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Abstract: Lysophosphatidic acid (LPA) is a bioactive lipid mediator primarily derived from mem-
brane phospholipids. LPA initiates cellular effects upon binding to a family of G protein-coupled
receptors, termed LPA receptors (LPAR1 to LPAR6). LPA signaling drives cell migration and pro-
liferation, cytokine production, thrombosis, fibrosis, angiogenesis, and lymphangiogenesis. Since
the expression and function of LPA receptors are critical for cellular effects, selective antagonists
may represent a potential treatment for a broad range of illnesses, such as cardiovascular diseases,
idiopathic pulmonary fibrosis, voiding dysfunctions, and various types of cancers. More new LPA
receptor antagonists have shown their therapeutic potentials, although most are still in the preclini-
cal trial stage. This review provided integrative information and summarized preclinical findings
and recent clinical trials of different LPA receptor antagonists in cancer progression and resistance.
Targeting LPA receptors can have potential applications in clinical patients with various diseases,
including cancer.
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1. Introduction

Lysophosphatidic acid (LPA) and LPA receptors (LPARs), including LPAR1 to LPARS,
are integral parts of signaling pathways involved in cellular proliferation/migration/
survival, vascular homeostasis, stromal remodeling, lymphocytes trafficking, and immune
regulation [1-3]. In addition, autotaxin (ATX) is a secreted glycoprotein and functions as
a pivotal enzyme to produce extracellular LPA [4,5]. Figure 1 illustrates the extracellular
and intracellular biosynthesis of LPA. Consequently, aberrant ATX-LPA-LPAR axis may be
involved in the development and progression of many pathologic conditions such as cancer
and metastasis [6,7], radio- and chemo-resistances [8-12], fibrotic diseases [13], neuropathic
pain [14], arthritis [15], metabolic syndromes [16], and atherosclerosis [17]. Understanding
ATX/LPA expression and LPAR-mediated signals elucidated our understanding of the
disease mechanisms and highlighted the therapeutic potential of the druggable ATX-
LPAR axis. To date, enormous in vivo and in vitro investigations have demonstrated
pharmacological antagonization of LPAR to be of paramount significance in reversing
pathologic responses. This article sought to update current progress regarding LPAR
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antagonists in clinical and preclinical settings, emphasizing compounds being evaluated in
completed and ongoing clinical trials.
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Figure 1. The biosynthesis of lysophosphatidic acid (LPA). Extracellular LPA is mainly synthesized
by autotaxin (ATX) via conversion of lysophospholipids, which are hydrolyzed from phospholipids
through lecithin-cholesterol acyltransferase (LCAT)/phospholipase Al (PLA;) or PLA;/PLA; mech-
anism. Phosphatidic acid (PA) on the plasma membrane is another resource of extracellular LPA.
PA can be generated from phospholipids and diacylglycerol (DAG) via phospholipase (PLD) and
diacylglycerol kinase (DGK), respectively. PA is converted to LPA through PLA; and PLA;. On
the other hand, monoacylglycerol (MAG) and glycerol 3-phosphate (G3P) on the mitochondria
generated intracellular LPA via acylglycerol kinase (AGK) and glycerophosphate acyltransferase
(GPAT), respectively.

2. LPA Receptor-Mediated Signaling in Cancer Biology

ATX-LPA-LPAR signaling is a complex network and intertwines with multiple cellular
signaling to contribute a plethora of activities such as proliferation, survival, migration,
metastasis, angiogenesis, and inflammation in cancers [6]. Individual LPARs favor different
Gu proteins for their downstream signals and cellular functions. In brief, the endothe-
lial cell differentiation gene (EGD) family LPARs (LPAR1 to LPAR3) bind to Gj/, and
trigger the Ras/Raf/MAPK signaling pathway, phospholipase C (PLC), and the PI3K-Akt
pathway [1,3,18,19]. Gq/11 protein couples LPAR1-5 to mediate PLC and calcium mobiliza-
tion [20], whereas Gj, /13 interacts with all LPARs, leading to cell migration and invasion
through Rho and Rho-associated protein kinase (ROCK) activation [21]. Signaling through
Gs would activate the cAMP-dependent protein kinase A (PKA) signaling pathway and
the large tumor suppressor 1 and 2 (LATS1/2). It would subsequently inhibit downstream
transcriptional co-activators Yes-associated protein (YAP) and PDZ-binding motif (TAZ),
which usually drive cancer cell survival, proliferation, invasive migration, and metasta-
sis [22,23]. Interestingly, the ROCK activation would suppress LATS1/2 and subsequently
activate YAP and TAZ, resulting in tumorigenesis (Figure 2).
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Figure 2. LPA, LPA receptors (LPARs), and downstream signaling pathways. LPA binds six primary LPA transmembrane
receptors (LPAR1 to LPAR6) with varying affinities that couple to four different heterotrimeric G proteins (Gjy/13, Gq /11,
Gi/o, and Gg) and trigger various downstream signaling cascades. LPA subsequently mediates cellular events such as cell
proliferation, survival, apoptosis, migration, cytoskeleton reorganization, fibrosis, and inflammation.

