
Lossless indexing with counting de Bruijn graphs

Mikhail Karasikov,1,2,3 HarunMustafa,1,2,3 Gunnar Rätsch,1,2,3,4,5 and André Kahles1,2,3
1Department of Computer Science, ETH Zurich, 8092 Zurich, Switzerland; 2Biomedical Informatics Research, University Hospital
Zurich, 8091 Zurich, Switzerland; 3Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland; 4Department of Biology at ETH
Zurich, 8093 Zurich, Switzerland; 5ETH AI Center, ETH Zurich, 8092 Zurich, Switzerland

Sequencing data are rapidly accumulating in public repositories. Making this resource accessible for interactive analysis at

scale requires efficient approaches for its storage and indexing. There have recently been remarkable advances in build-

ing compressed representations of annotated (or colored) de Bruijn graphs for efficiently indexing k-mer sets. However, ap-

proaches for representing quantitative attributes such as gene expression or genome positions in a general manner

have remained underexplored. In this work, we propose counting de Bruijn graphs, a notion generalizing annotated de

Bruijn graphs by supplementing each node–label relation with one or many attributes (e.g., a k-mer count or its posi-

tions). Counting de Bruijn graphs index k-mer abundances from 2652 human RNA-seq samples in over eightfold smaller

representations compared with state-of-the-art bioinformatics tools and is faster to construct and query. Furthermore,

counting de Bruijn graphs with positional annotations losslessly represent entire reads in indexes on average 27% smaller

than the input compressed with gzip for human Illumina RNA-seq and 57% smaller for Pacific Biosciences (PacBio) HiFi

sequencing of viral samples. A complete searchable index of all viral PacBio SMRT reads from NCBI’s Sequence Read

Archive (SRA) (152,884 samples, 875 Gbp) comprises only 178 GB. Finally, on the full RefSeq collection, we generate

a lossless and fully queryable index that is 4.6-fold smaller than the MegaBLAST index. The techniques proposed in

this work naturally complement existing methods and tools using de Bruijn graphs, and significantly broaden their ap-

plicability: from indexing k-mer counts and genome positions to implementing novel sequence alignment algorithms on

top of highly compressed graph-based sequence indexes.

[Supplemental material is available for this article.]

Introduction

The sequencing of DNA and RNA has become a commodity in
the portfolio of biomedical data acquisition techniques, leading
to an increase in both the demand and availability of sequencing
data (Stephens et al. 2015). Often, independent from the original
research questions that individual data sets were created to an-
swer, they find a second life as a valuable source for other analy-
ses (Su et al. 2020; Nayfach et al. 2021). Thus, methods for the
efficient storage and indexing of sequence data are urgently
needed. In the past years, various approaches have been proposed
to address this problem. On the one side, there are methods that
extract relevant information, such as expression counts from vast
cohorts of RNA sequencing data, and summarize it in aggregated
form (Collado-Torres et al. 2017). On the other side, stand ap-
proaches that provide a full-text index of the sequencing data
and allow to retrieve metadata for arbitrary sequence queries
(Bradley et al. 2019; Karasikov et al. 2020a), which is of great
practical relevance for projects generating large sequence cohorts
(Almeida et al. 2021; Danko et al. 2021). As a balance between
compressibility and access, methods using k-mer decompositions
of the input sequences have proven very successful (Ondov et al.
2016; Bradley et al. 2019; Karasikov et al. 2020a; Marchet et al.
2021). In this work, we focus on approaches representing such
k-mer sets as annotated sequence graphs, which we will briefly re-
view in the following, discussing benefits and limitations of exist-
ing approaches.

Annotated genome graphs

To fully represent all information of a sequencing sample for inter-
active study, two components are necessary: (1) an index repre-
senting the sequence information, allowing for the query of
presence; and (2) a structure containing additional metadata,
such as the biological label of a sequence or the location of a se-
quencewithin a genome context (commonly referred to as genome
coordinate) (Morgulis et al. 2008; Almodaresi et al. 2018; Li 2018).
Both components can be represented jointly or in separate data
structures.

