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Abstract

Background: Mutations in the human ether-a-go-go-related gene 1 (hERG1) cause type 2 long QT syndrome (LQT2). The
hERG1 gene encodes a K+ channel with properties similar to the rapidly activating delayed rectifying K+ current in the heart.
Several hERG1 isoforms with unique structural and functional properties have been identified. To date, the pathogenic
mechanisms of LQT2 mutations have been predominantly described in the context of the hERG1a isoform. In the present
study, we investigated the functional consequences of the LQT2 mutation G628S in the hERG1b and hERG1aUSO isoforms.

Methods: A double-stable, mammalian expression system was developed to characterize isoform-specific dominant-
negative effects of G628S-containing channels when co-expressed at equivalent levels with wild-type hERG1a. Western blot
and co-immunoprecipitation studies were performed to study the trafficking and co-assembly of wild-type and mutant
hERG1 isoforms. Patch-clamp electrophysiology was performed to characterize hERG1 channel function and the isoform-
specific dominant-negative effects associated with the G628S mutation.

Conclusions: The non-functional hERG1a-G628S and hERG1b-G628S channels co-assembled with wild-type hERG1a and
dominantly suppressed hERG1 current. In contrast, G628S-induced dominant-negative effects were absent in the context of
the hERG1aUSO isoform. hERG1aUSO-G628S channels did not appreciably associate with hERG1a and did not significantly
suppress hERG1 current when co-expressed at equivalent ratios or at ratios that approximate those found in cardiac tissue.
These results suggest that the dominant-negative effects of LQT2 mutations may primarily occur in the context of the
hERG1a and hERG1b isoforms.

Citation: Stump MR, Gong Q, Zhou Z (2012) Isoform-Specific Dominant-Negative Effects Associated with hERG1 G628S Mutation in Long QT Syndrome. PLoS
ONE 7(8): e42552. doi:10.1371/journal.pone.0042552

Editor: Andrea Barbuti, University of Milan, Italy

Received March 6, 2012; Accepted July 9, 2012; Published August 2, 2012

Copyright: � 2012 Stump et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was supported in part by the National Institutes of Health grant HL-68854 to ZZ (www.nhlbi.nih.gov/). MRS was supported by an American
Heart Association postdoctoral fellowship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: zhouzh@ohsu.edu

Introduction

Long QT syndrome (LQTS) is a cardiac disorder characterized

by QT prolongation and an increased risk of severe ventricular

arrhythmias that can result in sudden death [1,2]. Mutations in the

human ether-go-go-related gene 1 (hERG1) result in LQTS type 2

(LQT2) and account for 25 to 40% of genotyped cases of LQTS

[3,4,5]. To date, over 500 LQT2 mutations have been identified.

The hERG1 gene encodes the pore-forming subunit of the rapidly

activating delayed rectifier K+ channel (IKr) in the heart, which

contributes to the repolarization of the cardiac action potential

[6,7]. Most LQT2 mutations are loss of function mutations that

result in decreased hERG1 current levels and several mutations

are known to dominantly suppress wild-type hERG1 current [8,9].

Several hERG1 isoforms have been identified in the heart and

are known to modulate IKr. The first cloned hERG1 isoform,

hERG1a, contains 1159 amino acids and represents the full-length

hERG1 channel protein [10]. hERG1a channels exhibit voltage-

dependent activation and undergo inactivation at positive

depolarizing potentials [6,7,11]. The N-terminus of hERG1a

plays an important role in channel deactivation, while several

regions in the C-terminus contribute to channel assembly and

trafficking. The hERG1 gene has an alternate transcription start

site within intron 5 that generates a transcript encoding the

hERG1b isoform [12,13,14]. The 376 N-terminal residues of

hERG1a channels are replaced by 36 unique residues in hERG1b

resulting in channels that exhibit accelerated rates of channel

deactivation. Recent studies have shown that hERG1b co-

assembles with hERG1a and it was suggested that the heteromeric

channels underlie native ventricular IKr [15]. A third hERG1

isoform, hERG1aUSO, arises from the inefficient splicing of intron

9 resulting in premature termination and polyadenylation within

intron 9 [16]. The 359 C-terminal residues of hERG1a are

replaced by 88 unique residues in hERG1aUSO channels. In

contrast to hERG1a and hERG1b, hERG1aUSO is trafficking

defective and does not generate hERG1 current when expressed in

mammalian cells [17,18]. hERG1aUSO has been shown to co-

assemble with hERG1a, interfering with the trafficking of the

functional isoform, when over-expressed relative to hERG1a in

heterologous systems [18].

