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Abstract
Background: Executive function refers to conscious control in psychological process 
which relates to thinking and action. Emotional decision is a part of hot executive 
function	and	contains	emotion	and	logic	elements.	As	a	kind	of	important	social	adap-
tation	ability,	more	and	more	attention	has	been	paid	in	recent	years.
Objective: Gambling	task	can	be	well	performed	in	the	study	of	emotional	decision.	As	
fMRI	researches	focused	on	gambling	task	show	not	completely	consistent	brain	acti-
vation	regions,	this	study	adopted	EEG-	fMRI	fusion	technology	to	reveal	brain	neural	
activity related with feedback stimuli.
Methods: In	this	study,	an	EEG-	informed	fMRI	analysis	was	applied	to	process	simul-
taneous	EEG-	fMRI	data.	First,	relative	power-	spectrum	analysis	and	K-	means	cluster-
ing	 method	 were	 performed	 separately	 to	 extract	 EEG-	fMRI	 features.	 Then,	
Generalized	linear	models	were	structured	using	fMRI	data	and	using	different	EEG	
features as regressors.
Results: The	results	showed	that	in	the	win	versus	loss	stimuli,	the	activated	regions	
almost	covered	the	caudate,	the	ventral	striatum	(VS),	the	orbital	frontal	cortex	(OFC),	
and the cingulate. Wide activation areas associated with reward and punishment were 
revealed	 by	 the	 EEG-	fMRI	 integration	 analysis	 than	 the	 conventional	 fMRI	 results,	
such	as	the	posterior	cingulate	and	the	OFC.	The	VS	and	the	medial	prefrontal	cortex	
(mPFC)	were	found	when	EEG	power	features	were	performed	as	regressors	of	GLM	
compared	with	results	entering	the	amplitudes	of	feedback-	related	negativity	(FRN)	as	
regressors.	Furthermore,	the	brain	region	activation	intensity	was	the	strongest	when	
theta- band power was used as a regressor compared with the other two fusion 
results.
Conclusions: The	 EEG-	based	 fMRI	 analysis	 can	more	 accurately	 depict	 the	whole-	
brain	activation	map	and	analyze	emotional	decision	problems.
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1  | INTRODUCTION

Executive	 function	 (EF)	 is	a	collection	of	 top-	down	processes	which	
allows	 for	 conscious,	 goal-	directed	 control	 of	 thoughts	 and	 ac-
tions	 (Baptista,	Osório,	 Costa	Martins,	Verissimo,	 &	Martins,	 2016).	
Functions	 including	verbal	 reasoning,	planning,	 sequencing,	problem	
solving,	the	ability	to	sustain	attention,	and	utilization	of	feedback	are	
regarded as the “cold” components of executive functions as their cor-
responding cognitive processes are relatively “logical” or “mechanis-
tic” based and tend to involve little emotional arousal. On the other 
hand,	executive	functions	involving	more	“desires”	or	“emotion”	such	
as	 the	 experience	 of	 reward	 and	 punishment,	 decision	making	with	
emotional	and	personal	interpretation,	and	regulation	of	one’s	own	so-
cial	behavior	are	regarded	as	“hot”	components	(Blankenship,	O’Neill,	
Deater-	Deckard,	 Diana,	 &	 Bell,	 2016;	 Shields,	 Sazma,	 &	 Yonelinas,	
2016).	Researches	have	revealed	that	impairments	of	either	“cold”	or	
“hot”	 components	 could	 have	 devastating	 effects	 on	 people’s	 daily	
activities,	 including	 the	 ability	 of	work	 and	 study,	 function	 at	 home	
independently,	 and	 develop	 or	maintain	 appropriate	 social	 relations	
(Ursache	&	Raver,	2015).	In	the	studies	of	“hot”	components	of	exec-
utive	 function,	complementary	evidence	from	scalp-	recorded	event-	
related	 potentials	 (ERPs)	 has	 shown	 that	 the	 “feedback	 negativity”	
(FN)	is	related	to	positive	versus	negative	outcomes	such	as	monetary	
rewards	(Mensen	et	al.,	2015);	and	variation	in	FN	amplitude	is	con-
sidered to reflect the early evaluation of outcomes as either better or 
worse	than	expected	 (Lole,	Gonsalvez,	Barry,	&	De	Blasio,	2013).	 In	
functional	magnetic	resonance	imaging	(fMRI)	studies,	the	ventral	stri-
atum	(VS)	responds	in	anticipation	of	reward	and	other	striatal	areas	
including the caudate and the amygdala mediate the relationship be-
tween	action	and	reward	outcome	 (Tricomi,	Delgado,	&	Fiez,	2004).	
Reward attainment and outcome monitoring recruit the medial pre-
frontal	cortex	(mPFC)	(Iannaccone	et	al.,	2015).	A	combined	EEG	and	
fMRI	study	reveals	that	for	the	win	>	loss	comparison,	fMRI	activation	
in	the	mesocorticolimbic	reward	circuit	including	the	VS	and	mPFC	is	
positively	correlated	with	FN	 (Carlson,	Foti,	Mujica-	Parodi,	Harmon-	
Jones,	&	Hajcak,	2011).	However,	the	mechanism	of	“hot”	executive	
function is not very clear at present. Gambling task can be well per-
formed	in	the	study	of	emotional	decision.	As	fMRI	researches	focused	
on gambling task show not completely consistent brain activation re-
gions	(Happaney,	Zelazo,	&	Stuss,	2004;	Kerr	&	Zelazo,	2004;	Li,	Li,	&	
D‘Argembeau,	2010),	this	study	adopted	EEG-	fMRI	fusion	technology	
to reveal brain neural activity related with feedback stimuli.