A commonly used data structure for representing sequence
information is a de Bruijn graph, where k-mers serve as nodes, and
every two nodes u and v are connected with a directed edge (u, v)
if and only if u[2,k] = v[1,k−1], where u[2,k] and v[1,k−1] denote the suf-
fix and the prefix of length k−1 of k-mers u and v, respectively. As
all edges of a de Bruijn graph can be inferred from the set of its
nodes, a de Bruijn graph can be fully represented by the set of its
k-mers. In practice, all k-mers must also be indexed and assigned
unique numeric identifiers to allow for association with anymeta-
data (e.g., counts or coordinates). Such indexes can be represented
explicitly as either a hash table–like structure (e.g., counting quo-
tient filter) (Pandey et al. 2018) or a self-index (e.g., the space-effi-
cient BOSS representation) (Bowe et al. 2012). The label
information, on the other hand, can be encoded separately. The
numeric k-mer identifiers provided by the k-mer index generate
an address-space that can be used by a separate data structure

Corresponding authors: andre.kahles@inf.ethz.ch,
Gunnar.Ratsch@ratschlab.org
Article published online before print. Article, supplemental material, and publi-
cation date are at https://www.genome.org/cgi/doi/10.1101/gr.276607.122.

© 2022 Karasikov et al. This article is distributed exclusively by Cold Spring
Harbor Laboratory Press for the first six months after the full-issue publication
date (see https://genome.cshlp.org/site/misc/terms.xhtml). After six months,
it is available under a Creative Commons License (Attribution-NonCommercial
4.0 International), as described at http://creativecommons.org/licenses/by-nc/
4.0/.

RECOMB 2022 Special/Method

1754 Genome Research 32:1754–1764 Published by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/22; www.genome.org
www.genome.org

mailto:andre.kahles@inf.ethz.ch
mailto:Gunnar.Ratsch@ratschlab.org
https://www.genome.org/cgi/doi/10.1101/gr.276607.122
https://www.genome.org/cgi/doi/10.1101/gr.276607.122
http://genome.cshlp.org/site/misc/terms.xhtml
https://genome.cshlp.org/site/misc/terms.xhtml
https://genome.cshlp.org/site/misc/terms.xhtml
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://genome.cshlp.org/site/misc/terms.xhtml

holding the metadata, for example, linking the k-mers to their
presence in different input sources (Muggli et al. 2017; Karasikov
et al. 2020a; Marchet et al. 2020).

Other approaches, such asBloom filters (Chikhi andRizk2013;
Bingmann et al. 2019; Bradley et al. 2019), donot require numeric k-
mer identifiers. However, the lack of any address-space for structur-
ing additional metadata limits their uses to only answering approx-
imate k-mer membership queries. Thus, in this work, we consider
the approach encoding the metadata in a separate structure called
graph annotation and focus on its efficient representation.

In addition, we further extend the notion of genome coordi-
nates and introduce k-mer coordinates, representing the occurrence
positions of a certain k-mer in the input stream. This stream may
be a single genome, a list of sequencing reads, or an entire collec-
tion of arbitrary sequences. All (not only distinct) k-mers from the
input are naturally ordered, and knowing this order allows recon-
structing the original sequences from their corresponding paths in
the graph, whichwe call sequence traces. Indeed, the first k-mer pro-
vides the first k characters of the first sequence, and every k-mer
with the following coordinate can be used to reconstruct the
next character of the sequence, whereas the end of the sequence
can be encoded with a skipped coordinate. Hence, by representing
k-mer coordinates, we encode traces of the input sequences in the
graph and thereby make the index fully lossless.

Graph annotations

Approaches for representing relations between k-mers and input fi-
les have been extensively explored in the past decade (Iqbal et al.
2012; Almodaresi et al. 2017, 2020; Muggli et al. 2017; Karasikov
et al. 2020b; Danciu et al. 2021). Motivated by the experiment dis-
covery problem, which is to find a sequencing library within a
large collection based on a query pattern, these methods encode
binary metadata attributes (e.g., the membership of a k-mer to a
certain sequence or file) in a sparse binary matrix. Depending on
the number of k-mers and files, this matrix can have up to 1012

rows (corresponding to distinct k-mers) and 107 columns (corre-
sponding to different files or, in general, labels) (Karasikov et al.
2020a). However, it can be highly compressed thanks to its sparsity
(Almodaresi et al. 2017, 2020; Muggli et al. 2017; Karasikov et al.
2020b; Danciu et al. 2021).