The LPA-LPAR signaling pathway is one of the most investigated mechanisms because
overexpression of one or more of these receptors was found in several types of cancers.
Therefore, the concept to modulate cancer by agonizing or antagonizing LPARs is naturally
generated. The following sessions would discuss all LPARs in detail.

2.1. LPAR 1

Studies show that LPAR1 enhances metastasis and tumor motility [18]. Aberrant
LPARI1 expressions were observed in many cancer cell lines and primary tumors, including
ovarian cancer [24], breast cancer [25], liver cancer [26], gastric cancer [27], pancreatic
cancer [28,29], lung cancer [30,31], glioblastoma (GBM) [32-34], and osteosarcoma [35].
Ovarian cancer is the most investigated cancer in studying the malignancy of LPA sig-
naling. High LPARI1 expressions in ovarian serous cystadenocarcinoma correlate with
high proliferation, invasion, migration, and poorer prognosis than those with low ex-
pressions [36]. LPAR1 also promotes the development of intratumoral heterogeneity by
regulating PI3K/AKT signaling [36]. Retaining the stemness phenotype of ovarian cancer,
an autocrine loop via the ATX-LPA-LPAR1-AKT1 signaling axis is critical [37]. In breast
cancer, overexpression of LPAR1 in MCF-10A mammary epithelial cells causes cells to
acquire an invasive phenotype [38], which correlates with the heparin-binding EGF-like
growth factor [39], and mediate basal breast metastasis through LPAR1-PI3K-ZEB1-miR-21
pathways [25]. For hepatocellular carcinoma, LPA-LPAR1 enhances cancer invasion via in-
ducing MMP-9 expression through coordinate activation of PI3K and p38 MAPK signaling
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cascade [26]. Similarly, increased cancer cell invasiveness mediated by LPAR1 was found in
pancreatic cancer [28,29]. For lung A549 cancer cells, the LPAR1/Gi/MAP kinase/NF-«B
pathway is involved in LPA-induced oncogenesis, and using the LPAR1/3 antagonist
Ki16425 to block LPAR1-mediated signaling would significantly reduce tumor volume [31].
In GBM, LPAR1 expression is also significantly higher than other gliomas [32]. Of interest,
the LPA pathway of microglia-and-GBM interaction is a target to improve survival because
microglia-derived LPA and ATX upon hypoxia stress may promote GBM proliferation and
migration [32]. A recent report indicates LPAR1/PKC«x/progesterone receptor pathway
is involved in GBM migration [40]. In prostate PC-3 cancer cells, hyperglycemia triggers
enhanced vascular endothelial growth factor-C (VEGF-C) expression via the LPAR1/3-
Akt-ROS-LEDGEF signaling [40]. The LPA-mediated VEGF-C expression can be modified
by calreticulin, a multifunctional chaperon protein. In addition, pharmacological LPAR1
receptor antagonism may significantly reduce tumoral lymphatic vessel density and nodal
metastasis in tumor-bearing nude mice, suggesting the key role of LPAR1 in prostate cancer
lymphatic metastasis [41].

