Hindawi

Journal of Healthcare Engineering
Volume 2021, Article ID 7231658, 10 pages
https://doi.org/10.1155/2021/7231658

Research Article

Multimodal MRI Analysis of Brain Metabolism in Maintenance
Hemodialysis Patients Based on Cognitive Computing

Yan Zhang ®,' Hui Ma (®,” Xinguang Lv,' and Qinjun Han

3

' Magnetic Resonance Room of Imaging Department, Baoji Hospital of Traditional Chinese Medicine, Baoji,

Shaanxi 721001, China

ZDepartment of Radiology, Baoji Hi-Tech Hospital, Baoji, Shaanxi 721000, China
?Foreign College of Baoji University of Arts and Sciences, Baoji, Shaanxi 721000, China

Correspondence should be addressed to Qinjun Han; haninchinalll@bjwlxy.edu.cn

Received 16 June 2021; Accepted 2 August 2021; Published 10 August 2021

Academic Editor: Dilbag Singh

Copyright © 2021 Yan Zhang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper investigates cognitive computation of brain metabolism in maintenance hemodialysis patients with multimodal MRI
therapy assessment. This paper constructs a cross-individual emotion recognition method using dynamic sample entropy pattern
learning. The cross-individual emotion recognition was carried out on subjects using the EEG emotion dataset SEED. The
experimental results show that the proposed dynamic sample entropy-based pattern learning has better performance in cross-
individual emotion recognition and exhibits better generalization and generalization ability when compared with the results of
existing related studies. The constructed cognitive computing method for cross-individual emotion state recognition achieves
optimization and innovation of EEG emotion pattern recognition, which can effectively predict people’s mental emotion state
from EEG signals. We also explore the value of diffusion-weighted magnetic resonance imaging and dynamic enhanced magnetic
resonance imaging-based volumetric measurements in assessing the efficacy of neoadjuvant therapy in maintenance hemodialysis
patients. We analyze and compare the results of different studies to find the best multimodal MRI to assess the efficacy of
neoadjuvant therapy in maintenance hemodialysis patients. The use of ADC value growth rates to assess neoadjuvant efficacy
provides the best diagnostic efficacy and allows the screening of patients who respond well to neoadjuvant therapy while avoiding

the impact of two different b-value combinations commonly used to assess neoadjuvant efficacy.

1. Introduction

The specific pathogenesis of cognitive impairment in
maintenance dialysis patients is not well understood, and
possible mechanisms include vascular damage, toxin dam-
age, and dialysis treatment factors. Among them, the
mechanism of vascular injury plays an important role [1].
Dialysis patients have numerous risk factors associated with
vascular injuries, such as hypertension, diabetes, hyper-
cholesterolemia, advanced age, atherosclerosis, myocardial
infarction, atrial fibrillation, and smoking, among the tra-
ditional risk factors. Also, the dialysis population has some
risk factors specific to the normal renal function population,
such as uremic toxins, inflammatory factors, endocrine
hormones and vitamins, electrolytes, acid-base factors, and

anemia, which may lead to vascular injury and also direct
toxic damage to the central nervous system by modulating
neurotransmitters, interfering with brain metabolism,
damaging neurons, and affecting amyloid plaques, which
may lead to cognitive dysfunction [2]. Dialysis treatment
factors including dialysis case, frequency, and dialysate
temperature may cause brain damage through hemody-
namic fluctuations [3].

In recent years, with the continuous development of
imaging technology and examination means of multimodal
functional magnetic resonance, research, discovery, and
results for the structure, function, and metabolism of the
human brain have made amazing progress, which also
provides more reliable techniques and methods for the study
and diagnosis of end-stage renal disease patient-related
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encephalopathy such as cognitive dysfunction, and nonin-
vasive neuroimaging technology provides a promising way
to achieve these goals [4]. The use of noninvasive neuro-
imaging techniques has been increasingly applied to this
disease to provide a reliable clinical basis for early diagnosis
and delay of disease progression to the maximum extent
possible [5]. The multimodal MRI ultrasound instrument
transmits ultrasound beams to observe the changes in blood
flow velocity, blood vessel distribution, and blood flow status
of suspected diseased tissues and diagnoses tumors in
combination with ordinary ultrasound images. Blood flow
information, as auxiliary information for hemodialysis di-
agnosis, can improve its diagnostic accuracy. At the same
time, multimodal MRI ultrasound examination has no harm
to the patient’s body and no pain in the examination process.
It has been widely recognized and recognized in clinical
applications in order to obtain the blood flow signal inside
the blood [6].