Supplementing a de Bruijn graph with this type of binary
graph annotation provides an excellent tool for answering k-mer
membership queries. However, any quantitative information of
the original data is lost. In particular, queries relating to the exact
occurrence position in a sequence or relating to howoften the que-
ried sequence is present in a sample cannot be answeredwith bina-
ry annotations.

To address this problem,methods for representing nonbinary
graph annotations have recently started to emerge, but very few
have been proposed so far. On the one end stands gPBWT, which
supplements genome graphs and enables lossless encoding of hap-
lotypes (Novak et al. 2017). On the other end, REINDEER (Marchet
et al. 2020) represents approximate k-mer counts in genome
graphs by averaging them within each unitig of the sample de
Bruijn graphs and compressing them via run-length encoding.
Unfortunately, these methods do not cover the entire spectrum
of needs. In particular, REINDEER does not represent genome co-
ordinates and does not provide a lossless representation of input
sequences, such as reads. In contrast, gPBWT does provide a loss-
less representation of input sequences; however, the time com-
plexity of querying quantitative information on a pattern would

be linear in the number of its occurrences, making it less well suit-
ed for indexing large collections of reads.

Sequence-to-graph alignment

Many tools have used de Bruijn graphs as indexes for alignment to
collections of sequences (Liu et al. 2016; Rautiainen and Marschall
2020; Karasikov et al. 2020a; Almodaresi et al. 2021; Luhmann et al.
2021; Schulz et al. 2021), applying the seed-and-extend paradigm
with varying seed filtration and extension strategies. Some strategies
extract sequences from the index onto which a sequence-to-se-
quence alignment is performed (Liu et al. 2016; Almodaresi et al.
2021), whereas others traverse the graph and compute (Karasikov
et al. 2020a) or approximate (Luhmann et al. 2021; Schulz et al.
2021) an alignment score. However, very few of these methods in-
dex global coordinates in reference genomes to avoid alignments
to spurious paths in the graph, which would be especially helpful
when aligning to complex regions in the graph with many short
overlapping unitigs. To our knowledge, deBGA (Liu et al. 2016)
and PuffAligner (the aligner from Pufferfish) (Almodaresi et al.
2018; Almodaresi et al. 2021) are the only de Bruijn graph–based
tools that index global coordinates. The more recent PuffAligner
uses a colinear chaining approach inspired by minimap2 (Li 2018)
to effectively select a good candidate location for alignment and
to limit alignment to query regions between seed hits. However,
both deBGA and PuffAligner are designed for indexing long refer-
ence genomes and optimize for query performance, thus making
only limited use of compression techniques and reducing their scal-
ability. Lastly, both use k-mer hash tables to index the unitig set, re-
stricting the minimum seed length to k.

In this work, we consider the problem of representing numer-
ic attributes assigned to each k-mer–label relation in graph annota-
tions. We call such annotations extended graph annotations,
emphasizing that each label is supplemented with an attribute,
which may include a single or multiple numeric values. In partic-
ular, we focus on indexing (1) k-mer counts, representing the num-
ber of times a k-mer occurs in a certain sequencing sample, and (2)
k-mer coordinates, where the attributes represent all the occur-
rence positions of a k-mer in a sequence, a genome, or a collection
thereof. The lattermakes a fully lossless representation of the input
sequences. Together with the underlying de Bruijn graph, such ex-
tended graph annotations make up an abstract data structure that
we call a counting de Bruijn graph. We show the advantage of such
an index by devising a sequence-to-graph alignment algorithm
called Trace-Consistent Graph-based Aligner (TCG-Aligner) that
avoids spurious paths and correctly estimates the alignment score
even when aligning sequences with repeats to loops in the graph.

