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Abstract
Background: Executive function refers to conscious control in psychological process 
which relates to thinking and action. Emotional decision is a part of hot executive 
function and contains emotion and logic elements. As a kind of important social adap-
tation ability, more and more attention has been paid in recent years.
Objective: Gambling task can be well performed in the study of emotional decision. As 
fMRI researches focused on gambling task show not completely consistent brain acti-
vation regions, this study adopted EEG-fMRI fusion technology to reveal brain neural 
activity related with feedback stimuli.
Methods: In this study, an EEG-informed fMRI analysis was applied to process simul-
taneous EEG-fMRI data. First, relative power-spectrum analysis and K-means cluster-
ing method were performed separately to extract EEG-fMRI features. Then, 
Generalized linear models were structured using fMRI data and using different EEG 
features as regressors.
Results: The results showed that in the win versus loss stimuli, the activated regions 
almost covered the caudate, the ventral striatum (VS), the orbital frontal cortex (OFC), 
and the cingulate. Wide activation areas associated with reward and punishment were 
revealed by the EEG-fMRI integration analysis than the conventional fMRI results, 
such as the posterior cingulate and the OFC. The VS and the medial prefrontal cortex 
(mPFC) were found when EEG power features were performed as regressors of GLM 
compared with results entering the amplitudes of feedback-related negativity (FRN) as 
regressors. Furthermore, the brain region activation intensity was the strongest when 
theta-band power was used as a regressor compared with the other two fusion 
results.
Conclusions: The EEG-based fMRI analysis can more accurately depict the whole-
brain activation map and analyze emotional decision problems.
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1  | INTRODUCTION

Executive function (EF) is a collection of top-down processes which 
allows for conscious, goal-directed control of thoughts and ac-
tions (Baptista, Osório, Costa Martins, Verissimo, & Martins, 2016). 
Functions including verbal reasoning, planning, sequencing, problem 
solving, the ability to sustain attention, and utilization of feedback are 
regarded as the “cold” components of executive functions as their cor-
responding cognitive processes are relatively “logical” or “mechanis-
tic” based and tend to involve little emotional arousal. On the other 
hand, executive functions involving more “desires” or “emotion” such 
as the experience of reward and punishment, decision making with 
emotional and personal interpretation, and regulation of one’s own so-
cial behavior are regarded as “hot” components (Blankenship, O’Neill, 
Deater-Deckard, Diana, & Bell, 2016; Shields, Sazma, & Yonelinas, 
2016). Researches have revealed that impairments of either “cold” or 
“hot” components could have devastating effects on people’s daily 
activities, including the ability of work and study, function at home 
independently, and develop or maintain appropriate social relations 
(Ursache & Raver, 2015). In the studies of “hot” components of exec-
utive function, complementary evidence from scalp-recorded event-
related potentials (ERPs) has shown that the “feedback negativity” 
(FN) is related to positive versus negative outcomes such as monetary 
rewards (Mensen et al., 2015); and variation in FN amplitude is con-
sidered to reflect the early evaluation of outcomes as either better or 
worse than expected (Lole, Gonsalvez, Barry, & De Blasio, 2013). In 
functional magnetic resonance imaging (fMRI) studies, the ventral stri-
atum (VS) responds in anticipation of reward and other striatal areas 
including the caudate and the amygdala mediate the relationship be-
tween action and reward outcome (Tricomi, Delgado, & Fiez, 2004). 
Reward attainment and outcome monitoring recruit the medial pre-
frontal cortex (mPFC) (Iannaccone et al., 2015). A combined EEG and 
fMRI study reveals that for the win > loss comparison, fMRI activation 
in the mesocorticolimbic reward circuit including the VS and mPFC is 
positively correlated with FN (Carlson, Foti, Mujica-Parodi, Harmon-
Jones, & Hajcak, 2011). However, the mechanism of “hot” executive 
function is not very clear at present. Gambling task can be well per-
formed in the study of emotional decision. As fMRI researches focused 
on gambling task show not completely consistent brain activation re-
gions (Happaney, Zelazo, & Stuss, 2004; Kerr & Zelazo, 2004; Li, Li, & 
D‘Argembeau, 2010), this study adopted EEG-fMRI fusion technology 
to reveal brain neural activity related with feedback stimuli.