This paper focuses on two aspects of auditory attention
decoding and cross-individual mental-emotional state rec-
ognition, exploring cognitive computational methods and
technical implementation of auditory target attention, au-
ditory selective attention decoding and cross-individual
mental-emotional state recognition, enabling effective pre-
diction and inference of human mental attention and
emotional states and accurate understanding of human
auditory attention cognition and emotional intentions.
Voxel-based morphometry is a new imaging technique for
morphological measurement of magnetic resonance cranial
images and automatic or manual quantitative or semi-
quantitative measurement of whole-brain volume at the
voxel level, which allows the quantitative measurement and
comprehensive and objective assessment of neuroanatom-
ical changes in different groups of brains, such as abnormal
changes in brain tissue structure, morphology, volume,
density, or signal, with high accuracy and reproducibility.
This paper is divided into five parts: the first part is the
introduction, which introduces the background and sig-
nificance of this paper and describes the research idea of this
paper. The second part is the introduction of related work,
which reviews and evaluates the current status of domestic
and international research. The third part investigates the
cognitive computation of brain metabolism and multimodal
MRI in maintenance hemodialysis patients, from the ex-
traction of relevant features of maintenance hemodialysis
patients to the construction of cognitive computation
models and then to the assessment of multimodal MRI
therapy. The fourth part is the analysis of the results, which
analyzes the value of the study in this paper. The fifth part is
the conclusion and recommendations. It summarizes and
analyzes the previous studies, makes recommendations,
points out the main contributions of this paper, and indi-
cates the limitations and prospects for future research.

2. Related Work

Emotion perception is one of the important signs of human
intelligence, and people use emotional expression to convey
information, understand their environment and current
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situation so that they can better adapt to various social
interactions. Donahue et al. proposed a study of EEG
emotion recognition combining EEG feature selection and
kernel classifier. The study used a variety of EEG signal
features-statistical features, band power at different fre-
quencies, Horthy parameters, and fractal dimension, where
statistical features included median, standard deviation, and
kurtosis coefficient. The frequency bands of EEG signals
were used, 0 (4-8Hz), low « (8-10Hz), « (8-12Hz), f3
(12-30Hz), and y (30-45Hz), and then a mutual infor-
mation-based feature selection method and a kernel clas-
sifier were used to optimize the performance of the emotion
classification task [7]. Prado et al. proposed a combined
machine learning model-based approach to automatically
detect EEG emotional arousal, and their study evaluated in
detail six machine learning models—Fisher’s linear dis-
criminator, support vector machines, artificial neural net-
works, classification trees, k-nearest neighbors, and plain
Bayesian—were evaluated in detail for their emotion rec-
ognition performance. Synthesizing the existing research
related to EEG emotion pattern recognition, machine
learning as a typical representative of EEG emotion pattern
learning and classification method is widely used in the
research of EEG signal emotion recognition [8]. The clas-
sification algorithm of machine learning is used to classify
and recognize the emotional features of EEG signals, and the
task of emotional state recognition is realized from the EEG
feature information [9].