The majority of LQT2 mutations occur within coding regions

common to hERG1a, hERG1b, and hERG1aUSO, however, the

functional consequences of these mutations, including G628S,

have been primarily characterized in hERG1a. hERG1a-G628S
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channels have been found to be non-functional and to dominantly

suppress wild-type hERG1 current [8]. In the present study we

characterized the functional properties of the G628S mutation in

the context of hERG1b and hERG1aUSO isoforms. We developed

a double-stable, mammalian expression system using a recombi-

nase-mediated recombination strategy to study the isoform-specific

dominant-negative effects of the G628S mutation. We found that

the assembly of hERG1a with hERG1a-G628S or hERG1b-

G628S resulted in the dominant suppression of hERG1 current. In

contrast, hERG1aUSO-G628S did not readily associate with

hERG1a, and consequently, did not suppress hERG1 current

when co-expressed at a 1:1 ratio or at ratios that approximate

those found in cardiac tissue. These results suggest that pathogenic

consequences of LQT2 mutations may primarily occur in

hERG1a and hERG1b.

Results

Design of the Flp-Cre expression system
To characterize the functional properties and the dominant-

negative effects of the G628S mutation in the hERG1a, hERG1b

and hERG1aUSO isoforms, we developed a novel, double-stable,

mammalian expression system (described in detail in the Materials

and Methods, Fig. 1). Briefly, we stably introduced a loxP2272/

loxP recombination cassette into Flp-In-293 cells using the pCRE/

GFP target vector. To confirm that the loxP2272/loxP cassette had

integrated at a single genomic locus we performed quantitative

real-time PCR using primers specific to the zeocin gene, a

component of the FRT cassette and to GFP, a component of the

loxP2272/loxP cassette. The averaged GFP/zeocin ratio was

1.0260.04 (n = 3). Since Flp-In-293 cells contain a single copy

of the FRT site, the real-time PCR results indicate that Flp-Cre

cells contain a single copy of the loxP2272/loxP site.

We performed western blot and patch-clamp analyses to

compare the expression of HA-tagged hERG1a channels stably

integrated at the FRT or the loxP2272/loxP site (Fig. 2). hERG1a

channel proteins integrated at both sites were expressed as the

core-glycosylated, immature form (135 kDa) and the fully-glyco-

sylated, mature form (155 kDa) (Fig. 2A). Quantitative densitom-

etry revealed that the ratio of hERG1a expressed from the

loxP2272/loxP relative to the FRT site was 1.1160.18. Functional

studies revealed similar levels of hERG1a current recorded from

the two cell lines (Fig. 2B). The averaged peak tail current

amplitudes of hERG1a expressed from the FRT and loxP2272/

loxP sites were 21.361.9 pA/pF (n = 8) and 23.662.6 (n = 10,

P.0.05), respectively. These results indicated that the Flp-Cre

system would permit the characterization of LQT2-induced

dominant-negative effects at a 1:1 expression ratio when co-

transfected with wild-type and mutant hERG1 channel constructs.

Functional properties of hERG1 isoforms containing the
LQT2 mutation G628S

To characterize the functional properties of the G628S

mutation we generated stable Flp-Cre cell lines expressing Flag-

tagged wild-type or mutant hERG1 isoforms from the loxP2272/

loxP site. Representative current traces of wild-type and mutant

hERG1 isoforms are shown in Fig. 3A. hERG1a and hERG1b

channels exhibited voltage-dependent activation and inward

rectification at more positive depolarizing potentials. hERG1

current was not detected in cells transfected with hERG1aUSO or

with mutant hERG1a, hERG1b or hERG1aUSO isoforms. The

current-voltage plot shown in Fig. 3B compares the average peak

tail current density of the wild-type hERG1 isoforms. The

maximum tail densities of hERG1a and hERG1b channels were

17.561.2 pA/pF (n = 21) and 3.060.3 pA/pF (n = 6). The

decrease in the tail current amplitude of hERG1b is consistent

with previous reports and is caused by rapid channel deactivation

and decreased trafficking of the hERG1b isoform to the cell-

surface [19,20].

The trafficking properties of hERG1 isoforms were determined

by western blot analysis using anti-Flag antibody (Fig. 4A). Wild-

type and mutant hERG1a channels were expressed as the

immature and mature channel proteins as described in Fig. 2A.

Wild-type and mutant hERG1b channels were expressed as the

immature (90 kDa) and the mature (105 kDa) channel proteins. As

has been previously shown, hERG1b protein was primarily

expressed as the immature band indicating that hERG1b does

not traffic as efficiently as hERG1a channels. The low trafficking

efficiency of hERG1b channel has been attributed to the presence

of an endoplasmic reticulum retention signal found in the unique

N-terminus of the isoform [20]. The G628S mutation does not

appear to alter the trafficking properties of the wild-type hERG1a

and hERG1b channels. The trafficking efficiency of wild-type and

mutant hERG1a and hERG1b was defined as the ratio of the

upper band to the total hERG1 protein. As shown in Fig. 4B, the

G628S mutation does not significantly alter the trafficking

efficiency of hERG1a or hERG1b (n = 3, P.0.05). Wild-type

and mutant hERG1aUSO were expressed as the immature channel

protein at 100 kDa indicating that the isoform is trafficking

deficient [18].