2.2. LPAR2

LPAR?2 activation has been shown to associate with cell survival because of its anti-
apoptosis function. For ovarian cancer, tumors with overexpression of LPAR2 were as-
sociated with poorer survivals compared with controls [42]. Furthermore, LPAR2 signal-
ing promotes invasion and metastasis through the production of VEGF [43], EGFR [44],
interleukin-8 [45], and urokinase plasminogen activation [46], implying the multiple hyper-
vascularization processes. LPAR2-Gi-Src-EGFR-ERK signaling cascade may mediate cell
movement and LPA-stimulated COX-2 expression [47]. Together with LPAR1, LPAR2
regulates phosphorylation of ezrin/radixin/moesin (ERM) proteins, known as membrane-
cytoskeleton linkers, and leads to promotion of ovarian OVCAR-3 cancer cell migration
through cytoskeletal reorganization and formation of membrane protrusions [48]. The
metastatic activity of gastric SGC-7901 cells was enhanced as well through LPA-LPAR2-
Notch pathway activation [27]. LPAR?2 is the major LPAR in colon cancer, and most of
the cellular signals by LPAR2 were primarily mediated through interaction with scaffold
proteins Nat/H* exchanger regulatory factor 2 (NHERF2) [49]. In another two reports,
LPA-LPAR2 may facilitate colon cancer proliferation via transcription factor Kruppel-
like factor 5 (KLF5) and hypoxia-inducible factor 1o (HIF-1x) activations. The LPAR2
associated HIF-1a expression also promoted breast cancer proliferation/migration and
conferred poor prognosis in the Chinese population [50]. Regarding the link between
chronic inflammation and cancer, Lin et al. found genetic LPAR2 depletion may attenuate
colon cancer development in a colitis mice model triggered by azoxymethane and dextran
sulfate sodium [51]. Noteworthy, LPAR2 activation may exert anti-migration effects by
blocking EGF-induced migration and invasion of pancreatic Panc-1 cancer cells through
the Gy, /13/Rho signaling pathway [52]. Gy, protein is also involved in enhanced ovarian
cancer invasion and migration via the HIF1«-LPA-LPAR? axis [24]. The distinct structure
of LPAR2 from other LPARs is its carboxyl-terminal tail contains a zinc finger-binding
motif to interact with TRIP6 and pro-apoptotic Siva-1. TRIP6 has a PSD95/Dlg/Z0O-1
(PDZ)-binding motif to interact with scaffold proteins, particularly NHERF2 [53]. Siva-1 is
an early response gene activated by DNA damage that promotes apoptosis through binding
up the antiapoptotic BxI-XL protein. Moreover, Siva-1 acts with p53 and the ubiquitin ligase
Mdm?2 in the nucleus complexes, and the polyubiquitinated complex would be degraded
once the LPA-LPAR?2 axis is activated. The functional significance of the LPAR2-activated
assembly leads to up-regulation of ERK1/2, PI3K-Akt, and NF«B prosurvival pathways
and the subsequent inhibition of apoptosis [54]. LPAR2 can protect cancer cells against
apoptotic stress after irradiation and chemotherapy by augmenting DNA damage repair
response and inhibiting the mitochondrial apoptosis cascade [55].
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2.3. LPAR3

LPAR3 is the predominant receptor subtype in colon, liver, and lung cancers. LPAR3-
expressing cells significantly promote motility and invasiveness through Ras-, Rac-, Rho-,
and PI3K-signaling pathways [20]. In hepatocellular carcinoma, Zuckerman et al. reported
distinct LPAR3 expressions within the tumor and normal tissues, and LPAR3 may en-
hance liver cancer migration via the LPAR3-Gi-ERK/MAPK pathway [56]. Okabe et al.
found LPAR3 contributes to hepatocellular carcinoma proliferation and invasion via the
(-catenin pathway in rat hepatic RH7777 cancer cells. They also demonstrated that tumor
cells with high LPAR3 expression were resistant to cisplatin and doxorubicin through
multidrug-resistance-related up-regulation of genes [20]. In melanoma, LPAR3 is essential
to promote viability and proliferation, and the Src homology 3 domain is required for
LPARS3 to mediate viability in melanoma SK-MEL-2 cells [57,58]. In ovarian cancer, LPAR3
promotes cell expansion and invasion in SKOV-3 cells, and tumors with overexpression
of LPAR3 were associated with poor survival [42]. Besides Gq and G; proteins, LPAR3
can also activate Gip/13, increase dephosphorylation and nuclear translocation of YAP,
and induce migration of ovarian cancer cells [59]. In addition, the LPA/LPAR3 signaling
may initiate mutation-independent epithelial-to-mesenchymal transition (EMT) through
B1-integrin-dependent activation of Wnt/ 3-catenin signaling [60]. Pharmacological sup-
pression of LPAR3 would suppress motility and invasion in various cancers, including
hamster pancreatic cancer cells [61], human triple-negative breast cancers [62], fibrosar-
coma HT1080 cells, and osteosarcoma HOS cells [63]. Direct targeting of LPAR3 by miR-15b
has been shown to repress cell proliferation and drive the senescence and apoptosis of
ovarian cancer cells through the PI3K/Akt pathway [64], suggesting the potential mRNA
treatment against LPAR3.