Methods

In this section, we present methods and techniques ultimately
used to efficiently represent extended graph annotations in com-
pressed data structures that can be queriedwithout full decompres-
sion. Assume each node–label relation (i, j) is supplemented with
an attribute ai,j, representing a single or multiple numeric values.
Naturally, such annotations can be represented as a sparse matrix,
and thus, the first question to be answered is how such matrices
can be represented to minimize the memory footprint, while still
allowing for efficient queries without full decompression.

Succinct representation of sparse matrices

Here we propose a general approach for the efficient compressed
representation of sparse matrices and, in particular, extended

Lossless indexing with counting de Bruijn graphs

Genome Research 1755
www.genome.org

graph annotations, which supplement each binary relation k-mer–
label (i, j) with an attribute ai,j (Fig. 1A, left).

This attributemaybe a single numeric value (e.g., the number
of times k-mer i occurs in experiment j) or a set of numbers (e.g., all
positions where k-mer i occurs in genome j). Without loss of gen-
erality, we assume a very high sparsity of the annotation matrix
and decompose the initial annotation into two components sche-
matically shown in the right part of Figure 1A: (1) a binary indica-
tor matrix representing the indexes of the entries present in the
matrix, and (2) the relation attributes ai,j stored in a separate data
structure, typically in form of a compressed array. The indicator
matrix is then represented with a scheme supporting the rank op-
eration on its columns or rows (depending on the layout of the at-
tribute values), defining an ordering on the (i, j) pairs and enabling
access to the attribute values stored in separate arrays in the consis-
tent order.

Note that the layout of the attribute arrays can be different de-
pending on the rank operation supported by the indicator matrix.
Namely, this can be the rank on its columns (shown in Fig. 1),
rows, or their concatenation. Thus, this scheme allows for com-
pressing the indicator matrix using a large class of approaches for
the compressed representation of binary relations, which have al-
ready been applied for representing binary graph annotations:
ColumnCompressed (Karasikov et al. 2020b), multi-BRWT (Karasi-
kov et al. 2020b), BinRelWT (Barbay et al. 2013), and RowFlat (the
scheme used in VARI) (Muggli et al. 2017), all of which support the
rank operation on the nonzero entries in a certain layout.

Succinctness of the proposed scheme

The proposed decomposition does not change the entropy of the
data, which suggests that it also does not change the theoretical

minimumof the number of bits required to store thematrix by rep-
resenting the two components separately.

To prove this formally, consider the problem of representing a
sparse matrix of size n×mwith s “nonzero” entries from universeA
and other nm− s entries set to a fixed “zero” value that does not

belong to A. As there are
mn
s

()
ways to pick s out ofmn positions

for nonzero values, where each can store one of |A| possible values,
the total number of such matrices is

mn
s

()
|A|s. Hence, the mini-

mum number of bits required to encode any such matrix is

M∗(n, m, s) := log2
mn
s

()
|A|s

()⌈ ⌉
� log2

mn
s

()
+ s log2 |A|. On

the other hand, the indicator matrix in the proposed scheme (Fig.
1A) can be reshaped into a vector encoded in the succinct
Raman–Raman–Rao (RRR) representation (Raman et al. 2002) tak-

ing asymptotically log2
mn
s

()
bits, which together with an optimal

coding of the attributes asymptotically makes up the same space
complexity � M∗(n, m, s). We now can make the following claim
(see the proof in the Supplemental Material).

Theorem 1. If both the indicator matrix and the arrays of attri-
butes are represented succinctly, the proposed scheme also is a succinct
representation of the matrix. That is, there is no other data structure
that could represent any such matrix with asymptotically fewer bits.

