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Efficient detection of aortic 
stenosis using morphological 
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Recent research has shown promising results for the detection of aortic stenosis (AS) using cardio-
mechanical signals. However, they are limited by two main factors: lacking physical explanations 
for decision-making on the existence of AS, and the need for auxiliary signals. The main goal of this 
paper is to address these shortcomings through a wearable inertial measurement unit (IMU), where 
the physical causes of AS are determined from IMU readings. To this end, we develop a framework 
based on seismo-cardiogram (SCG) and gyro-cardiogram (GCG) morphologies, where highly-optimized 
algorithms are designed to extract features deemed potentially relevant to AS. Extracted features 
are then analyzed through machine learning techniques for AS diagnosis. It is demonstrated that AS 
could be detected with 95.49–100.00% confidence. Based on the ablation study on the feature space, 
the GCG time-domain feature space holds higher consistency, i.e., 95.19–100.00%, with the presence 
of AS than HRV parameters with a low contribution of 66.00–80.00%. Furthermore, the robustness 
of the proposed method is evaluated by conducting analyses on the classification of the AS severity 
level. These analyses are resulted in a high confidence of 92.29%, demonstrating the reliability of 
the proposed framework. Additionally, game theory-based approaches are employed to rank the 
top features, among which GCG time-domain features are found to be highly consistent with both 
the occurrence and severity level of AS. The proposed framework contributes to reliable, low-cost 
wearable cardiac monitoring due to accurate performance and usage of solitary inertial sensors.

Aortic stenosis (AS), defined as the narrowing of the aortic valve opening, is among the most prevalent valvular 
heart diseases (VHDs) in developed countries1. The disease typically entails the left ventricle hypertrophy to 
compensate for blood outflow decrease due to stenosis1,2. Further decrease in the valve area results in the pro-
gressive overload of the left ventricular pressure, which eventually leads to severe AS unless medical treatment, 
i.e., transcatheter aortic valve replacement (TAVR) surgery3,4, is performed. Although AS is a fairly common 
disease, between one-third to two-thirds of the patients remain untreated as representative symptoms such as 
angina remain hidden at the onset of the disease5. Therefore, early detection of AS requires closer monitoring of 
cardiac activity, wherein wearable sensors could play a crucial role6–9.

In recent years, the performance of the cardiac system has been investigated through a variety of wearable 
technologies, including electrocardiography (ECG)10, impedance cardiography (ICG)11,12, photoplethysmography 
(PPG)13–16, phono-cardiography (PCG)17,18, ballisto-cardiography (BCG)19,20, seismo-cardiography (SCG)21–23, 
and gyro-cardiography (GCG)24,25. SCG and GCG signals, which are representatives of linear and angular vibra-
tions of the precordium, respectively, are morphologically representative of cardio-mechanical activities19,26,27. 
They can also provide valuable information regarding cardiac timing intervals (TIs)28–30.

SCG/GCG signals have been applied to several applications. Several works have been dedicated to cuff-less 
and continuous blood pressure monitoring, where the SCG signals are used for estimating the pulse arrival time 
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or pulse transit time31,32. In these cases, SCG demarcates aortic valve opening (AVO) and closure (AVC) events32. 
In addition, a deep learning approach was employed to map the SCG signal into its simultaneously-recorded BCG 
counterpart not measurable in a wearable setting20. More recently, fetal heart rate (f-HR) has been extracted using 
SCG and GCG modalities, where promising results were achieved in comparison with concurrently-recorded 
fetal cardiotocography23. Deploying machine learning (ML) algorithms, our research group has targeted AS 
detection based on the SCG/GCG technology21,22. In these works, the time-frequency representation of all ten 
second SCG/GCG segments were generated, out of which features such as the energy of frequency bands were 
extracted. Predictive models were then trained to classify between AS and non-AS subjects. Yet, a major drawback 
of the aforementioned works is the need for a reference signal, e.g., ECG21 or PPG22, for either signal segmenta-
tion or feature extraction. Moreover, there is no physical meaning behind the frequency-band energies which 
were used as features. A few other works have proposed SCG/GCG signal annotations without the need for a 
reference signal. For instance, some research works have proposed annotation methods based on time-domain 
analyses33–35, whereas some others focus on the time-frequency characteristics of SCG/GCG signals36.

In this paper, we propose a framework for the detection of AS by employing SCG and GCG time-domain and 
frequency-domain morphological features in two cases, i.e., subject-level and chunk-level analyses. In addition, 
the feasibility of AS detection is investigated through heart rate variability (HRV) parameters. The proposed 
method does not require any auxiliary reference sensors, resulting in a convenient measurement setup. Further-
more, we introduce new time-domain features to increase the confidence level of AS diagnosis. These features 
are extracted through a low-complexity time-domain-based approach, where no heavy computations such as 
wavelet transform are needed. It is shown that the proposed features are highly correlated with the occurrence 
of AS. In addition, the GCG time-domain features are proven to be excellent representatives of AS, which is a 
promising achievement for non-invasive monitoring of the cardiac system.