EEG has high temporal resolution for the underlying neuronal 
events but with low spatial resolution, whereas fMRI has high spa-
tial resolution and low temporal resolution (Huster, Debener, Eichele, 
& Herrmann, 2012). The complementarity of EEG and fMRI data in 
time and space provides feasibility of the fusion research. There are 
currently three approaches to EEG/fMRI integration (Calhoun & Sui, 
2016; Huster et al., 2012; Lei, Qiu, Peng, & Yao, 2010): (i) “symmetric 
fusion”, where a model is constructed to explain the EEG-fMRI data. 
Symmetrical fusion does not assign a priori inferential preference to a 
given modality. The existing symmetrical fusion based on a cascade of 
generation models could provide a deeper understanding of the neural 

mechanisms underlying mental processes of interest. (ii) “Spatial con-
straint”, where spatial information from fMRI signals is used for source 
reconstruction of the EEG data. It generally applies independent com-
ponent analysis (ICA) algorithm to extract regions of interest in brain 
function network from fMRI data. (iii) “Temporal prediction”, where the 
fMRI recordings are modeled with data from certain EEG signals ob-
tained from ICA, such as P300 amplitude and alpha-band power. EEG 
features can be convolved with a canonical hemodynamic response 
function (HRF) and the result of which can be used as a hemodynamic 
predictor in a general linear model (GLM). EEG/fMRI integration has 
been adopted in the studies of recognition memory (Hoppstädter, 
Baeuchl, Diener, Flor, & Meyer, 2015), attention modulation (Walz 
et al., 2014), spontaneous brain rhythms (Zhan et al., 2014), as well 
as epileptic discharges (Hunyadi et al., 2015), involving visual system 
(Walz et al., 2014), auditory system (Walz et al., 2015), and pain system 
(Christmann, Koeppe, Braus, Ruf, & Flor, 2007). Therefore, EEG-fMRI 
fusion analysis may be beneficial in understanding the mechanism of 
“hot” executive function.

In this work, we applied an EEG-informed fMRI analysis to pro-
cess simultaneous EEG-fMRI data during the monetary gambling task, 
which is most widely adopted in the study of emotional decision con-
cerning “hot” components of executive function. EEG trial-by-trial am-
plitudes of the feedback-related negativity (FRN) and the powers of 
alpha- and theta-band related to feedback were separately used as 
regressors in general linear models (GLMs), and the fusion results with 
different regressors were compared.

2  | MATERIALS AND METHODS

2.1 | Participants

Twenty healthy, right-handed participants (17 men and 3 women aged 
from 19 to 25, the mean age was 23, the standard deviation was 1.48) 
were involved in this study. Participants had normal or corrected nor-
mal vision without a history of neurological, medical, or psychiatric 
disorders. All participants provided written informed consent to be 
part of the experiment, and the study was approved by the local ethics 
committee (Changzhou University, Changzhou, China).

2.2 | Task procedure

All participants performed the monetary gambling task (Carlson et al., 
2011). Each trial began with two doors presented side-by-side on the 
screen for 4,000 ms. Participants were instructed that behind one of 
the doors there was a monetary prize (+ ¥2.0), whereas behind the 
other door there was a loss (− ¥1.0). A MRI-compatible response box 
was used to make the choice of door. In addition, participants were 
told that if they did not choose when the doors were on the screen, 
the computer would choose randomly. Next, after a brief fixation cue 
(2,000 ms), a feedback screen was displayed (2,000 ms) where a green 
“↑” indicated a correct guess, whereas a red “↓” indicated an incorrect 
guess. Then, the total scores that the participant had obtained so far 
were presented in the center of the screen (2,000 ms) and the interval 
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between each trial was 4,000 ms (Figure 1). The task was 18 min and 
40 s in duration and consisted of 80 trials over eight individual scans 
with wins and losses presented in random order. Experiments were 
performed by e-prime software and this software recorded behavioral 
data at the same time. The mean reaction time (the latency to choose 
a door) was computed separately on trials.