EEG has high temporal resolution for the underlying neuronal 
events	 but	with	 low	 spatial	 resolution,	whereas	 fMRI	 has	 high	 spa-
tial	resolution	and	low	temporal	resolution	(Huster,	Debener,	Eichele,	
&	Herrmann,	2012).	The	 complementarity	of	EEG	and	 fMRI	data	 in	
time and space provides feasibility of the fusion research. There are 
currently	three	approaches	to	EEG/fMRI	 integration	(Calhoun	&	Sui,	
2016;	Huster	et	al.,	2012;	Lei,	Qiu,	Peng,	&	Yao,	2010):	(i)	“symmetric	
fusion”,	where	a	model	is	constructed	to	explain	the	EEG-	fMRI	data.	
Symmetrical fusion does not assign a priori inferential preference to a 
given modality. The existing symmetrical fusion based on a cascade of 
generation models could provide a deeper understanding of the neural 

mechanisms	underlying	mental	processes	of	interest.	(ii)	“Spatial	con-
straint”,	where	spatial	information	from	fMRI	signals	is	used	for	source	
reconstruction of the EEG data. It generally applies independent com-
ponent	analysis	(ICA)	algorithm	to	extract	regions	of	interest	in	brain	
function	network	from	fMRI	data.	(iii)	“Temporal	prediction”,	where	the	
fMRI	recordings	are	modeled	with	data	from	certain	EEG	signals	ob-
tained	from	ICA,	such	as	P300	amplitude	and	alpha-	band	power.	EEG	
features can be convolved with a canonical hemodynamic response 
function	(HRF)	and	the	result	of	which	can	be	used	as	a	hemodynamic	
predictor	 in	a	general	 linear	model	 (GLM).	EEG/fMRI	integration	has	
been	 adopted	 in	 the	 studies	 of	 recognition	 memory	 (Hoppstädter,	
Baeuchl,	 Diener,	 Flor,	 &	 Meyer,	 2015),	 attention	 modulation	 (Walz	
et	al.,	 2014),	 spontaneous	brain	 rhythms	 (Zhan	et	al.,	 2014),	 as	well	
as	epileptic	discharges	(Hunyadi	et	al.,	2015),	involving	visual	system	
(Walz	et	al.,	2014),	auditory	system	(Walz	et	al.,	2015),	and	pain	system	
(Christmann,	Koeppe,	Braus,	Ruf,	&	Flor,	2007).	Therefore,	EEG-	fMRI	
fusion analysis may be beneficial in understanding the mechanism of 
“hot” executive function.

In	 this	work,	we	applied	an	EEG-	informed	 fMRI	analysis	 to	pro-
cess	simultaneous	EEG-	fMRI	data	during	the	monetary	gambling	task,	
which is most widely adopted in the study of emotional decision con-
cerning “hot” components of executive function. EEG trial- by- trial am-
plitudes	of	the	feedback-	related	negativity	 (FRN)	and	the	powers	of	
alpha-  and theta- band related to feedback were separately used as 
regressors	in	general	linear	models	(GLMs),	and	the	fusion	results	with	
different regressors were compared.