The rest of the paper is organized as follows. In “Methods”, we describe the motivation of the proposed 
methodology, the experimental protocol, the data acquisition procedure, and the ML framework. Experimental 
results are evaluated and compared with the literature in “Experimental results and discussion”. The paper is 
concluded in “Conclusions and Future Work”.

Methods
Motivation.  Following the occurrence of AS and in turn the changes in the forces against which the heart has 
to contract to eject blood, the morphology of the cardiac signals of AS patients are expected to differ from their 
normal states2. For instance, it has been demonstrated that the progression of stenosis is conclusively correlated 
with ECG ST-T wave changes in a retrospective study on 29 patients37. Another study has recognized prolonged 
Q-T wave to be an in-dependent predictor of mortality among AS patients38. Furthermore, the occurrence of 
stenosis causes HRV parameters to change accordingly39, which will be scrutinized as a common characteristic 
among AS patients in this work. Figure 1 depicts the ECG, GCGX , and GCGY from top to bottom, respectively, 
wherein GCGX and GCGY are annotated according to the method discussed in the following sections. These 
axes of GCG provide useful information about the cardiac activity timing intervals as demonstrated in previous 
research works21,22. Hence, they are expected to provide potential insights into the diagnosis of AS.

Experimental protocol and setup.  This study includes thirty-two AS patients (sixteen males and sixteen 
females), and thirteen healthy subjects (seven females and six males). Among the AS patients, eleven, twelve, 
and nine patients were diagnosed with the severity levels of mild, moderate, and severe, respectively. The average 
(standard deviation) ages of the AS and healthy groups are 84.18 (9.61) years and 68.38 (17.68) years, respec-
tively. The demographic information of the AS and non-AS groups is summarized in Table 1.

Linear and angular vibrations of the chest wall were recorded using a commercial wearable sensor node 
(Shimmer3 from Shimmer sensing) secured by a band strap on the mid-sternum along the third rib. A three-
axis accelerometer records SCG, and a three-axis gyroscope records GCG. Each modality is recorded in three 
dimensions: the x-axis corresponding to the shoulder-to-shoulder direction (along the coronal axis), the y-axis 
corresponding to the head-to-toe direction (along the longitudinal axis), and the z-axis corresponding to the 
dorso-ventral direction (along the anterior-posterior axis). In this paper, the dimensional letters X, Y, Z appended 
as sub-scripts to SCG/GCG denote the signal from the corresponding axis. Simultaneously, a four-lead ECG 
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Figure 1.   GCGX and GCGY fiducial points and timing intervals annotated in this work.
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was recorded as a reference sensor. All waveforms were recorded synchronously at a 256 Hz sampling rate. The 
experimental setup is shown in Fig. 2.

All data were collected at the cardiac care Unit of the Columbia University Medical Center (CUMC). The 
subjects were seated at rest on a bed or a chair for at least five minutes. They breathed naturally without control-
ling their breathing depths. The patient experimental protocol was approved by the Institutional Review Board 
of Columbia University Medical Center (CUMC) under protocol number AAAR4104. All methods were carried 
out in accordance with relevant guidelines and regulations. All participants provided written informed consent 
to take part in the study. Collected data were transferred to a computer and processed in a Python framework. 
The flow graph of the pre-processing and feature extraction procedure is illustrated in Fig. 3.

Signal pre‑processing.  As shown in Fig.  3, all channels of SCG and GCG signals were initially band-
pass filtered using a 4th-order Butterworth filter with cut-off frequencies of 1–45 Hz and 1–20 Hz, respectively. 
Subsequently, motion artifacts associated with movements during recordings were removed using a root-mean-
square (RMS) filter. In most of the literature, the RMS filter is employed by applying a M = 500 ms sliding win-
dow for signal segmentation, whereas in this work M is optimized as discussed in the following sections. Mean-
while, the segment removal threshold was selected twice the median value of the filter. It is worth noting that 
after motion artifact removal, signal chunks were not attached to each other, but processed separately. Therefore, 

Table 1.   Demographic information of subject groups (average ś standard deviation).

Category Age (years) Height (cm) Weight (kg)

AS 84.18 (ś9.61) 164.19 (ś10.31) 72.37 (ś13.44)

Non-AS 68.38 (ś17.68) 159.31 (ś35.62) 65.94 (ś4.31)
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Figure 2.   Schematic of the experimental setup for data collection.
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Figure 3.   Left panel: pre-processing, right panel: feature extraction flow graphs. In the pre-processing step, 
motion artifacts and baseline wandering are removed from signals, which is followed by signal segmentation, 
peak detection, and annotation. Feature extraction is carried out for time and frequency HRV parameters as well 
as the GCG morphological features. Features are eventually concatenated to create a feature vector.
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if the duration of a chunk was less than N seconds, we would not take it into account for further processing. Here, 
N represents the size of the chunks, out of which the desired features are extracted.