Base representations

Now,wewill show that the commonly used compressed sparse col-
umn (CSC) format (e.g., used in NumPy) (Harris et al. 2020) is a
special case of our proposed scheme. CSC stores the matrix entries
in three arrays: (1) an array containing all nonzero values in the or-
der they appear in the rows of the matrix, (2) an array with their

A

B

C

Figure 1. The proposed representation of sparse matrices in compressed form. (Panel A) General scheme for sparse matrices with abstract attributes,
where the nonassigned attributes are eliminated by an indicator binary matrix stored in a compressed representation (e.g., multi-BRWT), supporting
the rank operation on its columns to enable the access to the corresponding attribute for any given cell of the matrix. These attributes are stored separately,
typically in the form of compressed arrays. (Panel B) The scheme applied to a single columnwith integer values (e.g., k-mer counts) and the query algorithm
(e.g., the count of k-mer i is retrieved as A1[rank(B1, i)]). Empty cells in gray represent zeros. (Panel C) The scheme applied to a single columnwhere each cell
is a set of numbers, or a tuple (e.g., representing k-mer coordinates). The “zero” attributes (empty sets) are eliminated with an indicator bitmap, and the
nonempty sets are encoded in an array that holds all numbers together with a delimiting bitmap.

Karasikov et al.

1756 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276607.122/-/DC1

column indexes, and (3) a compressed array delimiting the posi-
tions in the first two arrays corresponding to different rows of
thematrix. One can see that the first array corresponds to the attri-
bute arrays in our scheme, whereas the other two essentially en-
code the indicator matrix, making our scheme at least as
efficient as the basic CSC format. Our scheme, however, allows
for additional freedom in choosing specific encodings for the attri-
bute arrays and the indicator matrix.

Encoding the columns of the indicator matrix with succinct
RRR bit vector representations (Raman et al. 2002) asymptotically
achieves the theoreticalminimum in space. Extra compression can
be achieved in practice by exploiting column correlations using
the multi-BRWT scheme (Karasikov et al. 2020b).

In practice, we use succinct bitmaps to represent the columns
of the indicator matrix during construction. Subsequently, we
convert the matrix to the multi-BRWT representation to reduce
its final size and enhance the query speed. Typically, we compress
the attribute arrays with simple bit-packing or universal coding
such as directly addressable codes (dac_vector) (Brisaboa et al.
2013), supporting the direct access.

Representing attributes with multiple numeric values

The schemedescribed above effectively erases zero entries from the
matrix and stores any nonzero entries in a separate data structure
(Fig. 1A). We note that this approach generalizes beyond single in-
tegers as matrix entries shown in Figure 1B. In particular, it allows
entries to be number sets and, hence, can be used for representing
k-mer coordinates, where each k-mer may occur in multiple posi-
tions of a genome or, more generally, a collection of input
sequences.

Without loss of generality, Figure 1C schematically shows
how the entries of such matrices can be encoded and queried, us-
ing a single column as example. All tuples (entries) are concatenat-
ed into a single dense array storing all values together, and an
additional delimiting bitmap is used to separate the different
tuples. The dense array together with the delimiting bitmap repre-
sents a single array of attributes in the general scheme as shown in
Figure 1A.

Diff-compression of extended graph annotations

Similar to the case of binary annotations, extended graph annota-
tions often possess a certain structure that can be exploited for
their compression. Indeed, attributes of nodes in the graph can of-
ten be approximated with high accuracy from the attributes of
their neighbors. For example, k-mer counts, being an aggregate
function of contiguous paths induced from reads, usually change
incrementally and, hence, can be approximated by averaging the
counts of their adjacent k-mers. Another example is k-mer coordi-
nates, which simply shift by one at each node along the paths of
the de Bruijn graph derived from the input sequences, which we
call traces. Hence, one can construct an expected set of coordinates
at a node if the set of coordinates at its adjacent node is known or
can be reconstructed recursively.

Leveraging similarity of annotations of neighboring nodes

For the case of binary annotations, transformations assuming like-
ly similarity between annotations of adjacent nodes in the graph
and replacing them with relative differences have been explored
in Mantis-MST (Almodaresi et al. 2020) and RowDiff (Danciu
et al. 2021). The RowDiff algorithm conceptually consists of two
parts. First, for each node with at least one outgoing edge, it arbi-
trarily picks one of them and marks its target node as a successor.