Isoform-specific dominant-negative effects
To characterize the dominant-negative effects of the G628S

mutation we generated cell lines co-expressing wild-type hERG1a

and mutant hERG1 isoforms at a 1:1 ratio. Double-stable Flp-Cre

cell lines were generated with hERG1a-HA at the FRT site and

empty vector, hERG1a-G628S-Flag, hERG1b-G628S-Flag, or

hERG1aUSO-G628S-Flag at the loxP2272/loxP site. The domi-

nant-negative suppression of hERG1 current by the mutant

hERG1a and hERGb channels is clearly shown in Fig. 5. The

average peak tail current density recorded from cells co-transfected

with hERG1a + vector was 25.061.1 pA/pF (n = 14). When

hERG1a was co-expressed with hERG1a-G628S or hERG1b-

G628S we observed a significant decrease in hERG1 current as

compared to hERG1a + vector control (3.960.7 pA/pF, n = 20

and 3.760.7 pA/pF, n = 7, respectively, P,0.05). In contrast,

current recorded from cells expressing hERG1a + hERG1aUSO-

G628S cells was not significantly different from the control

(24.562.5 pA/pF, n = 11, P.0.05). These results strongly suggest

that mutant hERG1a and hERG1b may be primarily responsible

for the pathological consequences of LQT2 mutations.

Isoform-specific assembly of hERG1 isoforms
To determine the underlying mechanism of the isoform-specific

dominant-negative effects of the G628S mutation we determined

whether hERG1a co-assembled with the wild-type and mutant

hERG1 isoforms (Fig. 6). The expression of the hERG1 channels

from the double-stable cell lines used in Fig. 5 was confirmed by

western blot analysis. Co-assembly of the differentially-tagged

hERG1 isoforms was determined by immunoprecipitating

hERG1a-HA with the anti-HA antibody and detecting Flag-

tagged hERG1 channels by western blot with the anti-Flag

antibody. Western blot analysis with the anti-HA antibody

revealed that hERG1a was efficiently immunoprecipitated. As

expected, hERG1a-G628S and hERG1b-G628S readily associat-

ed with both mature and immature hERG1a channels. The co-

assembly of the G628S-containing 1a and 1b isoforms with wild-

type hERG1a gives rise to the dominant-negative suppression of

Mechanisms of LQT2 in hERG1 Isoforms
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hERG1 current. In contrast, wild-type and mutant hERG1aUSO

proteins showed minimal association with hERG1a as evidenced

by the presence of faint bands corresponding to the hERG1aUSO

channel that were observed only upon over-exposure. To test

whether the association between hERG1a and hERG1aUSO was

destabilized by the detergent used in the immunoprecipitation

buffer we repeated the immunoprecipitation experiments using

buffer in which the Triton X-100 detergent was replaced with the

NP40 detergent (Fig. S1). Similar faint bands were observed upon

over-exposure of the blot. These results support the conclusion

that the association between hERG1a and hERG1aUSO is

significantly weaker than the association of 1a/1a and 1a/1b

isoforms.

To further characterize trafficking of the mutant hERG1aUSO

channels we performed immunofluorescence studies using Flp-Cre

cells stably expressing HA-tagged hERG1a and Flag-tagged

hERG1a-G628S or Flag-tagged hERG1aUSO-G628S channels

(Fig. S2). Wild-type and mutant hERG1a exhibited a diffuse

staining pattern visible throughout the cell including the cell

processes. In contrast, hERG1aUSO-G628S was not observed in

the cell processes, an indicative of trafficking deficiency. These

results are consistent with the western blot, patch clamp and co-

immunoprecipitation studies and support the conclusion that

hERG1aUSO-G628S is trafficking defective and does not readily

associate with hERG1a.