2.4. LPAR4

In contrast to LPAR1-3, LPAR4 and LPARS negatively affected cancer cell proliferation
and motility [65]. LPAR4 attenuates tumor motility and colony formation in colon cancer
cell lines. Knockdown of LPAR4 in the long-term 5FU treated DLD1 cells increased cell
motility [66,67]. Similarly, LPAR4 depletion increases tumor motility in pancreatic cancer
cells [65] and increases tumor proliferation in head and neck carcinoma [68]. Another
recent study by Eino et al. found that LPAR4 is critical for developing a fine capillary
network in brain tumors [69]. LPAR4 promotes endothelial cell-cell adhesion and VCAM-1
expression via RhoA /ROCK signaling, which may enhance anti-PD1 therapy efficacy and
lymphocyte infiltration [69]. However, a contradictory pro-tumorigenesis was found in
fibrosarcoma. In HT1080 cells, LPAR4 promotes cell invasion and invadopodium formation
via cAMP/EPAC/Racl signaling [70]. Of interest, LPAR4/6 are necessary for embryogenic
angiogenesis to activate YAP and transcriptional coactivator TAZ via the Gy, /Gy3 signaling
pathway [71]. In the malignancies, YAP promotes cancer proliferation and migration in
bladder cancers through YAP-Mask2 [72] and lung cancers through LKB1-YAP-human
telomerase RAN (hTERC), respectively [73]. These suggested the involvement of LPAR4 in
YAP-mediated cancer progression.

2.5. LPARS

LPARS was considered a negative regulator in cancer cell motility and survival [69].
The inhibitory effect of LPARS5 on cell motility has been shown in pancreatic cancer [69]
and sarcoma [74]. Nevertheless, contradictory effects of LPAR5 were found in different
cancers. Okabe et al. reported upregulation of the LPAR5 gene with aberrant unmethylated
status enhanced cell proliferation and motility in rat liver-derived hepatoma RH7777 and
lung-derived adenocarcinoma RLCNR cells [75]. Blocking LPAR5 in thyroid cancer with
a selective LPA5 antagonist TCLPA5 attenuated cancer proliferation and migration via
PI3K/ Akt signaling in vivo and in vitro [76]. Moreover, depletion of LPAR5 in murine
B16-F10 melanoma resulted in fewer lung metastasis [77]. Interestingly, LPARS5 appears to
mediate chemorepulsion in response to LPA. The underlying mechanism was proposed to
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be mediated via a non-canonical elevation of cAMP along with reduced PIP3 signaling in
melanoma B16 cells [78]. LPARS expression is markedly increased in long-term cisplatin-
treated melanoma cells [8]. Therefore, LPAR5 knockdown significantly conferred chemo-
resistance and enhanced cancer cell survival [8]. In addition to the cancer cell growth and
metastasis, LPAR5 was shown to suppress the function of CD8-positive cytotoxic T cells by
inhibiting intracellular Ca®* mobilization and ERK activation, suggesting LPAR5 might act
as a mediator of immune suppression [79].

2.6. LPAR6

Reports regarding LPARG6 in cancer are relatively limited compared with other
LPARs [2]. Several articles investigated the role of LPARG in liver, pancreatic, and
colon cancers. LPAR6 expression in hepatocellular carcinoma correlated with poorer
survival [80] and increased microvascular invasion [81]. Moreover, LPAR6 promotes
hepatocellular carcinoma proliferation via the NCOA3-LPAR6-HGEF signaling cascade,
and the tumor-suppressive effect by depletion of LPARG is similar to that of anti-HGF
treatment [82]. In pancreatic cancer, LPAR6 knockdown also inhibited cancer invasion
and colony formation [67]. However, LPARG6 can, by contrast, be a negative regulator in
different cancers. LPAR6 knockdown caused the formation of larger colonies [83] and
enhanced motility in colon DLD1 and HCT116 cancer cells [67]. The role of LPAR6 in
various cancer types should be further characterized in the future.

3. LPARs and Cancer Resistance to Chemotherapy and Radiation

Radiation therapy and chemotherapy are both primary cancer treatments. However,
cancers often developed resistance and long-term side effects after radiotherapy and
chemotherapy. Therefore, it is crucial to understand the molecular and physiological
changes in patients with cancer receiving these therapies, which will help develop a
better treatment for the patients. Remarkedly, the ENPP2 gene, which encoded LPA
generating enzyme ATX, was found to serve as one of 90 drug-resistance genes [84]. Up-
regulation of the ATX-LPA axis was found in refractory diseases treated by radiation and
chemotherapy [85]. These results suggested ATX-LPA axis might be involved in chemo-
and radio-resistances in cancers.