The subset of edges leading to the assigned successor nodes forms
a spanning tree of the graph. Second, it replaces the original anno-
tations at nodes with their differences to the annotations at their
assigned successor nodes. This delta-like transform is applied to
all nodes in the graph except a small subset of them (called an-
chors). These anchor nodes keep the original annotation un-
changed and serve to terminate every path composed of
successors and break the recursion when reconstructing the origi-
nal annotations (inverse transform).

Here, we devise a generalization of the RowDiff scheme to the
case of extended graph annotations.We design an invertible trans-
form, which losslessly compresses them by effectively removing
the information that can be reconstructed from a neighborhood
in the graph. Our generalization goes in two directions. First, in
the following section, we generalize the diff-operation to act on ar-
bitrary sets and define specific functions for the two specific cases
considered in this work: k-mer counts and k-mer coordinates (ge-
nome positions). Second, motivated by the idea illustrated in
Supplemental Figure 1, we propose a data-driven procedure for op-
timizing successor nodes instead of assigning them randomly as in
RowDiff (see Supplemental Section 1). In addition, we propose a
more efficient algorithm for the anchor assignment (see
Supplemental Section 2). Note that these improvements are also
applicable to binary annotations and enable better compression.
In addition, we consider schemes admitting the aggregation of
multiple successors at forks before computing the diff (see
Supplemental Section 3). This essentially replaces the diff-paths
with trees and, by design, helps improve the compression at forks,
where some of the traces branch out and carry their annotations
away, increasing the diff.

Generalized diff-transform for graph annotations

Suppose the nodes in the graph are annotated with attributes from
a setA. Consider a node vholding an attribute a(v) [A and its suc-
cessor node vsucc holding an attribute a(vsucc) [A. To define a diff-
transform of the graph annotation, we need to specify an invert-
ible diff-operation ⊖:A×A � A acting on pairs of attributes and
replacing the original annotation a(v) with its delta relative to
the annotation at the successor: ad(v) := a(v)⊖a(vsucc). The invert-
ibility of this transform entails the existence of an inverse trans-
form ⊕, such that (a⊖a′)⊕ a′ = a ∀a, a′ [A, which makes it
always possible to reconstruct the original annotation a(v) from
the delta ad(v) and the original annotation a(vsucc), which is, in
turn, either reconstructed recursively (or stored explicitly if vsucc
is an anchor).

For sparsifying k-mer count annotations, where the labeling
at each node is encoded by a row of the integer count matrix, we
use the simple vector difference as the diff-operation. For the
case of coordinate annotations, each attribute a is a set of natural
numbers (occurrence positions of a k-mer in a genome or a file);
that is, A = 2N. At the same time, we naturally expect the coordi-
nates to shift by one when transitioning from a k-mer to its adja-
cent successor. Thus, the diff-operation ⊖ in this case is the
symmetric set difference between the coordinates at the successor
node vsucc and the incremented coordinates at node v:

ad(v) := (a(v)+ 1)Da(vsucc), (1)

where operator Δ denotes the symmetric set difference:
ADB = (A< B)\(A> B). Note thatwe chose Equation 1 over a prob-
ably more intuitive formula, ad(v) := a(v)D(a(vsucc)− 1), to avoid
negative numbers and keep the result ad(v) in the same set
A = 2N of subsets of positive coordinates.

Lossless indexing with counting de Bruijn graphs

Genome Research 1757
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276607.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276607.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276607.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276607.122/-/DC1

Compressed extended graph annotations

In this section, we combine the techniques presented in the sec-
tions above and propose two memory-efficient representation
schemes for encoding quantitative data for two important practi-
cal cases of nonbinary graph annotations: k-mer counts (e.g., in
read sets, representing gene expression levels) and k-mer coordi-
nates. Coordinates may represent positions of k-mers in genomes,
any collections of sequences, or in a file in general.

Representation of k-mer counts

Formally, the task is to represent a matrix with integer entries,
where each entry corresponds to a k-mer–label pair and encodes
the k-mer’s count in the respective label.