Previous quantitative real-time PCR and RNase protection

assay studies have shown that hERG1aUSO mRNA is present at

approximately twice the level of hERG1a in the heart [16,17]. We

wondered whether hERG1aUSO exerted a dominant-negative

effect on hERG1 current when co-expressed with wild-type

hERG1a at ratios that approximate those found in the heart. To

modify the relative expression of hERG1 isoform in the Flp-Cre

cell line we replaced the strong CMV promoter of the pcDNA5/

FRT expression vector with the weaker SV40 promoter, effectively

decreasing the level of the hERG1a-HA expressed from the FRT

site following the stable transfection of Flp-Cre cells. We generated

Flp-Cre cell lines expressing hERG1a-HA from the SV40

promoter at the FRT site and empty vector, hERG1a-G628S-

Flag or hERG1aUSO-628-Flag from the CMV promoter at the

loxP2272/loxP site. The Flp-Cre cell line containing hERG1a-HA

Figure 1. Schematic illustrating the generation of the double-stable Flp-Cre cell line. (A) The pCRE/GFP target vector was designed to
introduce the loxP2272/loxP recombination cassette into Flp-In-293 cells. The recombination cassette is comprised of incompatible loxP2272 and loxP
sites flanking the puromycin resistance gene (puroR) and green fluorescent protein (GFP). The cytomegalovirus promoter (pCMV) drives the
expression of GFP. The phosphoglycerate kinase promoter (pPGK) was inserted upstream of the loxP2272 site to control the expression of the puroR.
(B) The pUC18/loxP expression vector was designed to stably integrate the gene of interest (GOI) at the loxP2272/loxP cassette of Flp-Cre cells using a
Cre recombinase-mediated cassette exchange approach. The loxP2272/loxP cassette of the expression vector contains the neomycin resistance gene
(neoR) and the CMV promoter which controls the expression of the GOI. The promoter for neoR expression, pPGK, is only provided following
recombination at the loxP2272/loxP site within Flp-Cre cells. (C) Flp recombinase-mediated recombination is used to introduce the gene of interest at
the FRT target site. The FRT target site is comprised of the zeocin resistance gene (zeoR) under the control of the simian virus 40 early promoter
(pSV40). HA-tagged hERG1a (1a-HA) was stably introduced by co-transfection with the pcDNA5/FRT expression vector and a Flp recombinase
expression vector according to the Flp-In System protocol (Invitrogen). Additional components of the pcDNA5/FRT expression vector include the
hygromycin resistance gene (hygR), pUC ori, and the ampicillin resistance gene (ampR). (D) Cre recombinase-mediated cassette exchange is used to
introduce the gene of interest at the loxP2272/loxP site. Flag-tagged hERG1 (1-Flag) constructs were stably integrated into the Flp-Cre hERG1-HA
stable cell line by co-transfection of the pUC18/loxP expression vector and a Cre recombinase expression vector. (E) The double-stable Flp-Cre cell line
contains a single copy of the HA-tagged hERG1a gene and the Flag-tagged hERG1 gene.
doi:10.1371/journal.pone.0042552.g001
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expressed from the CMV promoter at the FRT site and empty

vector at the loxP2272/loxP site (described in Fig. 5) was used a

control. Wild-type hERG1a channels were detected by western

blot using the anti-HA antibody (Fig. 7A, top panel). The relative

amounts of hERG1a channel proteins expressed from the two

promoters are clearly shown. The hERG1a expressed from the

SV40 promoter was found to be 3967% of that expressed from

the CMV promoter. Re-probing the membrane with the anti-Flag

antibody revealed the presence of hERG1a-G628S and hER-

G1aUSO-G628S channel proteins expressed from the CMV

promoter (Fig. 7A middle panel).To characterize the physical

association between the wild-type channel and the mutant

isoforms we immunoprecipitated hERG1a-HA with the anti-HA

antibody and performed western blot analysis with the anti-Flag

and the anti-HA antibody (Fig. 7B). As expected, hERG1a-G628S

was found to readily associate with wild-type hERG1a channels.

In contrast, hERG1aUSO-G628S did not co-assemble with

hERG1a at levels approximating cardiac hERG1a:hERG1aUSO

ratios.

We performed patch-clamp analysis to test whether hERG1

current was dominantly suppressed by the increased relative

expression of hERG1aUSO-G628S (Fig. 8). Flp-Cre cell lines co-

expressing hERG1a from the SV40 promoter and empty vector or

hERG1a-G628S from the CMV promoter were used as controls.

Representative current trances are shown in Fig. 8A. The peak tail

current density from cells expressing hERG1a + vector was

9.261.5 pA/pF (n = 12), approximately 63% less than the current

generated from Flp-Cre cells expressing hERG1a from the strong

CMV promoter (Fig. 5). The peak tail current recorded from cells

expressing hERG1a + hERG1a-G628S was 0.560.4 pA/pF

(n = 12, P,0.05 compared to hERG1a/vector control) indicating

the near complete loss of hERG1 current (Fig. 8B). The co-

expression of hERG1a and hERG1aUSO, however, did not

significantly alter hERG1 current levels compared to the control

(8.360.8 pA/pF, n = 11, P.0.05) (Fig. 8B). These results suggest

that mutant hERG1aUSO channels may not have a significant role

in the pathogenesis of LQT2.

Discussion

In this study we analyzed the isoform-specific effects of the

G628S LQT2 mutation on the function, trafficking, assembly and

dominant-negative properties of the hERG1a, hERG1b and

hERG1aUSO isoforms. While the mutation did not alter the

trafficking properties of hERG1a and hERG1b, it completely

disrupted the function of the both isoforms. Wild-type and mutant

hERG1aUSO channels were trafficking deficient and non-func-

tional. The G628S-induced dominant-negative effects were

observed in the context of hERG1a and hERG1b but not

hERG1aUSO when co-expressed with wild-type hERG1a at

equivalent ratios or at ratios that approximate those found in

the heart. The Flp-Cre system allowed the equivalent stable

expression of two hERG1 isoforms. This system represents an

advantage over the co-expression of two genes from a single

promoter using IRES-containing bicistronic vectors which often

exhibit decreased expression of the second, IRES-dependent gene

[21,22].