Lin et al. used two methods, voxel-based diffusion tensor
analysis and spatial statistical analysis based on fiber tract
skeleton, to study brain white matter fibrils in ESRD pa-
tients, and found not only that there were multiple brain
white matter areas with reduced FA values in the brains of
ESRD patients, and some brain areas with reduced FA values
were correlated with the duration of dialysis and cognitive
function scores, and combined with ESRD patients’ DTI
abnormalities in the cerebral white matter further revealed
the presence of high-risk factors leading to damage of ce-
rebral white matter in ESRD patients, pointing out that
different degrees of diffuse cerebral enema and compre-
hensive lesions of cerebral white matter demyelination are
the main manifestations of cranial microstructure damage in
ESRD patients [10]. In a study by Cai et al., it was found that
ESRD patients undergoing routine hemodialysis had mul-
tiple areas of reduced FA and increased MD in the cranial
brain. Areas of brain tissue with increased FA values, in-
cluding the frontotemporal junction, corpus callosum knee,
and fornix, suggesting that both patients with chronic renal
insufficiency and ESRD patients in the middle to late stages
can cause or even exacerbate degenerative brain changes
associated with population aging, further revealing that
ESRD patients with more than two risk factors for car-
diovascular disease may be at high risk for accelerated
damage to their cerebral white matter integrity and that
ESRD hemodialysis patients are at high risk for developing
stroke and cognitive dysfunction, and that microstructural
and pathological alteration in cerebral white matter may be
present in the early manifestations of these serious com-
plications [11]. Hemodialysis is an invasive, lifelong
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treatment, and patients may experience new physical
symptoms such as fatigue, pain, dry skin, itching, and sleep
disturbances due to the disease itself or the treatment.

Cognitive dysfunction is a type of neurological im-
pairment in maintenance dialysis patients with a high
prevalence and may cause multiple adverse outcomes [12].
Its specific pathogenesis is still not well defined, and the
mechanism of vascular damage may play an important role.
Cerebrovascular disease is prominent in dialysis patients,
and typical features of cerebral small vessel disease such as
lacunar cerebral infarction, cerebral white matter hyper-
intensities, cerebral microhemorrhage, and cerebral atrophy
may be closely associated with cognitive impairment.
Atherosclerosis is a risk factor for cognitive impairment, and
there is insufficient evidence that its noninvasive surrogates,
including carotid intima-media thickness pulse wave ve-
locity, are associated with cognitive impairment in dialysis
patients. Lipid metabolism has significant implications for
cardiovascular disease, and lipid metabolism disorders are
prominent in dialysis patients, but there is an “inverse ep-
idemiological phenomenon” with cardiovascular disease. It
remains unknown whether the classical lipid components
that affect cardiovascular events in the general population
also contribute to the high incidence of cardiovascular
events in dialysis patients and whether abnormal lipid
metabolism is involved in the development of cognitive
impairment in dialysis patients. The application of ap-
proaches may identify highly sensitive and specific markers
of cognitive impairment in dialysis patients.

3. Cognitive Computing of Brain Metabolism in
Maintenance Hemodialysis Patients with
Multimodal MRI Study

3.1. Study on the Characteristics of Maintenance Hemodialysis
Patients. The dimensions of fatigue in maintenance he-
modialysis patients were significantly and negatively cor-
related with quality of life, and the more fatigued the patients
were, the lower their quality of life was, and the behavioral
dimension had the highest correlation coeflicient among the
four dimensions with a moderate correlation. The impact of
maintenance hemodialysis fatigue on patients’ quality of life
is multifaceted. Fatigue reduces patients’ ability to perform
physical and mental activities, and many daily activities and
tasks cannot be performed alone, and patients’ roles and
functions in family and society are changed, which ulti-
mately affects the patient’s quality of life [13, 14].
Physiological functions mainly reflect the patient’s
ability to perform activities of daily living, such as dressing,
walking, walking upstairs, bending, and bathing. Patients
have complications and physical pain, but they generally
have different degrees of self-care ability. Most of the young
and middle-aged patients and patients with short years of
dialysis have a slow decline in physiological functions and
better physiological functions. Thus, the patients have higher
physiological function scores [15]. The family members of
hemodialysis patients, especially the spouse, help their lives a
lot, which increases the patients’ motivation and confidence

in overcoming the disease. Good family support can im-
prove the patients” quality of survival and self-management
ability, especially in the physiological aspect. The effect is
more obvious. Therefore, it is necessary to understand the
patients’ family situation first and then intervene in the
patients’ family to improve the patients’ quality of survival
[16].