2  | MATERIALS AND METHODS

2.1 | Participants

Twenty	healthy,	right-	handed	participants	(17	men	and	3	women	aged	
from	19	to	25,	the	mean	age	was	23,	the	standard	deviation	was	1.48)	
were involved in this study. Participants had normal or corrected nor-
mal	 vision	without	 a	 history	 of	 neurological,	medical,	 or	 psychiatric	
disorders.	 All	 participants	 provided	written	 informed	 consent	 to	 be	
part	of	the	experiment,	and	the	study	was	approved	by	the	local	ethics	
committee	(Changzhou	University,	Changzhou,	China).

2.2 | Task procedure

All	participants	performed	the	monetary	gambling	task	(Carlson	et	al.,	
2011).	Each	trial	began	with	two	doors	presented	side-	by-	side	on	the	
screen	for	4,000	ms.	Participants	were	instructed	that	behind	one	of	
the	doors	 there	was	a	monetary	prize	 (+	¥2.0),	whereas	behind	 the	
other	door	there	was	a	loss	(−	¥1.0).	A	MRI-	compatible	response	box	
was	used	to	make	the	choice	of	door.	 In	addition,	participants	were	
told	that	if	they	did	not	choose	when	the	doors	were	on	the	screen,	
the	computer	would	choose	randomly.	Next,	after	a	brief	fixation	cue	
(2,000	ms),	a	feedback	screen	was	displayed	(2,000	ms)	where	a	green	
“↑”	indicated	a	correct	guess,	whereas	a	red	“↓”	indicated	an	incorrect	
guess.	Then,	the	total	scores	that	the	participant	had	obtained	so	far	
were	presented	in	the	center	of	the	screen	(2,000	ms)	and	the	interval	
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between	each	trial	was	4,000	ms	(Figure	1).	The	task	was	18	min	and	
40 s in duration and consisted of 80 trials over eight individual scans 
with wins and losses presented in random order. Experiments were 
performed by e- prime software and this software recorded behavioral 
data	at	the	same	time.	The	mean	reaction	time	(the	latency	to	choose	
a	door)	was	computed	separately	on	trials.

2.3 | Simultaneous EEG- fMRI data recording

The	subjects	were	scanned	on	a	3-	T	scanner	(Philips	Medical	Systems)	
while	wearing	an	EEG-	Cap	(HydroCel	Geodesic	Sensor	Net;	Electrical	
Geodesics,	Inc.,	Eugene,	OR).	Functional	MRI	images	were	acquired	in	
a	BOLD-	sensitized	EPI	T2*-	weighted	sequence	with	a	repetition	time	
of	2,000	ms	(echo	time	of	35	ms	and	flip	angle	of	90o).	Twenty-	four	
continuous slices parallel to the anterior commissure- posterior com-
missure	line	were	acquired	per	volume	(field	of	view	of	230	×	182	mm	
and	matrix	of	96	×	74).	A	T1-	weighted	structural	image	(1	×	1	×	1	mm)	
was also acquired for each participant in the experiment.

EEG	recordings	were	acquired	with	a	sampling	rate	of	250	Hz	with	
Net	 Station	 EEG	 Software	 (RRID:nlx_155825,	 Electrical	 Geodesics	
Inc.),	using	64	channels	in	10–10	montage.	In	the	data	collecting	pe-
riod,	 the	 impedance	of	all	electrodes	was	kept	below	50	kΩ	and	all	
electrodes	were	referenced	to	a	point	at	 infinity.	Clock	synchroniza-
tion	box	ensured	the	simultaneous	EEG-	fMRI	data	recording.

2.4 | EEG data processing

The collected EEG data were preprocessed to remove the artifacts 
with	 the	Net	Station	Software,	 such	as	gradient	 field	noise,	 cardiac	
artifacts,	and	power-	frequency	interference.	First,	the	raw	EEG	data	
were corrected for the gradient artifacts using average artifact sub-
traction	 (AAS)	 algorithm	 and	 cardiac	 artifacts	 were	 suppressed	 by	
optimal	basis	set	(OBS)	algorithm.	Next,	the	FIR	filter	with	the	pass-	
band	of	0.1	Hz	to	30	Hz	was	applied.	The	data	were	segmented	for	
each	 trial,	beginning	200	ms	before	 feedback	onset	and	continuous	
for	1,000	ms	following	feedback	onset,	and	was	performed	a	baseline	
correction	 from	−200	ms	 to	 0	ms.	 Then,	 artifact	 detection	 and	 bad	
channel replacement were applied to each channel and segment. The 
Reference	Electrode	Standardization	Technique	was	applied	to	stand-
ardize	the	reference	of	scalp	EEG	recordings	to	a	point	at	infinity	that,	
being	 far	 from	all	possible	neural	 sources,	 acts	 like	a	neutral	 virtual	
reference	(Yao,	2001).