Inspired by35, a peak detection algorithm, as shown in Fig. 4, was designed to detect the GCGX and GCGY 
peaks and annotate the fiducial points according to Fig. 1. To this end, the three axes of each of SCG and GCG 
were combined using the root-mean-square (RMS) function, generating the linear and angular resultant vec-
tors, respectively, as shown in Fig. 4. It is followed then by an envelope detection technique leveraging Hilbert 
transform40. Next, a 2nd-order Butterworth low-pass filter with a cut-off frequency of 2 Hz was applied to elimi-
nate abrupt changes in the signal. Afterwards, an adaptive peak detection algorithm based on the Pan-Tompkin 
method was used to discriminate the real peaks in the resulted signal from summation of linear and angular 
envelopes41. Fig. 5 illustrates the six channels of SCG and GCG modalities followed by their corresponding 
beats detected by the algorithm. In the end, to locate the exact positions of the peaks in each of the 6 axes, a 
50-ms window, centered at the detected peaks of the summation signal, was designed to find the local maxima 
associated with each axis.

After peak detection within an N-second chunk followed by a 1-10 Hz band-pass filter, signal annotation was 
carried out for GCGX and GCGY , where I, J, K, L, and A points were characterized as proposed in33 and marked 
in Fig. 1. Along with the mentioned points, two other parameters that we named as the maximum acceleration 
point (P) and its corresponding amplitude, maximum acceleration (MA), were also extracted. According to 
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Figure 4.   Peak detection technique based on envelope detection.

Figure 5.   Beat detection from SCG and GCG channels, from top to bottom: SCGX , SCGY , SCGZ , GCGX , 
GCGY , GCGZ , and the envelope signal.
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the reasons mentioned in Section 2.1, we hypothesize that the time-domain features could correlate with the 
anatomical changes caused by the occurrence of AS.

Feature extraction.  Three types of features were extracted from SCG and GCG signals: time-domain HRV 
parameters, frequency-domain HRV parameters, and GCG timing interval parameters.

Time‑domain HRV parameters.  Time-domain HRV parameters provide valuable information about the car-
diac activity42. For temporal HRV parameters, a few time-domain analyses were applied to the series of suc-
cessive inter-beat intervals (IBIs). The normal-to-normal IBI (NN) is defined as the interval between consecu-
tive J peaks in the GCG signal43. A few HRV parameters were extracted from the NN time series, such as the 
average (AVNN), the standard deviation (SDNN), root-mean-square of successive differences (RMSSD), and 
the proportion of the number of adjacent NN intervals whose durations differ more than 50 ms (NN50) to 
the total number of NNs (pNN50). It is worth mentioning that SDNN, RMSSD, and pNN50 are of great clini-
cal significance as they allow for measuring cardiac risk, respiratory arrhythmia, and parasympathetic nervous 
activity42,44. Additionally, to further explore the impact of NN on AS detection, we introduced the median, 
skewness, kurtosis, entropy (ENN), self-entropy (SENN), and conditional entropy (CENN) values associated 
with NNs as new features. Due to the nonlinearity underlying the dynamics of HRV, we also extracted the vector 
angular index (VAI), the vector length index (VLI), SD1, and SD2 out of Poincare map—a scatter plot of NN at 
time t in terms of NN at time t + 145. These features were calculated according 1 to 4:

where θi denotes the angle of the ith scatter point with the x-axis. li and L indicate the distance of the ith point to 
the origin and mean of distances of all B points to the origin, respectively.

Frequency‑domain HRV parameters.  Frequency-domain analysis was carried out based on the estimation of 
power spectral density (PSD) of the SCG and GCG signals, where the oscillation power of very-low-frequency 
(VLF), low-frequency (LF), and high-frequency (HF) bands were extracted as frequency-domain HRV param-
eters. It was shown that parasympathetic activities are manifested in HF (0.15–0.4 Hz), whereas sympathetic 
activities belong to the LF (0.04–0.15 Hz) as well as VLF (0.0033–0.04 Hz) ranges46. In addition to the mentioned 
features, the total power of PSD was calculated as an additional feature.

GCG timing intervals.  A few timing intervals describing the cardiac system were calculated for the GCG signal. 
It was demonstrated that the isovolumetric contraction time (IVCT), isovolumetric relaxation time (IVRT), and 
left ventricular ejection time (LVET) could be estimated using J–I, L–K, and K–J33. Furthermore, we investigated 
whether MA, P, and its corresponding intervals have any impact on AS detection. Other parameters such as the 
intervals between each pair of the fiducial points depicted in Fig. 1 along with their mean, median, standard 
deviation, skewness, and kurtosis values were extracted as auxiliary features. The logic behind such an exhaustive 
feature extraction is to characterize the most relevant GCG timing intervals resulting in the highest accuracy of 
AS diagnosis.

The extracted features are summarized in Table 2.