The G628S mutation was one of the earliest loss-of-function

LQT2 mutations to be characterized and shown to dominantly

suppress the function of hERG1a when expressed in Xenopus

oocytes [8]. Because of the mutation’s severe pathogenic

phenotype, it has since been widely used in the characterization

of the function and dysfunction of hERG1a channels and IKr

[23,24,25]. Our results clearly show that hERG1b-G628S

channels are dysfunctional and confer significant dominant-

negative effects, comparable to those observed in hERG1a-

G628S. hERG1a-G628S and hERG1b-G628S were both shown

to decrease hERG1 current by 85% when co-expressed with

hERG1a at a 1:1 ratio. hERG1a and hERG1b differ structurally

in the length and the composition of the N-terminus with hERG1b

lacking several regions that contribute to the regulation of channel

deactivation. These regions include the Per, Arnt, and Sim (PAS)

domain that orients the N-terminus into close proximity to the S4–

S5 linker and the cyclic nucleotide binding domain [26,27,28].

The absence of these N-terminal regulatory domains resulted in

Figure 2. Biochemical and functional analysis of hERG1a
expressed from the FRT and loxP2272/loxP sites in Flp-Cre cells.
(A) Flp-Cre cells stably expressing HA-tagged hERG1a (1a) from the FRT
or the loxP2272/loxP sites were detected by western blot with the anti-
HA antibody. Tubulin was used as a loading control. Results shown are
representative of three independent experiments. (B) Representative
current traces recorded from cells stably expressing hERG1a from the
FRT and the loxP2272/loxP sites. The channels were activated by
depolarizing steps between 270 and 60 mV from a holding potential of
280 mV and tail current was recorded upon repolarization to 250 mV.
doi:10.1371/journal.pone.0042552.g002
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the accelerated deactivation rates observed in Fig. 3. While the

relative expression level of hERG1b mRNA comprises less than

20% of the total hERG1 mRNA in the heart, studies in Xenopus

oocytes have shown that these levels are sufficient to modulate

hERG1 deactivation rates [19]. The dominant-negative effects of

hERG1b-G628S shown in the present study underscore the

pathological significance of LQT2 mutations in the hERG1b

isoform.

The hERG1aUSO-G628S isoform, however, did not dominantly

suppress hERG1a current. The isoform-specific effects of the

G628S mutation are likely due to the structural and functional

properties of the different isoforms. The structural difference

between hERG1aUSO and hERG1a or hERG1b is the length and

the composition of the C-terminus. hERG1aUSO lacks the 359 C-

terminal residues of hERG1a/1b which are replaced by 88

unique, presumably unstructured residues. This is due to

alternative polyadenylation within intron 9 [16]. The C-terminal

region of hERG1a/1b contains several domains that are

important in hERG channel trafficking, assembly and function.

The cyclic nucleotide binding domain of hERG1 plays an

important role in the trafficking of hERG1 channels to the cell

surface as LQT2 mutations occurring within this domain are

known to disrupt channel trafficking [29,30,31,32]. The trunca-

tion of the C-terminus deletes two additional C-terminal domains

that contribute to hERG1a assembly. The region from residues

1018 to 1122 was reported to be necessary for the recapitulation of

hERG1 current in C-terminally truncated channels [17], and a

small, ‘‘tetramerizing coiled coil’’ domain (residues 1037 to 1074)

was also proposed to mediate channel assembly [33]. The absence

of all three of these domains likely underlies the dysfunction,

defective trafficking, and impaired assembly of hERG1aUSO in the

present studies. The absence of the full-length C-terminus in the

hERG1aUSO-G628S channels prevents the trafficking of the

mutant channel and limits the association between the mutant

channel and the full-length hERG1a channel, precluding the

dominant-negative effects.

In our co-immunoprecipitation experiments, a small fraction of

hERG1aUSO was found to associate with hERG1a (Fig. 6 and Fig.

S1) indicating that the absence of the hERG1a C-terminus does

not completely preclude channel assembly. The heteromeric

assembly of hERG1a and hERG1aUSO under conditions in which

the trafficking defective isoform is strongly over-expressed has

been shown to regulate the surface expression of hERG1a [18]. A

similar effect has been observed in voltage-gated Shaker B

channels that lack the T1 tetramerization domain wherein

removing T1 severely impairs assembly efficiency and increasing

subunit concentration can partially overcome this assembly defect

[34]. It is likely that the co-assembly of hERG1a and hERG1aUSO

is partially driven by the over-expression of the hERG1aUSO

subunit. The co-expression of differentially tagged hERG1

Figure 3. Functional analysis of wild-type and mutant hERG1 isoforms. (A) Representative currents recorded from Flp-Cre cells stably
expressing Flag-tagged wild-type or G628S-mutant (Mut) hERG1a (1a), hERG1b (1b), and hERG1aUSO (1aUSO) from the loxP2272/loxP site. (B) Current-
voltage plot of the peak tail current amplitude measured at 250 mV following depolarizing voltages from 270 to 60 mV recorded from 1a (circles,
n = 21), 1b (diamonds, n = 6) and 1aUSO (squares, n = 6) channels. The voltage-clamp protocol is given in the legend of Fig. 2.
doi:10.1371/journal.pone.0042552.g003