In the training of a conventional supervised feature
representation learning network, there are various loss
tunctions to choose from. For example, a softmax classifier
can be used to obtain the category probabilities, and then, a
cross-entropy loss is used to calculate the loss and train the
feature extraction network [17, 18]. The cross-entropy loss is
calculated as shown in equation (1), where f is the weight
decay coefficient.

c B’ Zf’:o x?
— (1)
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i=0

Transfer learning can use the knowledge learned in a
domain with a sufficient calibration sample to solve a
problem in another domain without a calibration sample,
using the learned knowledge to solve a problem in a different
but related domain. Depending on the scenario and task, the
transfer learning approach varies [19]. There is a relationship
between the way of using transfer learning and the amount
of calibration data in the target domain and the degree of
data similarity and the amount of data in the source and
target domains, as shown in Table 1. Transfer learning can
use the knowledge learned in the field with enough cali-
bration samples to solve another problem in the field
without calibration samples, that is, use the learned
knowledge to solve problems in different but related fields.
According to different scenarios and tasks, the way of
transfer learning is also different.

In the metric learning model, facing the constructed
metric learning-based image classification model, the con-
trast loss shown in equation (2) is used as the loss function
based on the sample pair features calculated separately using
the feature extraction network, which guides the parameter
training of the feature extraction module during the opti-
mization of the feature representation learning network, and
uses the consistency constraint between similar sample pairs
to improve the discriminable samples under the condition of
fewer samples feature learning capability under the condi-
tion of fewer samples. The twin network uses a pair of
samples m,, m, as input to train the embedded feature model
[20, 21]. If these two samples are from the same class k=1,
the distance between the obtained embedding features is
small, and if these two samples are from different classes
k=0, the distance between the features is greater than the set
threshold m. If it is to judge the similarity of two intervals,
the commonly used measurement method is to use the
commonly used European or other artificially defined dis-
tance function, which is limited to such a two-dimensional
or multidimensional space, and if it is used in the case of the
method proposed by Flood Sung, we broaden our thinking;
we can also use neural networks to train this metric.
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TaBLE 1: Applicability of transfer learning.
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Considering that the metric learning only considers the
consistency between similar sample pairs and does not have
more influence on the increase of the difference between
classes, this paper further uses the metric learning method of
establishing similar and different class triads and uses the
Triplet loss function shown in equation (3) to guide the
optimal learning process of the feature representation net-
work based on extracted features to ensure that the extracted
features have good ability to portray similar images and good
ability to distinguish between different classes of images
under the condition of small samples. This ensures that the
extracted features have a good ability to characterize similar
images and distinguish between different types of images
under small sample conditions [22].

Chass (1> gy 1) = max(O,k +[f (mg) = f ()| | (my) = £ ()]
(3)

Feature dimensionality reduction refers to the selection
of N-dimensional (N<M) features from existing M-di-
mensional features to optimize specific metrics for pattern
learning tasks [23]. The main goal is to select some of the
most effective features from high-dimensional feature data
to reduce the dimensionality of the original feature data,
which is an important means to improve the performance of
pattern learning. For a pattern learning algorithm, good
learning samples and effective features are the keys to train
the model [24].

3.2. A Cognitive Computational Model of Brain Metabolism
for Emotion Recognition. The flow chart of the proposed
cross-individual emotion potency recognition is shown in
Figure 1. Firstly, the EEG signals accompanying the emo-
tional, cognitive activity are collected from the scalp surface
of the subjects simultaneously by stimulating the corre-
sponding emotional states with different potencies of
emotional videos. Then the EEG signals are preprocessed to
extract the dynamic sample entropy features and perform
the feature downscaling; finally, the cross-validation strategy
is used to train and test the emotion recognition algorithm
and model. It is noteworthy that this paper investigates a
cross-individual emotion validation method with good
generalization ability, and the training data and test data
used in the cross-validation strategy are based on different

subjects [25]. Specifically, in the experimental study, while
each subject’s EEG data was used as the test data set, all other
subjects’ EEG data were used as the training data set. The
overall performance of the proposed method is evaluated by
traversing each subject in the dataset and testing the ac-
curacy of each subject’s emotional validity recognition, and
then averaging the results of all subjects to obtain the ac-
curacy of the proposed method.