Training and hyperparameter optimization.  Figure 6 shows the general schematic of the proposed 
machine learning framework including feature engineering, data split, training, and feature selection. As dem-
onstrated in this figure, AS detection was performed in two different cases: subject-level and chunk-level. The 
former implies using each subject as a single sample, whereas the latter suggests each signal chunk as a sample for 
training the predictive models. In the chunk-level feature space, frequency-domain features were avoided since 
the chunk size is not long enough to accurately calculate the spectral parameters, while the whole signal could 
be used to measure the spectral features. Regardless of the scenario, the entire feature space was split into two 
parts, training (80%) and test (20%) datasets. Following the data split, we trained the predictive models, where 
the hyperparameters were optimized through leave-one-out 10-fold cross-validation (10-CV). For subject-level 
10-CV, 0.1 of the subjects were held out at each fold, and the model continued to be optimized using the rest 0.9 
held-in subjects. However, in the chunk-level 10-CV training, 0.1 of the total chunks were held out. It should 
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be noted that both training and hyperparameter optimization were carried out using only the training part in 
each case.

Classification techniques and evaluation metrics.  Given the two datasets, we used four machine 
learning techniques for the diagnosis of AS: decision tree (DT), random forest (RF), extreme gradient boosting 
(XGBoost), and support vector machine (SVM)47,48. These classifiers are widely employed in a variety of bio-
medical applications including opioid patients monitoring49, heart failure prediction50, and cancer prognosis51 
due to their robustness.

During the 10-CV, the hyperparameters of each model were tuned in terms of performance. Table 3 presents 
the parameters with respect to which the ML models were optimized. For instance, the DT model was optimized 
in terms of the maximum depth of the tree, the minimum number of samples in a leaf, the minimum number of 
samples for splitting a node, the maximum number of features, and the criterion used for root selection. Similar 

Table 2.   Feature space by group types. *Mean, median, standard deviation, skewness, kurtosis, entropy, min, 
and max were calculated for every parameter in this column.

Time HRV features GCG features* Frequency HRV features

AVNN IVCT (J–I) VLF

SDNN LVET (K–J) LF

RMSSD IVRT (L–K) HF

pNN50 L–I LF/HF

SD1 L–J Total power

SD2 K–I

SD1/SD2 P–I

VAI P–J

VLI K–-P

ENN L–P

CENN MA
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Figure 6.   Subject-level and chunk-level datasets. In the subject-level dataset, each subject is considered a 
sample. In the chunk-level dataset, every chunk represents a sample. The hyperparameters of ML classifiers are 
fine-tuned through a 10-fold cross-validation. The trained models are evaluated using the remaining 20% of 
datasets. The top features are ranked according to their contribution to the classifier output.
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parameters were optimized for RF and XGBoost. For the case of XGBoost, however, the model should also be 
tuned in terms of the learning rate, since training the XGBoost follows a gradient-based pattern. Furthermore, 
all predictive models were optimized in terms of class weights to tackle the data imbalance.

The following metrics were calculated to evaluate the performance of the classification algorithms: precision 
(PR), recall (RE), accuracy (AC), and F1-score (F1). AC is a simple metric that measures the accuracy of the 
model in prediction, and deals only with true predictions. However, it does not provide information for the cases 
where the model misclassifies a sample. PR and RE serve to deal with this problem by introducing false alarms 
and missed rates, respectively. As a combination of PR and RE, F1 offers a more comprehensive understanding 
of the performance, which was used for filter optimization as well.

Filter optimization.  As explained in previous sections, we employed an RMS filter for motion artifact 
removal with length M (ms). It was also mentioned that we segmented the GCG signals into N-second windows. 
These parameters tend to be fixed to M = 500 ms and N = 10 s in the literature22,52, which are experimental 
numbers. We analyzed the effects of changing these parameters on the performance of XGBoost model. To this 
end, the performance metrics were assessed in terms of different values for M and N in Fig. 7, separately. Fig. 7a 
and b illustrate the performance for N = 10 s in terms of different values for M and M = 500 ms in terms of dif-
ferent values for N at the chunk-level analyses, respectively. The same characteristics are investigated in Fig. 7c 
and d for the subject-level. As depicted in these figures, suggesting optimum values for M and N is not a straight-
forward process. For instance, Fig. 7a suggests N = 10 s and M = 500 ms for the maximum F1-score, whereas in 
Fig. 7b in order to achieve the best performance, N should hold 18 s, which in turn implies that these parameters 
need to be tuned at the same time. We, therefore, defined an optimization problem to simultaneously optimize 
the values of M and N. The optimization problem is defined as follows:

Table 3.   Hyperparameters of the ML models.

DT RF XGBoost SVM

Maximum depth Maximum depth Maximum depth Regularization parameter

Minimum samples per leaf Minimum samples per leaf Minimum samples per leaf Kernel

Minimum split samples Minimum split samples Minimum split samples Kernel coefficient

Maximum features Maximum features Maximum features Class weights

Criterion Criterion Criterion

Class weights Number of estimators Learning rate

Class weights Class weights

(a) (c)

(b) (d)

Figure 7.   Performance evaluation of XGBoost for filters based on literature. (a) Chunk-level performance for 
N = 10 s, (b) chunk-level performance for M = 500 ms, (c) subject-level performance for N = 10 s, and (d) 
subject-level performance for M = 500 ms.
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where M∗ and N∗ indicate the optimum values resulting in the highest possible F1-score. To solve the optimiza-
tion problem, the Bayesian optimization method is employed. This optimization method introduces a surrogate 
for the cost function and measures its uncertainty by a Bayesian learning technique and a Gaussian process 
regression. It then defines an acquisition function from the surrogate to determine the sampling locations and 
find the optimum values53. In this way, an end-to-end training procedure results in the optimized objective 
function and its corresponding filter parameters.