We use the techniques presented above and, first, transform
the initial count matrix with the generalized diff-transform (see
the preceding Methods subsection “Diff-compression of extended
graph annotations”). The proposed method is schematically illus-
trated in Figure 2. Assuming that adjacent nodes in the graph are
likely to have identical or similar counts, we use the following for-
mula to compute the diff between two rows of the integer annota-
tion matrix: Ld(v) := L(v)− L(vsucc). After this operation, the diff-
values Ld(v) are often either zeros or integer values close to zero,
thus requiring fewer bits to represent compared with the original
counts L(v). If the diff Ld(v) does not require fewer bits to store it
than the original counts L(v) (as for nodesGGCandAGC in the ex-
ample graph in Fig. 2), such nodes are explicitlymade anchors and
no transform is applied to them (for more details, see the anchor
assignment procedure described in Supplemental Section 2).

Note, in work (Italiano et al. 2021) developed independently
in parallel to ours, a similar delta-like coding was considered for
compression of k-mer counts in the framework of weighted rooted
trees. This solution is close to our diff-transform for the case of a
single annotation column with k-mer counts.

After performing the diff-transform, we decompose the trans-
formedcountmatrix intoabinarymatrixof the same shape, indicat-
ing the nonzero entries and a set of additional arrays containing
those entries (Fig. 2, right) according to the scheme shown in Figure
1, A and B. The binary matrix is stored in the compressed multi-
BRWT representation, and the count arrays are stored separately.

Lastly, we note that the diff-transformed values in the count
arrays may be negative. We, thus, map them to nonnegative inte-
gers to enable further compression with variable-length codes, us-
ing the following invertible mapping: 2(|x|−1) + 1[x<0], where 1
[A] is a Boolean predicate function, which evaluates as one if the
statement A is true and as zero otherwise. After this mapping, we
further compress the count arrays using directly addressable codes
(dac_vector) (Brisaboa et al. 2013).

Representation of k-mer coordinates

Finally, in this sectionwe describe how to efficiently encode k-mer
coordinates and thereby create a lossless index of the input se-
quences. We observe that aggregating all sequences from a single
source (or label) and encoding the enumerations of each k-mer is
sufficient to reconstruct the original sequences.We, thus, will con-
sider this simplified case for brevity of the description. However,
our implementation does support the explicit indexing ofmultiple
sources with multiple annotation columns.

After all the k-mers are enumerated (Fig. 3A), the underlying
de Bruijn graph is annotated, and the coordinates are stored in
an array of lists (Fig. 1C). It is easy to see that most of the adjacent
pairs of k-mers are crossed by the same sequences, and hence, the
successor k-mer usually has the same coordinates as its predecessor
k-mer incremented by +1. Thus, it ismost natural to define the diff-
operation for sparsifying coordinate annotations as described in
the Methods subsection “Generalized diff-transform for graph an-
notations,” Equation 1. If this delta Ld(v) is an empty set, very few
bits are needed to encode it. Otherwise, it would contain the infor-
mation necessary to losslessly reconstruct the coordinates at the
predecessor from the known (or recursively reconstructed) coordi-
nates at the successor. This transformation step is schematically
shown in Figure 3B and shows how well the predictability of the
coordinates at the successor nodes can be exploited to compress
the coordinate annotations.

After the coordinate annotation is transformed, the new attri-
butes Ld(v) [2N are still subsets of natural numbers, and hence,
the full diff-transformed annotation matrix can be encoded with
the same general scheme as shown in Figure 1C, right.

Trace-consistent graph-based aligner (TCG-Aligner)

The usage of counting de Bruijn graphs encoding k-mer counts or
k-mer coordinates can greatly broaden the range of problems to
which de Bruijn graphs are currently applied. In this section,
we extend the sequence-to-graph alignment algorithm intro-
duced in MetaGraph (Karasikov et al. 2020a). With this, we can
not only ensure that all aligned paths in the graph are trace-con-
sistent but also construct seed chains (detailed below) to more ef-
ficiently select good candidate positions for alignment and to
reduce the number of base pairs from the query that need to be
aligned.