Figure 4. Western blot analysis of wild-type and mutant hERG1
isoforms. (A) Proteins from Flp-Cre cells stably transfected with Flag-
tagged wild-type (WT) or G628S-mutant (Mut) hERG1a (1a), hERG1b (1b)
and hERG1aUSO (1aUSO) isoforms from the loxP2272/loxP site were
detected with the anti-Flag antibody. Mature, fully-glycosylated hERG1a
and hERG1b channels are 155 kDa and 105 kDa, respectively; immature,
core-glycosylated hERG1a, hERG1b, and hERG1aUSO channels are
135 kDa, 90 kDa, and 100 kDa, respectively. Neomycin phosphotrans-
ferase II (NPT II) was detected by a polyclonal anti-NPT II antibody. (B)
The trafficking efficiency is plotted as the percentage of the normalized
upper, mature band to the total normalized hERG1 protein. The data
are plotted as mean 6 SEM. Results shown are representative of three
independent experiments.
doi:10.1371/journal.pone.0042552.g004

Mechanisms of LQT2 in hERG1 Isoforms
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isoforms using the Flp-Cre system allowed us to directly compare

the assembly of hERG1a and hERG1aUSO to homomeric

hERG1a and heteromeric hERG1a and hERGb channels. The

present results suggest that the assembly deficient hERG1aUSO

isoform exerts minimal effects on the trafficking and function of

hERG1a when co-expressed at ratios that approximate those

found in cardiac tissue. An alternative mechanism of hERG1a

current regulation by the mutually exclusive generation of either

hERG1a or hERG1aUSO from the alternative processing of

hERG1a pre-mRNA has recently been described [16].

In summary, our study highlights the differential disease-causing

effects of LQT2 mutations in the three major hERG1 isoforms.

The absence of hERG1aUSO dominant-negative effects is

presumed to be due to trafficking deficiencies and the minimal

co-assembly of between the hERG1aUSO and hERG1a. Although

hERG1aUSO represents the hERG1 isoform with the highest

expression level in the heart it appears that congenital LQT2 may

primarily be caused by mutant hERG1a and hERG1b channels.

The Flp-Cre expression system, developed in these studies, may

prove to be useful in future studies of hERG1 channel function

and dysfunction. Furthermore, the stable expression of two genes

at an equivalent molar ratio using the Flp-Cre system may have

broad applications in the characterization of protein function and

dysfunction as well as in the analyses of protein-protein

interactions.

Materials and Methods

hERG isoform cDNA constructs
hERG1b was cloned from the human heart Marathon-Ready

cDNA (Clontech, Mountain View, CA) by PCR using 59-GGG

GAT CCG GCA GGC TGC AGG GAG CCA A-39 (hERG1b

forward) and 59-GCC GAC ACG TTG CCG AAG ATG CTA-39

(hERG1b reverse) primers. The PCR fragment was sequenced and

subcloned into the backbone of hERG1a at BamHI and BglII sites

to obtain the full-length hERG1b cDNA. The generation of

hERG1aUSO cDNA has been described [16]. The generation of

C-terminally Flag- and hemagglutinin (HA)-tagged hERG1 cDNA

constructs have been described [32,35]. The G628S mutation was

generated by the Gene-Editor mutagenesis system (Promega,

Madison, WI) and confirmed by sequencing.

Design of the double-stable Flp-Cre cell line
To develop a double-stable mammalian expression system, we

designed a target vector to introduce a loxP2272/loxP recombina-

tion cassette into the mammalian cell line Flp-In-293 (Invitrogen,

Carlsbad, CA). Flp-In-293 cells are derived from the HEK-293

cell line by the integration of the Flp recombination target (FRT)

site at a single genomic locus. The pCRE/GFP target vector was

Figure 5. Isoform-specific dominant-negative effects. (A) Representative current traces from Flp-Cre cells stably co-expressing hERG1a-HA (1a)
with G628S-mutant hERG1a-Flag (1a-Mut), hERG1b-Flag (1b-Mut), or hERG1aUSO-Flag (1aUSO-Mut). Flp-Cre cells co-transfected hERG1a and empty
vector were used as a control. hERG1 current was recorded using the protocol described in the Fig. 2 legend. (B) Averaged hERG1 tail current
amplitude measured at 250 mV following depolarizing voltages to 30 mV. The number of cells is shown in parentheses.
doi:10.1371/journal.pone.0042552.g005