Experimental results and discussion
In this section, the experimental results are discussed and compared with the literature.

Datasets, features, and filter optimization.  As mentioned earlier, two datasets were provided. The 
subject-level dataset included 45 subjects, where 36 of them were used to train the models, and the remaining 
9 were held out for the test datasets. The held-out group consists of two mild AS, one moderate AS, two severe 
AS, and four healthy individuals. Out of 36 training subjects, at each fold of 10-CV, 32 subjects were held in for 
training and 4 subjects were held out for hyperparameter optimization. Per each subject, mean, median, stand-
ard deviation, skewness, kurtosis, entropy, min, and max (8 features) were calculated for every 11 GCG features 
tabulated in Table 2. Thus, the total number of GCG features was 11Œ8 = 88. Furthermore, 5 frequency-domain 
HRV parameters were extracted for each channel axis (6 axes) per subject, amounting to 6Œ5=30 features. 
Besides, 15 time-domain HRV parameters were extracted out of NNs for each subject. Therefore, the total num-
ber of extracted features for each sample in the subject-level feature space was 123. Chunk-level feature space 
included 1272 chunks, out of which 88 GCG timing parameters as well as 15 time-domain HRVs (total of 103 
features) were calculated. For training the chunk-level dataset, 255 and 1017 chunks were used for test and train-
ing, respectively. Subsequently, 102 chunks were held out for 10-CV hyperparameter optimization, whereas 915 
chunks were held in for fine-tuning the model.

The RMS filter length and chunk window length were optimized by the Bayesian optimization technique 
through the process of training. It should be noted that these parameters were optimized by involving the train-
ing dataset, but not the test dataset. The optimum values achieved for filter parameters were M∗=1582 ms and 
N∗=11.2 s. The RMS filter length is three times the value proposed in the literature, i.e., M =500 ms, whereas 
the length of the chunk is almost consistent with the literature.

Feature selection for models.  We conducted both the Shapley Additive exPlanations (SHAP) technique, 
a game theory-based approach for interpreting the output of a model in terms of the input feature space, and the 
feature-importance f-score from XGBoost to provide an explainable model54. SHAP is employed as it calculates 
the feature importance in terms of the impact of every single observation on the output performance, whereas 
the f-score from XGBoost represents the importance of a feature for the whole dataset. The score for each feature 
in SHAP method is calculated by the following formula:

where αi , γ , i, and Ŵ denote the score value of the ith feature, any subset of feature space excluding the ith feature, 
ith feature, and the entire feature space, respectively. F1 also represents the F1-score, where [F1(γ ∪ i)− F1(γ )] 
indicates the difference of F1-score resulting from incorporating the ith feature within the feature space. For every 
feature, αi is calculated for all samples in the training dataset and the resulting values are averaged to obtain the 
feature score. F-score by XGBoost, on the other hand, evaluates each feature based on its impact on the output 
for all samples at once. Thus, SHAP values validate the feature ranking obtained by XGBoost feature importance 
and vice versa. That is, if the scores from both cases demonstrated an agreement, one can conclude the model is 
robust enough for the prediction task. In the following sections, we assess the importance of the features through 
both XGBoost and SHAP values.

Performance evaluation.  After training and hyperparameter optimization, the performance of the pro-
posed method is evaluated by applying the model on the test dataset to predict the existence of AS. Next, by 
comparing the predicted values and the true labels, the performance of the method is reported using met-
rics introduced in the previous section. Table 4 summarizes the performance results for the two datasets. The 
optimized method was reported by 100% accuracy, 100% F1-score, 100.00% precision, and 100.00% recall for 
DT, XGBoost, and SVM at the subject-level. As reported, DT outperforms RF, indicating 77.78% accuracy and 
87.50% F1-score for the models with literature-based parameters ( M = 500 ms and N = 10 s). Similarly, DT sug-
gests a higher F1-score in comparison to RF, i.e., 100.00% vs. 80.00%, for the models with optimized parameters 
( M∗ = 1582 ms and N∗ = 11.2 s). Having a closer look at the performance of the models with optimized param-
eters and literature-based ones at subject-level analyses, the accuracy and F1-score of DT were improved, respec-
tively, by 22.22% and 12.50%. Furthermore, XGBoost shows 85.71% F1-score, which is the highest performance 
among the models with literature-based parameters at the subject level. Yet, XGBoost with the optimized filter 
parameters implies 100.00% of accuracy and F1-score at the subject level. Such an improvement demonstrates 
the functionality of filter optimization. According to the optimized chunk-level analyses in Table 4, XGBoost 
and RF outperform other methods, suggesting 96.49% and 90.34% of F1-score, respectively. These values offer 

(5)M∗,N∗ = arg maxM,NF1(M,N)

s.t. M ∈ [100, 2000]ms, N ∈ [2, 25] s,

(6)αi =
∑

γ ⊂ Ŵ \ i

|γ |!(|Ŵ| − |γ | − 1)!
|Ŵ|!