2.3 | Simultaneous EEG-fMRI data recording

The subjects were scanned on a 3-T scanner (Philips Medical Systems) 
while wearing an EEG-Cap (HydroCel Geodesic Sensor Net; Electrical 
Geodesics, Inc., Eugene, OR). Functional MRI images were acquired in 
a BOLD-sensitized EPI T2*-weighted sequence with a repetition time 
of 2,000 ms (echo time of 35 ms and flip angle of 90o). Twenty-four 
continuous slices parallel to the anterior commissure-posterior com-
missure line were acquired per volume (field of view of 230 × 182 mm 
and matrix of 96 × 74). A T1-weighted structural image (1 × 1 × 1 mm) 
was also acquired for each participant in the experiment.

EEG recordings were acquired with a sampling rate of 250 Hz with 
Net Station EEG Software (RRID:nlx_155825, Electrical Geodesics 
Inc.), using 64 channels in 10–10 montage. In the data collecting pe-
riod, the impedance of all electrodes was kept below 50 kΩ and all 
electrodes were referenced to a point at infinity. Clock synchroniza-
tion box ensured the simultaneous EEG-fMRI data recording.

2.4 | EEG data processing

The collected EEG data were preprocessed to remove the artifacts 
with the Net Station Software, such as gradient field noise, cardiac 
artifacts, and power-frequency interference. First, the raw EEG data 
were corrected for the gradient artifacts using average artifact sub-
traction (AAS) algorithm and cardiac artifacts were suppressed by 
optimal basis set (OBS) algorithm. Next, the FIR filter with the pass-
band of 0.1 Hz to 30 Hz was applied. The data were segmented for 
each trial, beginning 200 ms before feedback onset and continuous 
for 1,000 ms following feedback onset, and was performed a baseline 
correction from −200 ms to 0 ms. Then, artifact detection and bad 
channel replacement were applied to each channel and segment. The 
Reference Electrode Standardization Technique was applied to stand-
ardize the reference of scalp EEG recordings to a point at infinity that, 
being far from all possible neural sources, acts like a neutral virtual 
reference (Yao, 2001).

As there were some electromyography, eye movements, and other 
noise contained in the EEG data after preprocessing, ICA algorithm 
was adopted to remove the noise components. ICA is widely used in 
the blind source separation algorithm and the logistic infomax ICA was 
performed in this study. Researches utilizing ERP indicate that FRN 

is sensitive to win versus loss feedback as well as outcome expec-
tation and normally appears during 200-350 ms following feedback 
onset in FCz electrode (Thoma, Edel, Suchan, & Bellebaum, 2015). 
Therefore, the magnitude of FRN in each single trail was convolved 
with the canonical HRF and then performed as a regressor in GLM. 
Meanwhile, recent studies have shown that there are differences in 
alpha-band and theta-band power under different feedback condi-
tions and relative EEG power which approximated neglecting insig-
nificant frequency bands characterizes the experimental task activity 
better than the absolute power (Abouzari, Oberg, & Tata, 2016). So, 
the relative alpha-band and theta-band power of each trial over FCz 
electrode during 200-350 ms time period after feedback onset was 
also extracted as regressors.

2.5 | fMRI data processing

The fMRI data were preprocessed and analyzed with the SPM8 soft-
ware (http://www.fil.ion.ucl.ac.uk/spm/, RRID:SCR_007037). First, 
the fMRI images were corrected for slice-timing artifacts and spatially 
realigned to the first brain volume. The results were normalized based 
on the Montreal Neurologic Institute (MNI) reference brain and the 
voxel sizes were turned into 3 × 3 × 3 mm. Then fMRI maps were 
smoothed by an 8-mm FWHM Gaussian kernel. As the BOLD signal 
always delay 4-8 s, therefore, five time points after stimulus presenta-
tion were taken in each trial. After z-score processing, k-means clus-
tering method was performed to make a mask and remove some of 
the data unrelated to the research background based on this mask. 
K-means clustering is based on hard divided guidelines and defines 
each object that can only be segregated into one class. The main idea 
is to calculate cluster centers by performing multiple iterations fol-
lowing the principle of higher similarity in cluster and lower similarity 
intercluster. The similarity of a cluster can be defined by the average 
value. Finally, 90 regions of interest (ROIs) were extracted based on 
AAL template and the mean activation intensity of each ROI was cal-
culated, respectively.