Figure 6. Co-assembly of hERG1 isoforms. Proteins from Flp-Cre
cells co-expressing HA-tagged hERG1a (1a) with Flag-tagged wild-type
(WT) or mutant (Mut) 1a, hERG1b (1b) or hERG1aUSO (1aUSO) channels
were detected by western blot with the anti-HA and the anti-Flag
antibody (upper two panels). Co-assembly of hERG1 isoforms was
determined by immunoprecipitation with the anti-HA antibody and
detection with the anti-Flag and the anti-HA antibody (lower three
panels). Results shown are representative of three independent
experiments.
doi:10.1371/journal.pone.0042552.g006
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derived from pUC18 (Fermentas, Glen Burnie, MD) and contains

a loxP2272/loxP recombination cassette comprised of incompatible

loxP2272 and loxP sites flanking the puromycin resistance gene and

green fluorescence protein (GFP) (Fig. 1A). The 8 nt spacer region

of the loxP2272 and loxP sites differ by 2 nt precluding cross-

recombination reactions [36]. Expression of the puromycin

resistance gene is controlled by the PGK promoter inserted

directly upstream of the loxP2272 site, outside of the loxP2272/loxP

cassette. The expression of GFP is controlled by the CMV

promoter. Flp-In-293 cells were transfected with the pCRE/GFP

vector (1.0 mg) using the Effectene method (Qiagen, Valencia,

CA). Forty-eight hours post-transfection, the cells were cultured in

DMEM and 10% FBS and 1 mg/ml puromycin. After fifteen days,

single colonies stably expressing GFP were selected with cloning

cylinders. Quantitative real-time PCR was performed to confirm

the integration of a single copy of the loxP2272/loxP cassette. The

resultant stable host cell line, Flp-Cre, contains a single copy of the

FRT site and the loxP2272/loxP sites allowing Flp recombinase-

mediated recombination and Cre recombinase-mediated cassette

exchange reactions, respectively. Flp-Cre cells were cultured in

DMEM and 10% fetal bovine serum and 1 mg/ml puromycin.

The pUC18/loxP expression vector (Fig. 1B) was designed to

stably integrate a gene of interest at the loxP2272/loxP site of Flp-

Cre cells. The vector contains loxP2272 and loxP sites flanking the

neomycin resistance gene and the gene of interest. The expression

of the gene of interest was controlled by the CMV promoter. The

promoter controlling the expression of the neomycin resistance

gene is provided only upon recombination within the loxP2272/

loxP cassette in the Flp-Cre cells. Stable integration of the gene of

interest was achieved by co-transfecting Flp-Cre cells with the

pUC18/loxP vector (0.1 mg) containing the gene of interest and a

Cre recombinase expression vector (pBS185, 0.9 mg) [37] using the

Effectene method. Forty-eight hours post-transfection, the cells

were cultured in DMEM and 10% FBS and 400 mg/ml G418.

To generate double-stable cell lines, HA-tagged hERG1a was

stably integrated at the FRT site of Flp-Cre cells by co-transfection

with the pcDNA5/FRT expression vector containing hERG1a-

HA (0.1 mg) and the Flp recombinase expression vector pOG44

(0.9 mg) using the Effectene method and selected with 100 mg/ml

Figure 8. Functional analysis of hERG1a co-expressed with
hERG1aUSO-G628S at ratios approximating those found in the
heart. (A) Representative current traces recorded from Flp-Cre cells
expressing hERG1a (1a) from the weak SV40 promoter (pSV40) at the
FRT site and empty vector, hERG1a-G628S (1a-Mut), or hERG1aUSO-
G628S (1aUSO-Mut) from the CMV promoter (pCMV) at the loxP2272/loxP
site. The patch-clamp protocol is given in the legend of Fig. 2. (B)
Averaged tail current amplitude measured at 250 mV following
depolarizing voltages from 30 mV. The number of cells is shown in
parentheses.
doi:10.1371/journal.pone.0042552.g008

Figure 7. Co-assembly of hERG1 isoforms expressed at ratios
approximating those found in the heart. (A) Proteins from Flp-Cre
cells expressing HA-tagged hERG1a (1a) from the weak SV40 promoter
(pSV40) at the FRT site and Flag-tagged hERG1a-G628S (1a-Mut) or
hERG1aUSO-G628S (1aUSO-Mut) from the CMV promoter (pCMV) at the
loxP2272/loxP site were detected by western blot with the anti-HA (upper
panel) and the anti-Flag antibody (middle panel). Flp-Cre cells expressing
HA-tagged hERG1a from the CMV or SV40 promoter at the FRT site and
empty vector in loxP2272/loxP site were used as controls; tubulin was used
as a loading control (lower panel). (B) Co-assembly of hERG1 isoforms was
determined by immunoprecipitation using the anti-HA antibody followed
by western blot with the anti-Flag and the anti-HA antibody. Results
shown are representative of three independent experiments.
doi:10.1371/journal.pone.0042552.g007
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hygromycin (Fig. 1C). Flag-tagged wild-type and mutant hERG1

isoforms were then stably integrated at the loxP2272/loxP site of

cells stably expressing hERG1a-HA using the Cre recombinase-

mediated recombination approach described above (Fig. 1D). The

promoters controlling the expression of the hygromycin and

neomycin resistance genes are provided only upon recombination

at the FRT and loxP2272/loxP sites, respectively. This ensures that

each cell contains a single copy of the HA-tagged and Flag-tagged

hERG1 genes (Fig. 1E), and allows the polyclonal selection of the

double-stable cell line.