[F1(γ ∪ i)− F1(γ )],
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a more robust performance than the non-optimized F1-score, i.e., 95.49% for XGBoost and 86.87% for RF. 
Furthermore, the F1-score of the optimized XGBoost model degrades from 96.49% to 95.49% when it uses the 
literature parameters, denoting an increase in FP as confirmed by the decrease in recall (97.35% vs. 95.17%). In 
the chunk-level dataset, XGBoost surpassed the other methods at high margins, i.e., 7.64%, 5.14%, 4.391%, and 
6.15% for accuracy, precision, recall, and F1-score, respectively. RF performs better than DT in terms of F1-score 
(90.34% vs. 88.89%), suggesting that the larger the dataset, the easier the generalizability of the RF model to the 
test datasets. Nevertheless, XGBoost offers a superior predictive characteristic than other methods at the chunk 
level. Additionally, the other optimized models at chunk-level analyses outperform their non-optimized versions 
in terms of F1-score by an acceptable margin (DT: 88.89% vs. 84.14%, RF: 90.34% vs. 86.87%, and SVM: 90.09% 
vs. 86.81%).

Figure 8 depicts the top 20 features for both chunk and subject levels. Figure 8a and b illustrate the top 20 
features achieved by XGBoost f-score and SHAP values for subject-level analyses, respectively. Figure 8c and 
d show the same order for chunk-level analyses. Among the top 20 features of subject-level analyses, eighteen 
features (90.00%) are consistent between the two criteria of importance, whereas seventeen features (85.00%) 
are reported as the common ones between the two methods at the subject level. According to Fig. 8b, among the 
top features, sixteen belong to GCG morphological features, three to time-domain HRV, and one to frequency-
domain HRV parameters, demonstrating the higher representativeness of GCG features in comparison to others. 
Moreover, the highest occurrences belong to MA and P-point-included intervals, each with five features among 
the top-20’s. From the time-domain HRV parameters, NN shows the highest correlation with AS, whereas the 
only feature is the total power of SCGZ from the frequency-domain HRV space. For the chunk-level analyses, 
nineteen features belong to the GCG time-domain features, whereas only one feature, i.e., NN, belongs to the 
time-domain HRV feature space. Among the top GCG features, MA, P-J, and L-J repeat three times, suggest-
ing the highest frequencies among the top 20 features. Furthermore, the top features presented in Fig. 8b and d 
almost equally contribute to making a decision on AS and healthy states (blue and red bars), denoting that the 
top features are representative of both classes.

Ablation study on feature space.  An ablation study was conducted on feature spaces to investigate the 
predictive performance of AS diagnosis. XGBoost was used in this section due to its superior performance on 
both datasets. The optimized parameters were used for both subject-level and chunk-level classification tasks. 
Three feature spaces for the subject-level and two feature spaces for the chunk-level (frequency-domain HRV 
parameters are not included for chunk-level) datasets were assessed. Thus, the performance of the model was 
evaluated for GCG time-domain parameters, time-domain HRV, and frequency-domain HRV parameters sepa-
rately. The results are summarized in Table 5. As shown for the chunk-level study, the best performance belongs 
to GCG timing intervals (95.19% F1-score), whereas the weakest performance is achieved by time-domain HRV 
parameters (74.56% F1-score). Furthermore, frequency-domain HRV introduces more relevant information for 
AS detection compared to time-domain HRV features at the subject-level (80.00% vs. 60.00%). This implies that 
frequency-domain HRV parameters carry more information regarding AS than the time-domain HRV param-
eters (accuracy: 66.67% vs. 55.56%).

Furthermore, the top five features for the datasets in the ablation study are extracted and shown in Table 6. 
According to the time-domain HRV parameters listed for chunk-level and subject-level studies, NN, SD1, and 
SD1/SD2 contribute more than others to AS diagnosis, whereas the top features from frequency-domain HRV 
features include the total power, LF/HF ratio, and HF power.Interestingly, three GCG features out of five in both 
cases are associated with MA and the intervals involving the P-point. Also, IVRT is ranked twice as the best 
feature for the subject level, showing the importance of this feature.

Table 4.   Performance evaluation of the proposed method for the optimized and non-optimized models. 
Significant values are in bold.