Chemotherapies such as docetaxel and doxorubicin would induce cancer cell apop-
tosis through ceramide formation [86,87]. Ceramide, belonging to sphingolipids and
converted to sphingosine by ceramidases, promotes apoptosis by releasing cytochrome
C from mitochondria and activates caspases. The pro-apoptotic effects of ceramide are
counteracted by LPA-LPAR1-induced nuclear factor erythroid-2-related factor-2 (Nrf2)
stabilization, which upregulates multidrug-resistant transporters and antioxidant pro-
teins [88]. Another pathway of LPA-mediated chemo-resistance is to enhance sphingosine
1-phosphate (S1P) by activating phospholipase D (PLD) [89] and increasing sphingosine
kinase 1 (Sphk1) [90]. Histone deacetylase (HDAC) activation is also involved in chemo-
resistance. LPA activated HDAC and subsequently prevented cancer apoptosis which was
induced by HDAC inhibitors [91]. Therefore, targeting ATX was considered the center to
overcome drug resistance. For example, ONO-8430506, an ATX inhibitor, had a synergic
effect with doxorubicin to reduce tumor growth and lung metastasis in an orthotopic mice
breast cancer model [92]. In addition, novel benzene-sulfonamide analogues acting as
ATX antagonists can reduce paclitaxel resistance in 4T1 murine breast cancer cells and B16
murine melanoma cells [93].

Besides ATX antagonists, targeting individual LPARs also has potency against resis-
tance [94]. Recent studies emphasized the effects of LPAR2 and LPARS5 on drug resistance.
Interestingly, LPAR2 promoted the acquisition of chemo-resistance, whereas LPARS5 sup-
pressed chemo-protection [9,10]. Administration of the LPAR2 agonist, GRI-977143, in
human lung A549 adenocarcinoma cells with long-term cisplatin treatment increased cell
survival rate [10]. Similar results for LPAR2 mediated cisplatin-resistance was found
in melanoma A375 cells [11] and fibrosarcoma HT1080 cells [12]. The Gi and LPAR2
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interacting proteins, TRIP6 and NHERF2, were believed to involve LPAR2-mediated
chemo-resistance [12,54]. Furthermore, LPAR2-mediated small GTPase Arf6 activation
contributes to Sunitinib and Temsirolimus resistance in renal 786-O renal cell carcinoma
cells [95]. Silencing of ArfGAPs, AMAP1, and EPB41L5 enhanced the drug sensitivity,
suggesting Arf6-mediated LPAR2 recycling might be the key for chemotherapy resistance.
Interestingly, the decline of G protein signaling regulators (RGS) might also participate in
LPA-mediated chemo-resistance via reducing de-activation of G protein-coupled receptors
(GPCR). For example, RG510 and RGS17 knockdown conferred cisplatin-resistance in
ovarian cancer cells [96], whereas increasing RGS17 in nasopharyngeal cancer improves
sensitivity to 5-fluorouracil [97]. The detailed mechanism of LPARS is not clarified, so
further investigation is required. Notably, LPAR2 is imperative to protect normal organs,
especially intestinal epithelium and myeloid progenitors, against ceramide-induced cell
death. Deng et al. found the LPA administration protected IEC-6 cells from camptothecin-
induced apoptosis through inhibiting caspase-3 activation mediated by the attenuation of
caspase-9 activation [55]. The role of LPAR3 in chemo-resistance remains controversial. A
selective LPAR3 agonist, OMPT, would reduce the cell viability of cisplatin-treated lung
Ab549 adenocarcinoma cells [10]. Another article indicated that LPAR3 conferred chemo-
resistance by upregulating multidrug resistance-related genes because the cell survival in
LPAR3-expressing rat hepatoma cells treated with cisplatin or doxorubicin was higher than
controls [20]. Conclusively, the above information provides a horizon to ameliorate drug
resistance by targeting LPAR2, LPAR3, and LPARS in different cancers.