When people’s cognition is biased, anxiety will appear.
Under the impetus of anxiety, people will further strengthen
biased cognition, leading to a further increase in anxiety. In
this way, the cycle of amplification will continue to increase,
and the anxiety will become higher and higher, and the
symptoms will increase. It is getting heavier. The sample
entropy of the EEG data is extracted sequentially from a time
window of width t,, and the duration of each movement
along the time axis is At. The sample entropy expression is
defined as S (x, y) for an embedding dimension of m and a
similarity threshold of y. Thus, for an EEG time series of time
length T, the dynamic sample entropy expression is shown in
the following equation, where the subscript k represents the
sliding time window [26]:

M
S(x, Y = ). s(x; y;) + Ps (k) ke [1, M]. (4)

i=1

M in equation (1) is expressed as the number of time
windows, as shown in the following equation:

m

+1-m. (5)

k
M= Zs(i) T_tt

A

For the nonlinear case, as in the SVM, a kernel function
is introduced to map the indistinguishable data in the low-
dimensional space to the high-dimensional feature space by
nonlinearity, and then the model is learned from the training
samples in the new space using linear classification methods.
The two classification hyperplanes of TWSVM based on the
kernel function can be expressed as follows:

i+ K(m',G')+1,=0, i=1,2
6
G= |MT, NT|T +|NT,MT|T ©

In dataset SEED, all subjects participated in three
rounds (Sessions) of experiments, with each round spaced
over 7 days apart. Each subject performed a total of 30
trials in each round, viewing one emotional video clipper
trial [27]. 30 emotional video clips were played in a
specific order to ensure that two video clips of the same
emotional type were not presented consecutively in the
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FIGURE 1: Framework for cross-individual emotional potency identification.

experiment. Thus, dataset SEED contains EEG data
samples from 30 subjects for all three emotion types, for a
total of 750 EEG data samples for three rounds of ex-
periments, with 225 EEG data samples for each emotion
type. First, the EEG data were manually removed from the
heavily contaminated EMG and hologram portions, and
the oculomotor artefacts were directly removed from the
EEG signal based on the recordings; then, the EEG data
were downsampled to 200Hz at a sampling rate of
1000 Hz. Finally, the high-frequency noise was removed
using a low-pass filter from 0 to 75 Hz. The EEG data used
in this study were preprocessed in the data set SEED and
then subjected to some data segmentation. Specifically, the
duration of each EEG data sample in the data set SEED
was about 4 minutes, and only the middle part of the EEG
data, the EEG data from minute 2 to minute 3 (60 seconds
in total), was used in this study. EEG data from minute 2 to
minute 3 (60 seconds in total) were used for the identi-
fication of emotional valence.

3.3. Multimodal MRI for the Therapeutic Evaluation of
Maintenance Hemodialysis Patients. In this paper, a Mul-
tiparametric MRI (MP-MRI) dataset was constructed to
evaluate the differentiation of HCC. Here, we refer to the
images obtained by imaging modalities with different
parameters as multimodal MRI imaging data, and the
appearance of multimodal below refers to different kinds
of MRI images. One of the most valuable MRI sequences
for the diagnosis of HCC is dynamic contrast-enhanced
imaging, and DCE-MRI data contain six phases, in-
cluding the five periods used in the previous chapter and
delayed periods. A complete six-time series of 3D ste-
reoscopic images of DCE-MRI was used. The tumor
details are more clearly presented in the color images
from the fusion of multiple modal data, and the images
from the fusion of data using different modalities vary, so

we must combine images from multiple parameters of
MRI images to more accurately assess the degree of HCC
differentiation. Through experiments, we can select data
with complementary characteristics for fusion to achieve
better classification. When we use 2D tumor data for
diagnosis, the image blocks of single modality and the
image blocks of multimodal fusion can correspond to
grayscale and color images in natural images, respec-
tively, which allows us to pretrain the network on the
natural image dataset and then fine-tune the pretrained
model on the acquired medical image dataset for clas-
sification of medical images.