2.6 | EEG-informed fMRI analysis

The entire process is shown in a block scheme in Figure 2. EEG-
informed fMRI analysis applied EEG signals as predictor variables to 
model fMRI time processing. Based on the linear coupling assumption 
of neurovascular, the predicted BOLD signals were constituted of the 
extracted EEG features convolved by standard HRF and were used 
to find the relevant activation areas reflecting neural activity in the 
whole-brain BOLD signals.

In order to obtain correlation maps, EEG-based regressors and 
fMRI data after clustering were put into GLMs. In this study, a complete 

F IGURE  1 Experimental paradigm of 
gambling task

http://scicrunch.org/resolver/nlx_155825
http://www.fil.ion.ucl.ac.uk/spm/
http://scicrunch.org/resolver/SCR_007037
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EEG-fMRI integration analysis was composed of two separate com-
puting phases. During the first phase, each EEG regressor of each sub-
ject was performed as a multiple linear regression in GLM separately 
and the relationship between fMRI data and the EEG regressor was 
calculated according to Eq. (1).

where Y represents the processed fMRI (BOLD) data, X1, X2, and X3 
represent the model matrices separately containing regressors of 
EEG trial-by-trial amplitudes of FRN and the power of alpha- and 
theta-band related with feedback, in other words the model signals 
searched in Y. The values in matrix β describe how much a given 
model signal affects the variability in the BOLD signal in a specific 
voxel. Matrix ε is the residual variability in the data. A typical model 
matrix represented by X3 in equation 1 is shown in Figure 3. It con-
tains fixed amplitude of 1 as regressors for win and lose stimulus, 
theta-band power-based regressors, as well as constant terms in 
BOLD signals.

As three EEG regressors were calculated for 20 subjects, it means 
that 60 (20 subjects × 3 GLMs) separate GLM estimations were per-
formed. As the analysis only focused on their mutual influences, one 
SPM showed 3D correlation map between local BOLD signal and EEG 
regressors for corresponding subject.

During the second phase, group analyses were performed 
with SPMs of subjects via a single-sample t test on contrasts 
of the EEG-related regressors in both win and loss conditions. 
All significant voxels were identified by a voxel-level threshold 
Puncorrected < .001.

3  | RESULTS

Based on the recording data of 20 participants, the behavioral re-
sponses were statistically analyzed. The type of feedback that par-
ticipants received on the previous trial had a significant effect on the 
latency to make a choice (p = .008). Following win stimuli participants 
took more time to choose a door than following loss stimuli (follow-
ing win stimuli: M = 1,149 ms, SD = 142 ms; following loss stimuli: 
M = 875 ms, SD = 86 ms).

The mean relative powers of alpha band and theta band were 
shown in Figure 4. The power of theta band was greater than that 
of alpha band, and in these two interest-frequency bands the power 
under lose stimuli was all significantly higher than that under win stim-
uli. The p value between win and lose stimuli in alpha-band power was 
0.005 and in theta-band power was 0.008 came from Independent 
sample t test. Thus, the alpha- and theta-band relative power could 
be used as regressors of GLMs. The whole-brain fMRI analysis re-
vealed significant activations in Cingulum_Ant_L, Cingulum_Ant_R, 
Caudate_L, and Caudate_R in the Automated Anatomical Labeling 
(AAL) template. The results could be seen in Figure 5 which display 
16 different brain slices. The colored parts were the activation areas 
and the color plate on the right showed the value of Z-score which 
represented the activation intensity. All clusters were with an extent 
threshold of 10 continuous voxels. Table 1 provides a detailed statis-
tical description of the above-mentioned activation regions as well as 
other areas related to reward processing. AAL template and its corre-
sponding coordinate are provided by Montreal Neurological Institute.