Classification level Subject (optimized parameters) Chunk (optimized parameters)

Classifier

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

(%) (%) (%) (%) (%) (%) (%) (%)

DT 100.00 100.00 100.00 100.00 87.94 90.51 87.32 88.89

RF 66.66 66.66 100.00 80.00 88.21 87.88 92.95 90.34

XGBoost 100.00 100.00 100.00 100.00 96.36 95.65 97.35 96.49

SVM 100.00 100.00 100.00 100.00 88.72 87.42 92.96 90.09

Classification level Subject (Literature-based parameters) Chunk (Literature-based parameters)

Classifier

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

(%) (%) (%) (%) (%) (%) (%) (%)

DT 77.78 87.50 87.50 87.50 81.96 84.14 84.14 84.14

RF 66.66 66.66 100.00 80.00 84.71 84.87 88.97 86.87

XGBoost 77.78 75.00 100.00 85.71 94.89 95.83 95.17 95.49

SVM 77.78 71.43 100.00 83.33 85.09 87.41 86.21 86.81
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Classification of severity level based on per‑patient basis.  In this section, the robustness of the 
proposed method is evaluated for diagnosing the severity level of aortic stenosis on a per-patient basis. For 
this purpose, a 4-class classification was conducted to observe the failure modes of the proposed method. The 
classification involves the healthy group as well as mild, moderate, and severe aortic stenosis cases. For a 4-class 
classification, we augmented the size of the dataset by considering 50% of overlap between every two consecutive 
signal chunks. This practice helps the predictive model to better be generalized to the test dataset. As a result, a 
total of 2336 chunks were generated, of which 1868 and 468 were used for training and test datasets, respectively.

(a) (b)

(c) (d)

(a) (b)

(c) (d)

Figure 8.   Top features by feature importance of XGBoost and SHAP. (a) Feature importance for subject level, 
(b) SHAP values for subject level, (c) feature importance for chunk level, and (d) SHAP values for chunk level. 
90% and 85% consistencies are found between feature importance and SHAP values at subject-level and chunk-
level, respectively.

Table 5.   Feature ablation evaluation using XGBoost. Significant values are in bold.

Classification level Subject Chunk

Feature type

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

(%) (%) (%) (%) (%) (%) (%) (%)

GCG intervals 100.00 100.00 100.00 100.00 95.00 93.97 96.46 95.19

Time HRV 55.56 75.00 50.00 60.00 73.64 73.91 75.22 74.56

Frequency HRV 66.67 66.67 100.00 80.00 N/A N/A N/A N/A
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The 4-class classification results suggest 92.72% precision, 91.95% recall, 93.80% accuracy, and 92.29% 
F1-score. As for the F1-score, the performance of the 4-class classification has been slightly degraded compared 
to the binary classification for aortic stenosis (92.29% vs. 96.49%). This small difference has occurred due to 
the small size of the dataset with respect to the number of classes (4 classes). To investigate the failure modes, 
the classification results are summarized in a confusion matrix depicted in Fig. 9. As illustrated in this figure, 
98.16% of the healthy group were classified correctly, whereas the remaining 1.84% were classified as mild cases. 
According to the confusion matrix, the mild, moderate, and severe cases were classified correctly with the rates 
of 80.77%, 92.93%, and 95.95%, respectively. These results suggest that severe patients’ recordings hold distinc-
tive characteristics which serve to distinguish them from other cases. The 4.05% misclassified severe cases were 
reported as moderate cases. This misclassification has happened due to the morphological similarities between 
moderate and severe cases. Interestingly, a severe case was never misclassified as a healthy case or mild AS, which 
demonstrates the robustness of the proposed feature space with respect to the number of classes. As for the mild 
severity, 8.97% and 10.26% were classified as healthy and moderate cases, respectively, which could have been 
caused by either the size of the training dataset, or the similar morphological characteristics of mild AS with 
healthy and moderate cases. As for the moderate cases, a small aggregate of 7.07% was misclassified as either 
mild or severe, which proves the practicality of the proposed framework. Having considered the aforementioned 
points, it is concluded that the proposed method offers high reliability in detecting and classifying AS.

Similar to AS detection task, the top features for the 4-class classification were obtained through the feature 
importance and the SHAP value methods, as summarized in Fig. 10a and b, respectively. By comparing the two 
feature sets, a high consistency can be observed in 16 common features, most of which are from the GCG timing 
intervals. Fig. 10b also contributes to interpreting the impact of each feature on the predicted classes. As shown, 
5 MA-related features are among the top features, which demonstrates their importance in classifying severity 
level. According to Fig. 10b, MA_mean, IVRT_median, SDNN, and PJ_skewness indicate higher consistencies 
with severe cases than other features, which can be considered for future studies on AS. Certain features such as 
SDNN, MA_std, IVCT_std, and IVCT_median contribute to both healthy and mild classes equally, which may 
explain the 8.97% of the mild cases misclassified as healthy.

Comparison with literature.  AS detection is considered only in a limited number of research works, and 
this motivates the authors to compare the proposed framework with the works addressing heart disease detec-
tion/classification through SCG/GCG modalities. Therefore, the proposed method is compared with other meth-

Table 6.   Top-five features of ablation study by SHAP values.