For radiotherapy, it is therapeutically important to lower the radio-resistance of cancer
cells but to protect normal tissue injury from radiation. In response to radiation injury,
adipose tissue increased ATX production and LPARs expressions to enhance LPA signal-
ing [98]. Since ATX responses were found to precede the radiation-induced inflammatory
cascade in several in vivo studies [99], the ATX-LPA-inflammatory cycle may play a vital
role in desensitizing cancer cells to radiotherapy. Different LPARs mediate radio-resistance
in different cancer cells, and LPARI1 is a pronounced receptor to mediate radio-resistance
because of its ability to stabilize Nrf2 via PI3K signaling [86,88,98]. Nrf2 mediates mul-
tiple antioxidant enzymes, such as glutathione S-transferase A2 (GSTA2) and NADPH
quinone oxidoreductase 1 (NQO1), to protect cancer cells from oxidative stress [100]. Nrf2
over-expression enables cancer cells against radiation injury by cross-talk with multiple
LPA-induced DNA repair proteins expressions (e.g., ATM, ATR, PARP-1) to activate NF-kB
signaling [101,102]. It implies that Nrf2 destabilization may be a potential strategy to
overcome radio-resistance [103].

Interestingly, not only ATX, but LPAR2 expression are also upregulated in response
to radiation. Radiation-induced DNA double-strand breaks via ATM-mediated NF-«B
activation, resulting in increment of serum ATX/LPA levels and subsequently LPAR2
activation to accelerate YH2AX histones resolution [101]. In breast cancer adipose tissue,
Meng et al. found radiation-induced LPAR1, LPAR2, ATX, cyclooxygenase-2, and numer-
ous inflammatory mediators increased in response to y-radiation ranging from 0.25 to
5 Gy, resulting in blunting radio-sensitivity of breast cancer cells [98]. LPAR2 is impera-
tive to protect normal organs, especially intestinal epithelium and myeloid progenitors,
against ceramide-induced cell death. In a radiation-exposed murine model, intraperitoneal
administration of synthetic LPA, octadecenyl thiophosphate (OTP), may reduce radiation-
associated mortality under lethal dose (6-12 Gy) [104]. By contrast, LPAR2 knockout
mice (LPAR2~/~) can no longer be rescued from radiation-induced apoptosis upon OTP
administration. In another whole-body radiation mice model, administration of the LPAR2
agonist, GRI977143, significantly increased mean survival by saving apoptotically con-
demned cells from radiation-induced cell death [105]. In contrast, DBIBB, a more specific
LPAR?2 agonist without binding affinity to other LPARs, was found to alleviate the acute
hematopoietic and gastrointestinal radiation responses for wild-type C57BL/6 mice when
drug treatment was delayed to 72 h post-irradiation. In human hematopoietic progeni-
tors, DBIBB significantly enhanced cell survival and the differentiation of the myeloid cell
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lineage after irradiation [106]. Moreover, DBIBB treatment increased the post-radiation
survival of the rat intestinal crypt epithelium-like cell line IEC-6 cells by augmenting DNA
repair via LPAR2 signaling [106].

4. LPA and Chemotherapy-Induced Neuropathic Pain (NP)

Cancer patients treated with chemotherapy, such as paclitaxel, usually suffer with se-
vere peripheral neuropathic pain [14]. Mechanisms that underlie NP are complex for multi-
ple pathways activated through inflammatory molecules, growth factors, lipid metabolites,
and cellular responses in peripheral and central nervous systems. Aberrant LPA produc-
tion and signaling were pivotal for NP initiation in which the LPA-LPAR1 axis mediated
peripheral mechanisms [107], including dorsal root demyelination, PKCy, calcium channel
subunit «261 up-regulation [107], neuronal growth cones retraction, and morphological
changes of Schwann cells [108]. LPAR3, together with LPAR1, was also responsible for
NP by amplifying central LPA production via glial cells [109]. Interestingly, Uchida et al.
found that LPA production significantly increased within 24 h after the first paclitaxel treat-
ment [14]. The paclitaxel-induced mechanical allodynia disappeared in LPAR1- and LPAR3-
knockout mice [14], as well as mice pretreated with LPAR1/3 antagonist Ki16425 [110].
Moreover, significant attenuation of nerve demyelination was also observed in LPAR1-
/LPAR3- knockout mice [110]. In addition, the LPARS signaling was shown to enhance
microglial migration/cytotoxicity and induced a distinct pro-inflammatory signature via
the protein kinase D (PKD) pathway [111]. In summary, antagonizing LPAR1/3/5 may be
a promising strategy to manage chemotherapy-induced NP.