The training for the base classifier follows the struc-
tural risk minimization criterion. The structural risk
minimization criterion is developed from the empirical
risk minimization criterion. In pattern recognition, the
error of a known sample is usually used as an estimate of
the expected risk, and the risk of a known sample is called
the empirical risk, which is minimized by the algorithm to
pursue the minimization of the expected risk. In the three
major problems of pattern recognition, the empirical risk
is used as a loss function, and the empirical risk in
classification is the sample misclassification rate; in the
function approximation problem, the squared training
error is defined as the loss function; in particular, the
empirical risk minimization criterion in the probability
density estimation problem is equivalent to the maximum
likelihood method. The approximation of the expected
risk minimum by solving for the empirical risk minimum
is based on the premise that the sample data is very rich,
and even under this premise, it is uncertain whether both
can be simultaneously minimized. Therefore, a new cri-
terion needs to be defined to deal with the case of a small
sample size, and thus, the structural risk minimization
criterion is born. Use f (x) to denote the expected risk and
P(f) to denote the empirical risk obtained by the learning
algorithm:
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The most straightforward evaluation criterion in clas-
sification problems is Accuracy (ACC), but not only cor-
rectness is a data indicator, Sensitivity (SEN) and Specificity
(SPE) are also common evaluation indicators; common
curves for evaluation are subject work curves (ROC curves).
The other two commonly used indicators in medicine are
Positive Predictive Value (PPV) and Negative Predictive
Value (NPV). The classification results are shown in Table 2.

The expressions of each indicator are shown in equation

(8).

(P1 + P4)
ACC = ,
SUM (P1, P2, P3, P4)
P1
SEN =—
SUM (P1, P2)
P4
SPE =— -~ . 8
SUM (P3, P4) [ ®)
P1
PPV =
SUM (P1, P3)
P4
NPV =— -
SUM (P2, P4)

Among them, the correct rate reflects the classification
performance for the sample as a whole, with a higher correct
rate indicating better classification performance. Sensitivity is
the numerical characteristic of most interest to physicians and
describes the correct classification rate for maintenance he-
modialysis. The higher the sensitivity, the lower the number of
maintenance hemodialysis misclassifications, and the lower
the cost of this. Therefore, it is one of the most important data
indicators for the classification of maintenance hemodialysis
patients. The significance of specificity is the rate of correct
benign classification; the higher the specificity, the lower the
number of cases in which benign is misdiagnosed as malignant
and unnecessary surgery is performed. These two metrics can
be used to more visually represent the performance of the
classification system by plotting subject work curves.

4. Analysis of Results

4.1. Model Performance Analysis. The correct rate of clas-
sification by SVM for all features is 95.15%, and the correct
rate of fusion of the three classifiers using the MIN algorithm
is 96.76%, and all other indicators are shown in Figure 2. The
overall performance of the multiclassifier system con-
structed with the MIN algorithm is higher than that of the
single classifier of SVM. Firstly, the sensitivity was improved.
That is, the correct diagnosis rate for benign cases was higher
than that of the single classifier, which could avoid un-
necessary biopsies for benign patients. The specificity index
of the multiclassifier system was higher than that of the

Journal of Healthcare Engineering

TaBLE 2: Classification results.
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FiGure 2: Comparison of classification performance.

single classifier, which reduced the proportion of malignant
cases misclassified as benign cases and enabled more patients
with malignant tumors to seek timely medical treatment and
gain valuable treatment time. The positive predictive values
of both classifier systems were the same. The negative
predictive value of the multiclassifier system is higher than
that of the single classifier, which indicates that the reliability
of the malignancy classification made by the system has been
further improved. In summary, the classification perfor-
mance of the multiclassifier system constructed using the
MIN algorithm is better than that of the single classifier
trained using the SVM algorithm.