As	there	were	some	electromyography,	eye	movements,	and	other	
noise	 contained	 in	 the	EEG	data	 after	 preprocessing,	 ICA	 algorithm	
was	adopted	to	remove	the	noise	components.	ICA	is	widely	used	in	
the	blind	source	separation	algorithm	and	the	logistic	infomax	ICA	was	
performed	 in	 this	 study.	Researches	utilizing	ERP	 indicate	 that	FRN	

is sensitive to win versus loss feedback as well as outcome expec-
tation	 and	 normally	 appears	 during	 200-	350	ms	 following	 feedback	
onset	 in	 FCz	 electrode	 (Thoma,	 Edel,	 Suchan,	 &	 Bellebaum,	 2015).	
Therefore,	 the	magnitude	of	FRN	 in	each	single	 trail	was	convolved	
with	 the	canonical	HRF	and	then	performed	as	a	 regressor	 in	GLM.	
Meanwhile,	 recent	studies	have	shown	that	 there	are	differences	 in	
alpha- band and theta- band power under different feedback condi-
tions and relative EEG power which approximated neglecting insig-
nificant	frequency	bands	characterizes	the	experimental	task	activity	
better	than	the	absolute	power	 (Abouzari,	Oberg,	&	Tata,	2016).	So,	
the	relative	alpha-	band	and	theta-	band	power	of	each	trial	over	FCz	
electrode	during	200-	350	ms	 time	period	 after	 feedback	onset	was	
also extracted as regressors.

2.5 | fMRI data processing

The	fMRI	data	were	preprocessed	and	analyzed	with	the	SPM8	soft-
ware	 (http://www.fil.ion.ucl.ac.uk/spm/,	 RRID:SCR_007037).	 First,	
the	fMRI	images	were	corrected	for	slice-	timing	artifacts	and	spatially	
realigned	to	the	first	brain	volume.	The	results	were	normalized	based	
on	the	Montreal	Neurologic	 Institute	 (MNI)	 reference	brain	and	the	
voxel	 sizes	 were	 turned	 into	 3	×	3	×	3	mm.	 Then	 fMRI	 maps	 were	
smoothed	by	an	8-	mm	FWHM	Gaussian	kernel.	As	the	BOLD	signal	
always	delay	4-	8	s,	therefore,	five	time	points	after	stimulus	presenta-
tion	were	taken	in	each	trial.	After	z-	score	processing,	k-	means	clus-
tering method was performed to make a mask and remove some of 
the data unrelated to the research background based on this mask. 
K-	means	 clustering	 is	based	on	hard	divided	guidelines	 and	defines	
each object that can only be segregated into one class. The main idea 
is to calculate cluster centers by performing multiple iterations fol-
lowing the principle of higher similarity in cluster and lower similarity 
intercluster. The similarity of a cluster can be defined by the average 
value.	Finally,	90	regions	of	interest	(ROIs)	were	extracted	based	on	
AAL	template	and	the	mean	activation	intensity	of	each	ROI	was	cal-
culated,	respectively.

2.6 | EEG- informed fMRI analysis

The entire process is shown in a block scheme in Figure 2. EEG- 
informed	fMRI	analysis	applied	EEG	signals	as	predictor	variables	to	
model	fMRI	time	processing.	Based	on	the	linear	coupling	assumption	
of	neurovascular,	the	predicted	BOLD	signals	were	constituted	of	the	
extracted	EEG	 features	 convolved	by	 standard	HRF	and	were	used	
to find the relevant activation areas reflecting neural activity in the 
whole-	brain	BOLD	signals.

In	 order	 to	 obtain	 correlation	 maps,	 EEG-	based	 regressors	 and	
fMRI	data	after	clustering	were	put	into	GLMs.	In	this	study,	a	complete	

F IGURE  1 Experimental paradigm of 
gambling task

http://scicrunch.org/resolver/nlx_155825
http://www.fil.ion.ucl.ac.uk/spm/
http://scicrunch.org/resolver/SCR_007037
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EEG-	fMRI	 integration	analysis	was	composed	of	 two	separate	com-
puting	phases.	During	the	first	phase,	each	EEG	regressor	of	each	sub-
ject	was	performed	as	a	multiple	linear	regression	in	GLM	separately	
and	the	relationship	between	fMRI	data	and	the	EEG	 	regressor	was	
calculated	according	to	Eq.	(1).

where Y	represents	the	processed	fMRI	(BOLD)	data,	X1,	X2,	and	X3 
represent the model matrices separately containing regressors of 
EEG trial- by- trial amplitudes of FRN and the power of alpha-  and 
theta-	band	related	with	feedback,	in	other	words	the	model	signals	
searched in Y. The values in matrix β describe how much a given 
model	signal	affects	the	variability	 in	the	BOLD	signal	 in	a	specific	
voxel.	Matrix	ε	is	the	residual	variability	in	the	data.	A	typical	model	
matrix represented by X3 in equation 1 is shown in Figure 3. It con-
tains	 fixed	amplitude	of	1	as	 regressors	 for	win	and	 lose	 stimulus,	
theta-	band	 power-	based	 regressors,	 as	 well	 as	 constant	 terms	 in	
BOLD	signals.