5. Application of LPAR Agonist/Antagonist in Cancer

Many LPAR antagonists were developed to attenuate proliferation, progression, in-
vasion, and metastasis in some preclinical studies. BrP-LPA, a pan-LPAR antagonist, was
used to treat breast MDA-MB-231 cancer cells, and Zhang et al. found more decreased
intra-tumoral blood vessel density treated by BrP-LPA (10 mg/kg) compared with those
by paclitaxel (10 mg/kg) [112]. Through LPAR2, BrP-LPA may also sensitize vascular
endothelial cells in mice GL-261 glioma cells to improve malignant glioma response to
radiation therapy [113]. Furthermore, Ki16425 is one of the most investigated agents tar-
geting both LPAR1 and LPARS3, and its anti-tumor effects were validated in several cancer
cells [31,114,115]. As discussed above, Kil6425 may benefit the reduction of chemotherapy-
induced NP [110]. A more potent dual LPAR1/3 antagonist, Debio-0719, was found to
reduce pulmonary and bone metastases of murine 4T1 breast cancer cells without affecting
primary tumor size [116]. Similar results were observed in the MDA-MB-231T experi-
mental metastasis mouse model, suggesting Debio-0719, a potent therapeutic agent to
prevent breast cancer metastasis and induce dormancy at secondary tumor sites [117].
Another LPAR1/3 antagonist, Ki16198, effectively suppressed pancreatic cancer invasion
and metastasis partially through inhibiting MMP production [118].

Other LPAR antagonists were less discussed, while H2L.5186303 for LPAR?2 attenu-
ated fibrosarcoma HT1080 cells invasiveness [119]. The 4-methylene-2-octyl-5-oxotetra-
hydrofuran-3-carboxylic acid (C75) and xanthenylacetic acid (XAA) for LPAR6 ameliorated
hepatocellular carcinoma growth through modulating mitochondria homeostasis and
arresting cancer cells at the G1-phase cell cycle [120].

As mentioned above, targeting LPAR5 was proposed to be a good option against
cancer development in certain cancers [8,9,65]. LPARS5 antagonist TCLPAS5 attenuated
cancer proliferation and migration in thyroid cancer [76]. Moreover, depletion of LPARS in
murine B16-F10 melanoma resulted in fewer lung metastasis [77], suggesting pharmaceutic
inhibition of LPAR5 may also manage melanoma-mediated metastasis. On the other
hand, since LPARS5 contributes to NP by affecting microglia biology and induces a distinct
pro-inflammatory phenotype [111], various antagonists such as compound 7e [121] and
AS2717638 [122] were considered to control chemotherapy-induced NP [76,111].
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6. Clinical Trials of LPAR Antagonists

Since the extensive involvement of LPARs in cancers, questions have emerged regard-
ing their clinical significance. However, as of now, there are no therapeutic clinical trials
of LPAR antagonists in cancer therapy. A diagnostic trial (NCT00986206) enrolled 525
patients with ovarian cancer, or at risk for ovarian cancer, and aimed to develop a serum- or
plasma-based assay to quantitate LPA levels in the early detection of ovarian cancer [123],
but there was no conclusive result.

Apart from cancer, LPAR1 antagonists, BMS-986020, and BMS-986278 focused on
idiopathic pulmonary fibrosis (IPF) and aimed to prove the application of LPAR. In the case
of BMS-986020, clinical trials including NCT01766817 (Phase 2) [124,125], NCT02068053
(Phase 1) [126], and NCT02101125 (Phase 1) [127] were completed. The NCT01766817 study
revealed that BMS-986020 treatment significantly slowed the pulmonary function decline
compared with placebo [124]. Regarding BMS-986278, the Phase 1 study, NCT03429933,
was completed [128], and a Phase 2 trial, NCT04308681, is recruiting participants [129].
Interestingly, there is a diagnostic trial recruiting IPF patients to validate the safety, tolera-
bility, kinetics, and repeatability of an LPAR1 PET ligand 18F-BMS-986327 [130]. Moreover,
a Phase 2 study (NCT01651143) focused on SAR-100842, a potent, selective oral antagonist
of the LPAR1, for diffuse cutaneous systemic sclerosis. The results suggested that SAR-
100842 is safe, moderately effective, and well-tolerated in patients, whereas a further larger
controlled trial is required to confirm the clinical efficacy [131]. Table 1 summarizes the
clinical trials targeting LPARs.

Table 1. A summary of clinical trials targeting LPA receptors (LPARs).