The Gauss radial basis function is chosen as the kernel
function for the experiments in this paper because of its good
adaptability. Therefore, the nonlinear TWSVM has three pa-
rameters, the penalty parameters C1, C2, and the Gauss kernel
function related parameter R2 (R=1/a2), all taking values in
the range (0, 10]. Figure 3 shows the effect of the nonlinear
results. It can be seen from Figure 3 that in the nonlinear case,
BOA-TWSVM runs much faster than AFSA-TWSVM in both
cases. According to different data sets, the test range is [20, 70].
These results show that BOA-TWSVM is effective, runs fast
and robust, and outperforms other algorithms in general.

4.2. Computational Analysis of Brain Metabolism Cognition.
Two-category cross-individual emotion validity recognition
was performed based on positive and negative emotion EEG
data samples from the dataset SEED. In the experimental
data analysis, positive emotions were designated as positive
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example samples for pattern learning and negative emotions
as negative example samples, and accuracy, sensitivity,
specificity, and error rate were used as metrics for perfor-
mance evaluation. Notably, for cross-individual emotion
effectiveness identification, the training data set and the test
data set were divided using the LOSO (Leave-one-subject-
out) cross-validation strategy for the data set SEED. Spe-
cifically, for the 30 subjects in the dataset SEED, the ex-
perimental data of each subject is used as the test set once,
while the experimental data of the other 14 subjects are all
used as the training set before the test.

Figure 4 shows the results of the dynamic entropy-based
EEG emotion pattern learning method for cross-individual
positive and negative emotion recognition, and the exper-
imental data results consist of the mean and standard de-
viation of the test results of 30 subjects. The accuracy of the
dynamic entropy-based EEG pattern learning method for
cross-individual positive and negative emotion recognition
was 86.98%, 77.26%, and 92.98% for the EEG emotion data
collected in rounds 1, 2, and 3, respectively. For the EEG data
samples collected in these three rounds of experiments, the
average accuracy rates of cross-individual positive and
negative emotion recognition are very close, and their ex-
perimental results indicate that the dynamic entropy-based
EEG emotion pattern learning approach to achieve cross-
individual emotion validity recognition has good robustness.

Figure 5 gives further details of the results of the correct
cross-individual positive and negative emotion recognition
rates for the 30 subjects, corresponding to the accuracy of
cross-individual positive and negative emotion recognition
of 86.62%, 66.57%, 83.73%, 80.16%, 63.23%, 90.04%, 86.57%,
99.78%, 70.12%, 80.06%, 99.97%, 76.68%, 96.69%, 90.04%
and 99.98%. The average accuracy of 89.15% is higher than
the cross-individual sentiment validity recognition perfor-
mance of the above single-round experiments, which is
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FIGURE 4: Results of cross-individual positive and negative emotion
identification.
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FiGure 5: Correct identification rate of positive and negative
emotions across individuals.

mainly due to the total sample size of 3000 for the three
rounds of the dataset SEED experiments, while the sample
size of the single-round experiments is only 150. In general,
increasing the number of samples improves the performance
of the learning algorithm, and when more sample data is
used to train the learning algorithm and model, better
performance of the learning algorithm can be obtained.
Figure 6 shows the relationship between the number of
training and test sets of the sample sequences generated
using sliding time windows of different lengths. When
sample sequences are generated from EEG and speech en-
velope time series data using sliding time windows with data
point lengths of 10, 20, 30, 40, 50, 60, 70, and 80, the numbers
of training samples obtained are 480, 420, 330, 210, 140, 80,
30, and 20, respectively, and the numbers of test samples
obtained are 360, 280, 250, 180, 80, 60, 24, and 15, re-
spectively. As shown in Figure 6, for the experimental EEG
data and speech envelope time series data, the shorter the
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window length used, the larger the number of sample se-
quences generated. It should be noted that the sampling rate
of the preprocessed EEG data and speech envelope time
series is 128 Hz, so the sample sequences with data point
lengths of 10, 20, 30, 40, 50, 60, 70, and 80 correspond to
0.2s,0.4s, 0.8s, 1.2s, 1.45, 1.65, 1.8, 25, and 2.2s.