As	three	EEG	regressors	were	calculated	for	20	subjects,	it	means	
that	60	(20	subjects	×	3	GLMs)	separate	GLM	estimations	were	per-
formed.	As	the	analysis	only	focused	on	their	mutual	influences,	one	
SPM	showed	3D	correlation	map	between	local	BOLD	signal	and	EEG	
regressors for corresponding subject.

During	 the	 second	 phase,	 group	 analyses	 were	 performed	
with	 SPMs	 of	 subjects	 via	 a	 single-	sample	 t test on contrasts 
of the EEG- related regressors in both win and loss conditions. 
All	 significant	 voxels	 were	 identified	 by	 a	 voxel-	level	 threshold	
Puncorrected < .001.

3  | RESULTS

Based	 on	 the	 recording	 data	 of	 20	 participants,	 the	 behavioral	 re-
sponses	were	 statistically	 analyzed.	 The	 type	of	 feedback	 that	 par-
ticipants received on the previous trial had a significant effect on the 
latency	to	make	a	choice	(p	=	.008).	Following	win	stimuli	participants	
took	more	time	to	choose	a	door	than	following	loss	stimuli	(follow-
ing win stimuli: M	=	1,149	ms,	 SD = 142 ms; following loss stimuli: 
M	=	875	ms,	SD	=	86	ms).

The mean relative powers of alpha band and theta band were 
shown in Figure 4. The power of theta band was greater than that 
of	alpha	band,	and	in	these	two	interest-	frequency	bands	the	power	
under lose stimuli was all significantly higher than that under win stim-
uli. The p value between win and lose stimuli in alpha- band power was 
0.005	 and	 in	 theta-	band	power	was	0.008	 came	 from	 Independent	
sample t	 test.	Thus,	 the	alpha-		and	 theta-	band	relative	power	could	
be	 used	 as	 regressors	 of	 GLMs.	 The	whole-	brain	 fMRI	 analysis	 re-
vealed	 significant	 activations	 in	 Cingulum_Ant_L,	 Cingulum_Ant_R,	
Caudate_L,	 and	 Caudate_R	 in	 the	 Automated	 Anatomical	 Labeling	
(AAL)	 template.	The	 results	 could	be	 seen	 in	Figure	5	which	display	
16 different brain slices. The colored parts were the activation areas 
and the color plate on the right showed the value of Z- score which 
represented	the	activation	intensity.	All	clusters	were	with	an	extent	
threshold of 10 continuous voxels. Table 1 provides a detailed statis-
tical description of the above- mentioned activation regions as well as 
other	areas	related	to	reward	processing.	AAL	template	and	its	corre-
sponding	coordinate	are	provided	by	Montreal	Neurological	Institute.

To	identify	brain	areas	showing	BOLD	responses	correlating	with	
FRN	 amplitudes,	 alpha-	band,	 and	 theta-	band	 power,	 an	 EEG–fMRI	

(1)Y= [X1,X2,X3]∗β+ε

F IGURE  2 Block	scheme	of	EEG-	based	fMRI	analysis

F IGURE  3 Example of design matrix for 
joint	first-	level	EEG-	fMRI	analysis
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integration-	by-	prediction	 analysis	 was	 conducted,	 with	 single-	trial	
EEG	feature	estimates	performed	as	additional	regressors	in	the	SPM	
GLM	analysis.	Group	analysis	was	then	carried	out	for	the	win	versus	
loss contrast to assess the brain regions involved in reward processing. 
Caudate_L,	Caudate_R,	Cingulum_Post_L,	Cingulum_Post_R,	Frontal_
Mid_Orb_L,	and	Hippocampus_L	showed	significant	activation	when	
amplitude	 of	 FRN	was	 performed	 as	 a	 regressor	 in	GLM	 (Figure	6a	
and	Table	2).	The	subjective	feeling	of	hedonia	is	associated	with	OFC	
activation,	so	the	OFC	activated	as	expected	for	the	win	>	loss	com-
parison. The activation in the posterior cingulate gyrus and the hippo-
campus was associated with emotion of participants after feedback 
onsets.	Furthermore,	the	activation	intensity	of	the	caudate	was	stron-
ger	compared	with	the	only	fMRI	analysis.	The	subcortical	activation	
regions	when	alpha-	band	power	entered	as	a	regressor	in	GLM	analy-
sis were most similar with the activation areas when theta- band power 
was	 used	 as	 a	 regressor	 (Figure	6b	 and	 Figure	6c).	 For	 win	 stimuli	
compared	with	 lose	stimuli,	we	found	significantly	greater	activation	