To identify brain areas showing BOLD responses correlating with 
FRN amplitudes, alpha-band, and theta-band power, an EEG–fMRI 

(1)Y= [X1,X2,X3]∗β+ε

F IGURE  2 Block scheme of EEG-based fMRI analysis

F IGURE  3 Example of design matrix for 
joint first-level EEG-fMRI analysis
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integration-by-prediction analysis was conducted, with single-trial 
EEG feature estimates performed as additional regressors in the SPM 
GLM analysis. Group analysis was then carried out for the win versus 
loss contrast to assess the brain regions involved in reward processing. 
Caudate_L, Caudate_R, Cingulum_Post_L, Cingulum_Post_R, Frontal_
Mid_Orb_L, and Hippocampus_L showed significant activation when 
amplitude of FRN was performed as a regressor in GLM (Figure 6a 
and Table 2). The subjective feeling of hedonia is associated with OFC 
activation, so the OFC activated as expected for the win > loss com-
parison. The activation in the posterior cingulate gyrus and the hippo-
campus was associated with emotion of participants after feedback 
onsets. Furthermore, the activation intensity of the caudate was stron-
ger compared with the only fMRI analysis. The subcortical activation 
regions when alpha-band power entered as a regressor in GLM analy-
sis were most similar with the activation areas when theta-band power 
was used as a regressor (Figure 6b and Figure 6c). For win stimuli 
compared with lose stimuli, we found significantly greater activation 

in Frontal_Sup_Orb_L, Frontal_Mid_Orb_L, Frontal_Inf_Orb_R, and 
Frontal_Sup_Medial_L. The results of these two analyses showed sig-
nificantly greater activation in the left middle frontal gyrus compared 
with FRN-based results. In addition, there was also a large amount of 
activation left in the lenticular nucleus which is included in the VS. As 
reflected in the Figure 6b, Figure 6c, and Table 3, this area presented 
greater activation in comparison with the most other activated re-
gions. Bilaterally in the caudate, anterior cingulate, and paracingulate 
gyri showed stronger activation intensity when compared with either 
conventional fMRI analysis or fusion analysis based on FRN regres-
sors. Although the EEG-informed fMRI results based on alpha-band 
power and the results based on theta-band power revealed the same 
activation regions, the intensity of all extracted reward-related acti-
vation areas of the theta-band power was stronger than the results 
of the alpha-band power (Table 3). The p value of the two intensity 
results is 0.002 came from paired t test. It shows that the two results 
have significant differences.

4  | DISCUSSION AND CONCLUSION

Emotional decision is an important part of “hot” executive function 
and gambling task is probably the most frequently applied task in the 
study of emotional decision. Completing gambling task requires cog-
nitive abilities of working memory and inhibitory control as well as 
emotion and social abilities. Sergeant (Sergean, Geurts, Huijbregts, 
Scheres, & Oosterlaan, 2003) proposed a cognitive-energetic model 
and the effects of reward and punishment have been associated in 
the cognitive-energetic model as being critical to the operation of 

F IGURE  4 Mean relative powers of alpha band and theta band 
over FCz electrode

F IGURE  5 Whole-brain activation 
map by fMRI analysis for monetary wins 
compared to losses
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the effort pool. The energetic component of that model might be 
considered to be a “bottom-up” system which registers and gives 
feedback to the orbital frontal cortex on whether a particular stimu-
lus–response relation is satisfying or aversive for the organism. Initial 
studies with the Iowa Gambling Task (IGT) found it to be sensitive 
to ventromedial (VM) and OFC functioning, as patients with lesions 

in these brain regions exhibited deficient IGT scores and difficulties 
in real-world decision making despite normal range performance on 
other neuropsychological tests (Bechara, Damasio, Damasio, & Lee, 
1999). Subsequent functional imaging research has confirmed a con-
nection between IGT performance and VM/OFC function (Li, Zhong-
Lin, D’Argembeau, Ng, & Bechara, 2010). Several studies observed 

TABLE  1 Reward- versus loss-related activations by fMRI analysis

Brain region AAL Lable

Centers[MNI]
z-score (win 
vs. lose)x (mm) y (mm) z (mm)

Cingulum_Ant_L Anterior cingulate and 
paracingulate gyri

31 −4.04 35.4 13.95 0.12

Caudate_L Caudate nucleus 71 −11.46 11 9.24 0.24

Caudate_R Caudate nucleus 72 14.84 12.07 9.42 0.13

AAL, anatomical labeling template; MNI, montreal neurologic institute.