ClinicalTrials.gov

No. Identifier Mechanism Project Title Study Design Outcome
Safety and efficacy Phase 2; parallel-arm, BMS-986020 600 mg
ofa multicenter, randomized, bid treatment for
. lysophosphatidic double-blind, 26 weeks significantly
1 NCT01766817 legll\{/[ls?gngg(%;(;lﬁ acid receptor placebo-controlled trial; slowed the lung
antagonist in 143 patients with idiopathic function decline
idiopathic pulmonary fibrosis were compared with
pulmonary fibrosis randomized and treated. placebo [124,125].
Phase 1; a single group
Absorption, assignment to investigate
distribution, the pharmacokinetic, It was completed in
LPARI1 antagonist metabolism, and biotransformation, routes of .
2 NCT02068053 (BMS-986020) excretion (ADME) elimination, and mass A};‘élrsmjs. t‘la\(fio[liezzt]llts
study of balance of BMS-986020 in p '
BMS-986020 humans; 6 healthy
participants.
Phase 1; an open-label,
single-sequence study to
evaluate the effect of
Drug interaction concomitant administration It was completed in
3 NCTO2101125  LPARI antagonist study with of BMS-986020 on the May 2014. No results
(BMS-986020) . single-dose
Rosuvastatin .. were posted [127].
pharmacokinetics of
Rosuvastatin in healthy
subjects; 26 healthy
participants.
Phase 1; a double-blind,
A study of placebo-controlled,
experimental randomized, single and .
LPARI1 antagonist medication multiple ascending dose It Wﬁs completed 1111
4 NCT03429933 (BMS-986278)  BMS-986278 given  study of oral BMS-986278 Mj\fzrezoiieﬁo[g;‘ ts
to healthy administration in healthy p ’
participants participants; 112 healthy

participants.




Cells 2021, 10, 1629 10 of 16
Table 1. Cont.
No. C11n1calT1:1als.gov Mechanism Project Title Study Design Outcome
Identifier
A study measuring
the effectiveness, Phase 2; a multicenter,
LPARI antaconist safety, and randomized, double-blind, It started in July 2020
5 NCT04308681 (BMS-98 6;578) tolerability of placebo-controlled study; and is currently still
BMS-986278 in 360 patients with lung recruiting [129].
participants with fibrosis.
lung fibrosis
Safety, tolerability,
kmetl.c?, and Phase 1; an op.er.1—labe1 It started in October
6 NCT04069143 LPARI tracer repeatability of the study; 20 participants 2019 and is currentl
(BMT-136088) novel LPA1 PET (healthy or with idiopathic . . Y
. . 5 still recruiting [130].
ligand pulmonary fibrosis).
18F-BMS-986327
SAR100842 was well
Phase 2; a double-blind, tolerated in patients.
Proof of biological randomized, The modified Rodnan
- NCTO01651143 LPARI1 antagonist activity of placebo-controlled study; skin thickness score
(SAR100842) SAR100842 in 32 patients with diffuse improved during the

systemic sclerosis

cutaneous systemic
sclerosis.

study, although the
difference was not

significant [131].

7. Limitation of LPAR Antagonist in Cancer

Despite the apparent relevance of LPA signaling in cancer initiation, progression,
metastasis, and developments of resistance against chemo- and radio-induced cancer cell
death, no inhibitors targeting LPARs have progressed to cancer-related clinical trials thus
far. One possible reason is that ATX, lipid phosphate phosphatase, and non-GPCR LPARs
signaling have been implicated in tumor growth and metastasis, suggesting the limitation
by attenuating LPA-GPCR signaling only. Another reason is that the LPA receptor subtypes
might exert distinct effects depending on the type and cellular origin of the individual
carcinoma and thereby complicate the use of LPAR antagonists. The third reason is that
LPAR antagonists might have cross-activities on multiple receptors and other key targets,
making individuals more complicated by jeopardizing physiological activities that required
specific signaling. Nevertheless, clinical trials of LPAR antagonists on cancer research could
be anticipated to be conducted in the future, especially concerning its role as adjuvants to
traditional chemo- and/or radio-therapy to reduce resistance, prolong cancer remission,
and lower treatment-associated adverse events. Additionally, LPA signaling antagonism
could have high clinical significance to minimize side effects, such as drug-induced pain,
acute radiation syndrome, or radiation-induced fibrosis. To conclude, further perspectives
should shed light on precise targeting of particular LPARs in each cancer to make LPAR
antagonists clinically beneficial, thus improving the prognosis of cancer patients.

8. Conclusions

In conclusion, it deserves our attention that multiple therapeutic agents undergo clini-
cal trials or preclinical evaluation for various diseases via inhibition of LPA signaling. Their
safety is generally acceptable, and the LPAR antagonists are potentially effective and novel
for improving pain and current cancer therapies. In general, being inflammatory mediators,
LPA signaling inhibitors could be potential therapeutic modalities for chemoprevention,
enhancing the efficacy of chemotherapy and radiotherapy and improving prognosis.
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