Subject-level Chunk-level

Time HRV features GCG features Frequency HRV Time HRV features GCG features Frequency HRV

NN_sk_time IVRT_entropy_GCG​ TotalPow_GCG_X_freq NN_med_time MA_median_GCG​ N/A

NN_ku_time IVRT_sk_GCG​ lfhfRatio_GCG_Z_freq AVNN_time LJ_median_GCG​ N/A

SD2_time PI_median_GCG​ hf_HRV_GCG_Y_freq SDNN_time PJ_max_GCG​ N/A

SD1/SD2_time MA_min_GCG​ TotalPow_GCG_Z_freq SD1/SD2_time MA_mean_GCG​ N/A

AVNN_time MA_entropy_GCG​ hf_HRV_GCG_X_freq SD1_time LJ_max_GCG​ N/A

Figure 9.   The Confusion matrix for a 4-class classification.
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ods in the literature for detecting AS21,22, as well as the works using SCG/GCG for the detection of other types 
of cardiovascular diseases (CVDs) including atrial fibrillation (AFib) and acute myocardial infarction52,55–57. 
The results are summarized in Table 7. The methods are compared in terms of their target CVDs, classifier, 
performance metrics, need for auxiliary signals other than SCG/GCG for feature extraction, and computational 
complexity. It should be noted that the proposed method is of low computational complexity due to using merely 
single-dimensional signal analyses, whereas some of literature methods which offer high performances tend to 
employ two-dimensional transformations, such as continuous wavelet transform (CWT)21,22. The results of our 
method at the subject level are superior to those of all previous works (F1-score: 1.00 vs. 0.8855, 0.9522, 0.9656, 
0.9657, and 0.9821), despite the low computation power required by our method. It stands to reason that the 
lower the complexity, the more applicable the algorithm to real-time applications, which is a crucial point for 
wearable sensing systems. Even at the chunk level, our method performs equally or more accurately than other 
methods (F1-score: 0.96 vs. 0.8855, 0.9522, 0.9656, and 0.9657), except for the method proposed in21. However, our 
method predicts AS without any auxiliary signals, whereas in21, the ECG signal was used for feature extraction. 
Furthermore, the proposed framework suggests an analogous or higher F1-score, i.e., 0.96, and recall, i.e., 0.97, 
in comparison to the methods for detection of other CVDs. Furthermore, the proposed framework goes further 
beyond the disease detection by offering explainable modeling using SHAP values and feature importance from 
XGBoost to extract the physical meaning of the readings. To recapitulate, one could appreciate the proposed 
method as an accurate, computationally-efficient, and interpretable approach for AS detection which contributes 
to low-cost wearable sensing systems.

Figure 10.   Top features for the classification of aortic stenosis severity level. (a) Feature importance by 
XGBoost, and (b) SHAP values.

Table 7.   Comparison of the model with previous works in the literature. Significant values are in bold.

Signal type Target CVD Classifier Accuracy Precision Recall F1-score Auxiliary Computation Reference

SCG + GCG​ Acute myo-
cardial Kernel SVM N/A 0.95 0.82 0.88 No Low 55

SCG +  GCG​ AFib Kernel SVM 0.98 N/A 0.97 N/A No Low 52

SCG + GCG​ AFib Kernel SVM 0.95 0.92 0.90 0.96 No Low 56

SCG + GCG​ AFib Kernel
SVM 0.97 1.00 0.93 0.96 No Low 57

SCG + GCG​ AS RF 0.98 0.99 0.98 0.98 Yes (ECG) High 21

SCG + GCG​ AS XGBoost 0.93 0.95 0.95 0.95 No High 22

SCG + GCG​ AS XGBoost 1.00 1.00 1.00 1.00 N o Low Proposed 
(subject)

SCG + GCG​ AS XGBoost 0.96 0.95 0.97 0.96 N o Low Proposed 
(chunk)
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Conclusions and future work
This paper reports on the design and development of a novel reference-less framework for the detection of aortic 
stenosis based on SCG and GCG morphological characteristics and HRV parameters. The model is optimized in 
terms of filter design, and two groups of datasets are prepared at the subject and chunk levels. Furthermore, new 
parameters namely MA and P-included intervals are also introduced and shown to have higher consistencies 
with AS among the top features ranked by SHAP values and f-scores by XGBoost. Other features, such as time-
domain and frequency-domain HRV parameters, are also extracted. However, a low correlation is demonstrated 
between HRV parameters and AS. On the contrary, ML models trained on the GCG timing intervals perfectly 
discriminate the AS cohort from the non-AS group. The most accurate ML model for both datasets is XGBoost, 
where F1-scores of 100.00% and 96.49% are reported for subject-level and chunk-level analyses, respectively. It 
is shown that the proposed optimized-filter design is suitable at both the subject-level and chunk-level settings, 
driving our methods to outperform previous works in the literature. Finally, the proposed framework was dem-
onstrated to be robust enough for classifying the severity level of AS by offering 93.80% and 92.29% accuracy 
and F1-score, respectively.

In this work, data were collected from two groups of AS and non-AS subjects at senior ages. Future work 
involves a larger number of subjects by including subjects at younger ages. Also, due to the close relationship 
between AS and GCG parameters, there is promise in tracking the progress and severity of aortic stenosis at 
different stages using gyroscopic parameters.
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