Quantitative PCR
Quantitative real-time PCR was used to confirm the copy

number of the FRT and loxP2272/loxP target sites within the Flp-

Cre cell line. Genomic DNA from Flp-Cre clone #14 was isolated

with the Gentra Puregene kit (Qiagen) following the manufactur-

er’s protocol. PCR primers were specific to sequences within the

FRT (zeocin resistance gene) and loxP2272/loxP (GFP) cassette.

Primer sequences are: zeocin forward (59-GTT GAC CAG TGC

CGT TCC-39), zeocin reverse (59-TGA ACA GGG TCA CGT

CGT C-39), GFP forward (59-GCG AGG GCG ATG CCA CCT

AC-39), and GFP reverse (59-TCG GGG TAG CGG CTG AAG

CA-39). To take into account the amplification efficiency of each

primer set, we used a plasmid DNA containing the cDNAs of

zeocin and GFP as template for generating standard curves for

each primer set. By using a plasmid in which the zeocin and GFP

cDNA fragments are at 1:1 ratio, equal quantities can be assigned

to each dilution point of the standard curves [38]. PCR was

performed on the MX300P real-time PCR machine (Stratagene,

La Jolla, CA) using Power SYBR Green PCR Master Mix

(Applied Biosystems, Foster City, CA). After denaturing at 95uC
for 10 min, the reaction was run for 40 cycles with denaturation at

95uC for 30 s, annealing at 55uC for 30 s and primer extension at

72uC for 30 s.

Electrophysiology
Membrane currents were recorded in whole cell configuration

using suction pipettes, at ,22uC, as previously described [11]. An

Axopatch-200B amplifier was used to record membrane currents

and the computer software pCLAMP8 was used to analyze current

signals. Data are presented as mean 6 SEM and analyzed by

Student’s t-test. P,0.05 is considered statistically significant.

Western blot and immunoprecipitation
Western blot analysis and immunoprecipitation were performed

as previously described [31,39]. Briefly, proteins from whole cell

lysates were subjected to SDS-PAGE, transferred onto nitrocellu-

lose membranes, detected with the anti-HA and the anti-Flag

antibody and visualized with the Plus-ECL (PerkinElmer, Wal-

tham, MA) detection kit. The expression level of neomycin

phosphotransferase II encoded by the neomycin resistant gene was

used as an internal control for normalizing the relative expression

of hERG isoform proteins. The neomycin resistance gene is a

component of the pUC18/loxP expression vector and is stably

integrated at the loxP2272/loxP site of Flp-Cre cells. The

polyclonal anti-neomycin phosphotransferase II antibody (Mili-

pore, Billerica, MA) was used at a 1:300 dilution. In the

immunoprecipitation experiments, cells were lysed with immuno-

precipitation buffer (10 mM Tris-HCl, pH 8.0, 150 mM NaCl,

5 mM EDTA, 1% Triton X-100, 1 mg/ml BSA and protease

inhibitors), hERG1 channels were immunoprecipitated with the

anti-HA antibody and detected by western blot with the anti-Flag

and the anti-HA antibody. hERG1 protein was quantified by

densitometry with ImageJ software [40].

Immunofluorescence microscopy
The characterization of wild-type and mutant hERG1 channel

trafficking by immunofluorescence has been described previously

[41]. Briefly, Flp-Cre cell lines stably expressing HA-tagged

hERG1a and Flag-tagged hERG1a or Flag-tagged hERG1aUSO

channels were fixed with 4% paraformaldehyde, blocked with PBS

containing 5% goat serum and 0.2% Triton X-100, and incubated

with monoclonal anti-HA and polyclonal anti-Flag antibody for

one hour at room temperature. The cells were then washed and

probed with Alexa Fluor 488-conjugated goat anti-mouse and

Alexa Fluor 594-conjugated goat anti-rabbit secondary antibody

(Molecular Probes, Eugene, OR). Images were acquired with a

Zeiss Axioskop 2 microscope.

Supporting Information

Figure S1 Flp-Cre cells co-expressing HA-tagged hERG1a (1a)

and Flag-tagged wild-type (WT) or mutant (Mut) 1a or

hERG1aUSO (1aUSO) channels were lysed using an immunopre-

cipitation buffer containing the NP40 detergent. hERG1 channels

were detected by western blot with the anti-HA and the anti-Flag

antibody (upper two panels). Co-assembly of hERG1 isoforms was

determined by immunoprecipitation with the anti-HA antibody

and detection with the anti-Flag and the anti-HA antibody (lower

three panels). Results shown are representative of three indepen-

dent experiments.

(TIF)

Figure S2 Immunofluorescence staining of Flp-Cre cells stably

expressing HA-tagged hERG1a and Flag-tagged hERG1a-G628S

or Flag-tagged hERG1aUSO-G628S channels. The phase contrast

image, the monoclonal anti-HA staining, the polyclonal anti-Flag

staining and the merged fluorescence signal from the anti-HA and

anti-Flag staining are shown. Bar 20 mm, applies to all panels.

(TIF)
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