in	 Frontal_Sup_Orb_L,	 Frontal_Mid_Orb_L,	 Frontal_Inf_Orb_R,	 and	
Frontal_Sup_Medial_L.	The	results	of	these	two	analyses	showed	sig-
nificantly greater activation in the left middle frontal gyrus compared 
with	FRN-	based	results.	In	addition,	there	was	also	a	large	amount	of	
activation	left	in	the	lenticular	nucleus	which	is	included	in	the	VS.	As	
reflected	in	the	Figure	6b,	Figure	6c,	and	Table	3,	this	area	presented	
greater activation in comparison with the most other activated re-
gions.	Bilaterally	in	the	caudate,	anterior	cingulate,	and	paracingulate	
gyri showed stronger activation intensity when compared with either 
conventional	 fMRI	analysis	or	 fusion	analysis	based	on	FRN	 regres-
sors.	Although	 the	EEG-	informed	 fMRI	 results	based	on	alpha-	band	
power and the results based on theta- band power revealed the same 
activation	 regions,	 the	 intensity	of	 all	 extracted	 reward-	related	acti-
vation areas of the theta- band power was stronger than the results 
of	 the	alpha-	band	power	 (Table	3).	The	p value of the two intensity 
results is 0.002 came from paired t test. It shows that the two results 
have significant differences.

4  | DISCUSSION AND CONCLUSION

Emotional decision is an important part of “hot” executive function 
and gambling task is probably the most frequently applied task in the 
study of emotional decision. Completing gambling task requires cog-
nitive abilities of working memory and inhibitory control as well as 
emotion	 and	 social	 abilities.	 Sergeant	 (Sergean,	 Geurts,	 Huijbregts,	
Scheres,	&	Oosterlaan,	2003)	proposed	a	cognitive-	energetic	model	
and the effects of reward and punishment have been associated in 
the cognitive- energetic model as being critical to the operation of 

F IGURE  4 Mean	relative	powers	of	alpha	band	and	theta	band	
over	FCz	electrode

F IGURE  5 Whole- brain activation 
map	by	fMRI	analysis	for	monetary	wins	
compared to losses
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the effort pool. The energetic component of that model might be 
considered to be a “bottom- up” system which registers and gives 
feedback to the orbital frontal cortex on whether a particular stimu-
lus–response	relation	is	satisfying	or	aversive	for	the	organism.	Initial	
studies	with	 the	 Iowa	Gambling	Task	 (IGT)	 found	 it	 to	 be	 sensitive	
to	ventromedial	 (VM)	and	OFC	functioning,	as	patients	with	 lesions	

in these brain regions exhibited deficient IGT scores and difficulties 
in real- world decision making despite normal range performance on 
other	 neuropsychological	 tests	 (Bechara,	Damasio,	Damasio,	&	 Lee,	
1999).	Subsequent	functional	imaging	research	has	confirmed	a	con-
nection	between	IGT	performance	and	VM/OFC	function	(Li,	Zhong-	
Lin,	 D’Argembeau,	 Ng,	 &	 Bechara,	 2010).	 Several	 studies	 observed	

TABLE  1 Reward-		versus	loss-	related	activations	by	fMRI	analysis

Brain region AAL Lable

Centers[MNI]
z- score (win 
vs. lose)x (mm) y (mm) z (mm)

Cingulum_Ant_L Anterior	cingulate	and	
paracingulate gyri

31 −4.04 35.4 13.95 0.12

Caudate_L Caudate nucleus 71 −11.46 11 9.24 0.24

Caudate_R Caudate nucleus 72 14.84 12.07 9.42 0.13

AAL,	anatomical	labeling	template;	MNI,	montreal	neurologic	institute.