4.3. Analysis of Multimodal MRI Evaluation. The US, SWE,
CEUS enhancement features, and time-intensity curves, and
multimodal ultrasound all have high diagnostic value for di-
agnosing the benign and malignant nature of maintenance
hemodialysis. The diagnostic efficacy of US, SWE, CEUS, and
multimodal ultrasound for evaluating the nature of mainte-
nance hemodialysis was compared, and the results are shown
in Figure 7. The ROC curve was plotted with pathology as the
gold standard, and the area under the curve of multimodal
ultrasound was known to be larger by Z test (P < 0.015). The
sensitivity, specificity, accuracy, positive predictive value, and
negative predictive value of multimodality ultrasound were
higher than those of the other three independent examinations.

Color Doppler ultrasound images provide information
about the blood supply, and although they can provide blood
flow information for tumor diagnosis, they have a low
classification performance of 60.5% as a single basis of
judgment. Electrography provides information on the
hardness of the mass, which has been increasingly trusted by
clinical and research staff in recent years to provide more
comprehensive information for classification, with an accu-
racy of up to 95.6% in experiments with available data. This
accuracy is obtained based on currently available data and is
therefore strongly influenced by the distribution of data
samples, which is difficult to achieve in practical applications.
The three classifiers are used to construct a multiclassifier
ensemble using the multiclassifier fusion algorithm (MIN)
based on the non-Bayesian fusion framework with compound
weights, and the classification results are shown in Figure 8
when compared with the improved prealgorithm (IN)
without the introduction of compound weights.
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F1GUure 7: Comparison between the diagnostic efficacies of each test
method.
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Figure 8: Comparison of the classification effects of MIN and IN.

5. Conclusion

In this paper, a cross-individual emotional validity recog-
nition method based on dynamic entropy pattern learning is
proposed. By establishing a dynamic entropy EEG pattern
learning method and combining the time-course nature of
mental-emotional states, we achieve the optimization of
EEG emotional pattern recognition by directly representing
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the time-domain profile features of EEG dynamic entropy
measures using entropy measure feature vectors. The cross-
individual emotional state recognition was conducted on 30
experimenters using the emotional EEG dataset SEED. The
experimental results show that the proposed EEG emotion
recognition method achieves the best recognition accuracy
of 85.12% for cross-individual positive and negative emo-
tional states and 64.18% for cross-individual positive,
neutral, and negative emotional states. The experiments fully
demonstrate that the proposed emotion recognition method
exhibits better generalization and generalization perfor-
mance and can more effectively recognize people’s mental
and emotional states. According to the classification of
maintenance hemodialysis by multimodal MRI, ultrasound
electrography can reflect the nodule hardness and the dif-
ference in hardness with the surrounding normal tissues,
and ultrasonography can show the microbleeds that cannot
be detected by conventional ultrasound, which can more
accurately reflect the cerebral metabolism of maintenance
hemodialysis and the surrounding normal tissue perfusion
status, and the combined application can provide rich and
effective information for identifying the diagnosis of
maintenance hemodialysis. Ultrasound-guided diagnosis
has a higher accuracy rate but is an invasive test. The use of
ultrasonography and shear wave electrography as auxiliary
means to evaluate the nature of maintenance hemodialysis is
beneficial to the qualitative diagnosis of maintenance he-
modialysis, and the diagnostic value of ultrasonography for
maintenance hemodialysis is improved by comprehensive
analysis of all ultrasound examination indexes. The imaging
omics model based on multimodal MRI plays an important
role in the differential diagnosis of maintenance hemodi-
alysis. With further in-depth research, it is expected to
become a new clinically applicable objective and compre-
hensive diagnostic method.
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