates. From Fig. 18, it is observed that the learning rate at 0.00001
btained higher classification accuracy.

. Conclusion

In this study, a DNN enabled IoT framework is introduced for
ast and accurate detection of COVID-19. Five databases viz., D1,
2, D3, D4, and D5 are considered in this study to manifest the
15
efficiency of the proposed method over existing approaches. One
of the key benefits of integrating IoT into healthcare is reduc-
ing the exposition to contagion and automating the diagnosis,
thus making the medical staff more concentrated on patients.
Connected to this, the DNN framework is employed to fetch
more reliable and noise-invariant facets at various image patches.
The proposed method acquires an average recognition accuracy
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f 96.01%, 99.61%, 99.22%, 98.83%, and 100% respectively. Ex-
erimental outcomes also manifest that the proposed method
utranks fourteen contemporary approaches by adopting the av-
rage time i.e., training and testing time. Compared to the existing
ethods, the proposed model predicts very few FP’s and FN’s,
hich is shown in Fig. 6. Furthermore, it is worth investigating to
eploy the proposed model in some real-life settings. The results
btained in this study are very promising and this work can be
xtended by considering multiple factors in the future. For future
ork, we intend to enhance the diversity of the database by
dding new X-ray images of patients with COVID-19, as soon
s these images are available, and by including X-ray exams of
ther lung-related diseases. Further, more efforts will be given to
xploring how to identify COVID-19 in the early stages and how
he prior attention mechanism can be employed in other medical
mage analysis problems.
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