F IGURE  6 Whole-	brain	activation	map	by	GLM	analysis	a)	when	FRN	amplitude	performed	as	a	regressor,	b)	when	alpha-	band	power	
performed	as	a	regressor,	c)	when	theta-	band	power	performed	as	a	regressor	for	monetary	wins	compared	to	losses
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significantly	more	 risky	decision-	making	patterns	 in	Parkinson’s	dis-
ease	(PD)	patients	than	in	healthy	controls	(Xi	et	al.,	2015).	Those	po-
tential impairments have been explained by dysfunctional activity in 
the	frontostriatal	network	and,	more	precisely,	the	orbitofrontal–ven-
trostriatal	pathway	(Michele	&	Ubaldo,	2012)	which	is	considered	to	
regulate	motivational,	that	is,	reward-	related	processes.

As	the	whole-	brain	activation	maps	are	different	under	win	and	
lose	stimuli	in	gambling	task,	EEG-	informed	fMRI	analysis	has	signifi-
cant	meaning	in	analyzing	emotional	decisions.	The	mesocorticolimbic	
dopamine	(DA)	system,	including	dopaminergic	projections	from	the	
ventral	tegmental	area	to	both	the	VS/nucleus	accumbens	and	dorsal	

striatum	(i.e.,	caudate	and	putamen)	as	well	as	OFC,	mPFC,	and	amyg-
dala,	 has	 long	been	 implicated	 in	 reward	processing	 (Carlson	 et	al.,	
2011).	In	this	study,	EEG-	based	fMRI	analysis	under	FRN,	alpha-	band,	
and theta- band power were performed separately and the fusion 
analysis all extracted more reward- related brain regions representing 
reactions of participants to reward and punishment stimulation than 
the	conventional	 fMRI	 results.	Behavior	 results	 also	 show	different	
reaction	time	caused	by	feedback.	Among	the	three	additional	regres-
sors,	the	results	based	on	the	theta-	band	power	revealed	more	brain	
areas	 relevant	 to	 reward	processing	 such	as	 the	caudate,	 the	OFC,	
as	well	 as	 the	VS,	 and	 the	 intensity	 of	 these	 activation	 areas	were	

TABLE  2 Reward-		versus	Loss-	related	activations	by	GLM	analysis	when	FRN	amplitude	performed	as	a	regressor

Brain region AAL Lable

Centers[MNI]
z- score (win 
vs. lose)x (mm) y (mm) z (mm)

Frontal_Mid_Orb_L Middle	frontal	gyrus,	orbital	
part

9 −30.65 50.43 −9.62 0.21

Cingulum_Ant_L Anterior	cingulate	and	
paracingulate gyri

31 −4.04 35.4 13.95 0.51

Cingulum_Ant_R Anterior	cingulate	and	
paracingulate gyri

32 8.46 37.01 15.84 0.26

Cingulum_Post_L Posterior cingulate gyrus 35 −4.85 −42.92 24.67 0.32

Cingulum_Post_R Posterior cingulate gyrus 36 7.44 −41.81 21.87 0.25

Hippocampus_L Hippocampus 37 −25.03 −20.74 −10.13 0.11

Caudate_L Caudate nucleus 71 −11.46 11 9.24 0.79

Caudate_R Caudate nucleus 72 14.84 12.07 9.42 0.62

GLM,	general	linear	models;	AAL,	anatomical	labeling	template;	MNI,	montreal	neurologic	institute.

TABLE  3 Reward-		versus	loss-	related	activations	by	GLM	analysis	when	power	features	performed	as	regressors

Brain region AAL Lable

Centers[MNI] z- score (win vs. lose)