F IGURE  6 Whole-brain activation map by GLM analysis a) when FRN amplitude performed as a regressor, b) when alpha-band power 
performed as a regressor, c) when theta-band power performed as a regressor for monetary wins compared to losses
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significantly more risky decision-making patterns in Parkinson’s dis-
ease (PD) patients than in healthy controls (Xi et al., 2015). Those po-
tential impairments have been explained by dysfunctional activity in 
the frontostriatal network and, more precisely, the orbitofrontal–ven-
trostriatal pathway (Michele & Ubaldo, 2012) which is considered to 
regulate motivational, that is, reward-related processes.

As the whole-brain activation maps are different under win and 
lose stimuli in gambling task, EEG-informed fMRI analysis has signifi-
cant meaning in analyzing emotional decisions. The mesocorticolimbic 
dopamine (DA) system, including dopaminergic projections from the 
ventral tegmental area to both the VS/nucleus accumbens and dorsal 

striatum (i.e., caudate and putamen) as well as OFC, mPFC, and amyg-
dala, has long been implicated in reward processing (Carlson et al., 
2011). In this study, EEG-based fMRI analysis under FRN, alpha-band, 
and theta-band power were performed separately and the fusion 
analysis all extracted more reward-related brain regions representing 
reactions of participants to reward and punishment stimulation than 
the conventional fMRI results. Behavior results also show different 
reaction time caused by feedback. Among the three additional regres-
sors, the results based on the theta-band power revealed more brain 
areas relevant to reward processing such as the caudate, the OFC, 
as well as the VS, and the intensity of these activation areas were 

TABLE  2 Reward- versus Loss-related activations by GLM analysis when FRN amplitude performed as a regressor

Brain region AAL Lable

Centers[MNI]
z-score (win 
vs. lose)x (mm) y (mm) z (mm)

Frontal_Mid_Orb_L Middle frontal gyrus, orbital 
part

9 −30.65 50.43 −9.62 0.21

Cingulum_Ant_L Anterior cingulate and 
paracingulate gyri

31 −4.04 35.4 13.95 0.51

Cingulum_Ant_R Anterior cingulate and 
paracingulate gyri

32 8.46 37.01 15.84 0.26

Cingulum_Post_L Posterior cingulate gyrus 35 −4.85 −42.92 24.67 0.32

Cingulum_Post_R Posterior cingulate gyrus 36 7.44 −41.81 21.87 0.25

Hippocampus_L Hippocampus 37 −25.03 −20.74 −10.13 0.11

Caudate_L Caudate nucleus 71 −11.46 11 9.24 0.79

Caudate_R Caudate nucleus 72 14.84 12.07 9.42 0.62

GLM, general linear models; AAL, anatomical labeling template; MNI, montreal neurologic institute.

TABLE  3 Reward- versus loss-related activations by GLM analysis when power features performed as regressors