x (mm) y (mm) z (mm)
alpha- band  
power

theta- band  
power

Frontal_Sup_Orb_L Superior	frontal	gyrus,	
orbital part

5 −16.56 47.32 −13.31 0.20 0.38

Frontal_Mid_Orb_L Middle	frontal	gyrus,	
orbital part

9 −30.65 50.43 −9.62 0.32 0.54

Frontal_Inf_Orb_R Inferior	frontal	gyrus,	
orbital part

16 41.22 32.23 −11.91 0.49 0.65

Frontal_Sup_Medial_L Superior	frontal	gyrus,	
medial

23 −4.8 49.17 30.89 0.51 0.82

Frontal_Sup_Medial_R Superior	frontal	gyrus,	
medial

24 9.1 50.84 30.22 0.34 0.42

Cingulum_Ant_L Anterior	cingulate	and	
paracingulate gyri

31 −4.04 35.4 13.95 0.79 1.02

Cingulum_Ant_R Anterior	cingulate	and	
paracingulate gyri

32 8.46 37.01 15.84 0.47 0.58

Caudate_L Caudate nucleus 71 −11.46 11 9.24 1.49 1.72

Caudate_R Caudate nucleus 72 14.84 12.07 9.42 0.79 0.92

Putamen_L Lenticular	nucleus,	
putamen

73 −23.91 3.86 2.4 0.74 0.81

GLM,	general	linear	models;	AAL,	anatomical	labeling	template;	MNI,	montreal	neurologic	institute.
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stronger than the other two analyses. Cingulum cortex is considered 
to be closely linked to emotional memory and caudate could mediate 
the	 relationship	 between	 action	 and	 reward	 outcome.	 Meanwhile,	
caudate	and	the	VS	play	an	important	role	in	the	mesocorticolimbic	
reward	circuit.	Based	on	the	calculation	of	relative	EEG	power	and	the	
fMRI	feature	extraction	with	k-	means	clustering	algorithm,	GLM	was	
performed to obtain whole- brain activation maps using joint EEG- 
fMRI	data	in	the	gambling	task	in	this	work.	EEG	features	were	used	
as	predictor	variables	to	model	fMRI	time	processing	and	based	on	
the	 linear	 coupling	 assumption	 of	 neurovascular,	 the	 activation	 re-
sults combined with EEG signals depicted the whole- brain activation 
map	more	reasonably.	Most	fMRI	researches	 indicate	that	the	OFC	
is	mainly	activated	 in	gambling	 task	 (Happaney	et	al.,	2004;	Kerr	&	
Zelazo,	 2004).	 There	 are	 also	 some	 fMRI	 researches	 showing	 that	
the	main	activation	region	is	dorsolateral	prefrontal	cortex	(Li	et	al.,	
2010).	The	literature	results	at	home	and	abroad	are	not	completely	
consistent. Results in this study were consistent with some previous 
literature	reports	(Carlson	et	al.,	2011;	Li	et	al.,	2010)	and	confirmed	
that	 components	 of	 the	mesocorticolimbic	DA	 system	mediate	 re-
ward processing from seeking to gratification.

Several	limitations	should	be	considered	in	this	work.	First,	simul-
taneous	EEG-	fMRI	is	a	noninvasive	technique	with	both	high	tempo-
ral	and	spatial	 resolution,	and	same	stimulus	and	states	of	subjects	
are	ensured	by	 the	 simultaneous	 recording.	However,	 large	artifact	
in	 EEG	 data	 obtained	 from	 the	 MRI	 scanner	 would	 cause	 lower	
signal-	to-	noise	ratio	(Lei,	Valdes-	Sosa,	&	Yao,	2012).	Sampling	rate	of	
250	Hz	used	in	the	study	is	low,	so	extraction	of	FRN	component	may	
not	be	accurate.	EEG	sampling	rate	of	1,000	Hz	or	higher	would	be	
set	in	later	experiments.	In	addition,	longer	experimental	time	results	
from wearing electrode cap as well as other preparation steps would 
bring discomfort to participants and affect the quality of advanced 
cognitive	tasks.	Second,	the	 limitation	of	K-	means	clustering	 is	that	
the cluster number k needs to be determined in advance. It generally 
requires a large number of tests and the clustering results are sen-
sitivity	 to	 this	parameter	 (Yedla,	Rao	Pathakota,	&	Srinivasa,	2010).	
Third,	a	canonical	HRF	was	applied	across	all	EEG	regressors.	In	re-
cent	years,	it	has	been	revealed	with	different	analysis	methods	that	
although	the	amplitude	time	delay	is	consistent,	the	impulse	response	
function	(IRF)	between	EEG	and	BOLD	signal	differs	with	respect	to	
frequency	band	of	interest	(Bridwell,	Lei,	Eichele,	&	Calhoun,	2013).	
In	the	future	work,	it	might	be	more	meaningful	to	calculate	with	dif-
ferent	IRFs	or	to	deconvolve	IRFs	between	EEG	regressors	and	BOLD	
signal.	Moreover,	we	will	analyze	other	modal	data	(EDA	and	ECG)	at	
the same time in further studies to study emotional decision prob-
lems deeply.

In	 conclusion,	 the	 EEG-	informed	 fMRI	 analysis	 based	 on	 single-	
trial EEG amplitude and rhythm characteristics could precisely extract 
the activation brain regions relevant to reward processing and provide 
a good research method for the subsequent analysis of emotional de-
cisions. The study of “hot” executive function has important guiding 
significance of the development of our cognition as well as affection 
and	 can	 also	 provide	 theoretical	 bases	 for	 the	 treatment	 of	ADHD,	
autism,	and	other	disorders.
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