Brain region AAL Lable

Centers[MNI] z-score (win vs. lose)

x (mm) y (mm) z (mm)
alpha-band  
power

theta-band  
power

Frontal_Sup_Orb_L Superior frontal gyrus, 
orbital part

5 −16.56 47.32 −13.31 0.20 0.38

Frontal_Mid_Orb_L Middle frontal gyrus, 
orbital part

9 −30.65 50.43 −9.62 0.32 0.54

Frontal_Inf_Orb_R Inferior frontal gyrus, 
orbital part

16 41.22 32.23 −11.91 0.49 0.65

Frontal_Sup_Medial_L Superior frontal gyrus, 
medial

23 −4.8 49.17 30.89 0.51 0.82

Frontal_Sup_Medial_R Superior frontal gyrus, 
medial

24 9.1 50.84 30.22 0.34 0.42

Cingulum_Ant_L Anterior cingulate and 
paracingulate gyri

31 −4.04 35.4 13.95 0.79 1.02

Cingulum_Ant_R Anterior cingulate and 
paracingulate gyri

32 8.46 37.01 15.84 0.47 0.58

Caudate_L Caudate nucleus 71 −11.46 11 9.24 1.49 1.72

Caudate_R Caudate nucleus 72 14.84 12.07 9.42 0.79 0.92

Putamen_L Lenticular nucleus, 
putamen

73 −23.91 3.86 2.4 0.74 0.81

GLM, general linear models; AAL, anatomical labeling template; MNI, montreal neurologic institute.
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stronger than the other two analyses. Cingulum cortex is considered 
to be closely linked to emotional memory and caudate could mediate 
the relationship between action and reward outcome. Meanwhile, 
caudate and the VS play an important role in the mesocorticolimbic 
reward circuit. Based on the calculation of relative EEG power and the 
fMRI feature extraction with k-means clustering algorithm, GLM was 
performed to obtain whole-brain activation maps using joint EEG-
fMRI data in the gambling task in this work. EEG features were used 
as predictor variables to model fMRI time processing and based on 
the linear coupling assumption of neurovascular, the activation re-
sults combined with EEG signals depicted the whole-brain activation 
map more reasonably. Most fMRI researches indicate that the OFC 
is mainly activated in gambling task (Happaney et al., 2004; Kerr & 
Zelazo, 2004). There are also some fMRI researches showing that 
the main activation region is dorsolateral prefrontal cortex (Li et al., 
2010). The literature results at home and abroad are not completely 
consistent. Results in this study were consistent with some previous 
literature reports (Carlson et al., 2011; Li et al., 2010) and confirmed 
that components of the mesocorticolimbic DA system mediate re-
ward processing from seeking to gratification.

Several limitations should be considered in this work. First, simul-
taneous EEG-fMRI is a noninvasive technique with both high tempo-
ral and spatial resolution, and same stimulus and states of subjects 
are ensured by the simultaneous recording. However, large artifact 
in EEG data obtained from the MRI scanner would cause lower 
signal-to-noise ratio (Lei, Valdes-Sosa, & Yao, 2012). Sampling rate of 
250 Hz used in the study is low, so extraction of FRN component may 
not be accurate. EEG sampling rate of 1,000 Hz or higher would be 
set in later experiments. In addition, longer experimental time results 
from wearing electrode cap as well as other preparation steps would 
bring discomfort to participants and affect the quality of advanced 
cognitive tasks. Second, the limitation of K-means clustering is that 
the cluster number k needs to be determined in advance. It generally 
requires a large number of tests and the clustering results are sen-
sitivity to this parameter (Yedla, Rao Pathakota, & Srinivasa, 2010). 
Third, a canonical HRF was applied across all EEG regressors. In re-
cent years, it has been revealed with different analysis methods that 
although the amplitude time delay is consistent, the impulse response 
function (IRF) between EEG and BOLD signal differs with respect to 
frequency band of interest (Bridwell, Lei, Eichele, & Calhoun, 2013). 
In the future work, it might be more meaningful to calculate with dif-
ferent IRFs or to deconvolve IRFs between EEG regressors and BOLD 
signal. Moreover, we will analyze other modal data (EDA and ECG) at 
the same time in further studies to study emotional decision prob-
lems deeply.

In conclusion, the EEG-informed fMRI analysis based on single-
trial EEG amplitude and rhythm characteristics could precisely extract 
the activation brain regions relevant to reward processing and provide 
a good research method for the subsequent analysis of emotional de-
cisions. The study of “hot” executive function has important guiding 
significance of the development of our cognition as well as affection 
and can also provide theoretical bases for the treatment of ADHD, 
autism, and other disorders.
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