We start by generating the initial seed set for a query sequence
q. For low-error reads, these seeds consist of all maximal unique
matches of the query that are contained in graph unitigs (called
uni-MEMs) (Liu et al. 2016) with a minimum length of 19, as pre-
viously described (Karasikov et al. 2020a). For error-prone reads, we
use all matches of length 19 as the seeds. For cases in which the k-

Figure 2. A schematic diagram illustrating the encoding of k-mer counts inm columnswith the proposed approach. Circles represent nodes of a de Bruijn
graph. Edges are shown as arrows. Red nodes represent anchor nodes, and red edges represent paths to row-diff successors. The transformed counts are
shown in red (e.g., cf. L1:−1 for k-mer GCT after the transform and L1:17, L2:11 before; for k-mer TAT, the transformed counts are not shown because they
depend on TAT’s successors, not shown in the graph). Then, the diff-transformed matrix is decomposed into an indicator binary matrix stored in the com-
pressed multi-BRWT representation, supporting the rank operation on the columns and arrays storing nonzero diffs.

Karasikov et al.

1758 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276607.122/-/DC1

mer size is greater than 19, allmatches aremade to the suffixes of k-
mers (Karasikov et al. 2020a).

We then use the coordinates to discard all seeds that are not
contained in a graph trace. Each remaining seed is associated
with one or more coordinate ranges. Then, we apply a dynamic
programming seed chaining algorithm similar to the approaches
from minimap2 (Li 2018) and PuffAligner (see Supplemental
Algorithm 2) (Almodaresi et al. 2021) to produce an initial partial
alignment composed of a sequence of seeds (a chain). Let
C = (S1, . . . , SN) be the highest-scoring chain. For a given seed Si
matching ℓi characters with initial node vi, we denote the corre-
sponding position in the query by yi. We complete the alignments
between each pair Si and Si+1 by extending Si using a modification
of the extension algorithm from theMetaGraph aligner (Karasikov
et al. 2020a) on the region of the query from yi to yi+1 +ℓi+1. To
complete the alignment of q, we extend SN forward and S1 back-
ward until the end and beginning of q, respectively.

Our modification of the extension algorithm ensures that
paths traverse along the corresponding graph trace of the starting
coordinates L(vi) (in practice, only a subset originating from the
top labels detected among the seeds is used for faster alignment).
More precisely, we construct a trace-consistent alignment tree
T i = (Vi, Ei) rooted at vi during graph traversal similar to the one
defined in MetaGraph (Karasikov et al. 2020a), where Vi, V×N
contains all the nodes along the traces originating at vi:

Vi := {(vi, 0)}< {(v, s) [V × N|L(v)> (L(vi)⊕ s)

= ∅, ∃v′:(v′, s− 1) [Vi},

and Ei: = {((v, s), (v
′
, s+1))∈Vi×Vi|(v, v

′
)∈E},Vi×Vi contains all

the edges within these paths. To avoid querying coordinates on
each traversal step, we collect all reachable nodes during the forward
pass of seed extension with their adjacent edges. Then, we discard
noncoordinate consistent paths to obtain T i at forks in the graph
(i.e., nodes with outdegree>1). Finally, during the backtracking
pass, we only extract the highest-scoring coordinate-consistent
alignment (i.e., a path along T i) to correct for cases in which the
alignment terminates before the next fork node is reached. With
this, we can reduce the alignment search space by more effectively
filtering seeds, refining the traversal search space, and only perform-
ing alignment on defined substrings of the query.

Results

Indexing k-mer counts from 2652 RNA-seq read sets

For comparing our approach to the current state of the art, we used
a set of 2652 RNA-seq read sets from different human tissues that
was originally composed by Solomon and Kingsford (2018) and

has since been widely used for benchmarking methods indexing
raw sequencing data (Pandey et al. 2018; Solomon and Kingsford
2018; Almodaresi et al. 2020).

We counted all 21-mers in each read set with KMC3 (Kokot
et al. 2017) and extracted canonical k-mers (defined as the lexico-
graphical minimum of a k-mer and its reverse complement) occur-
ring at least a certain number of times, using frequency thresholds
from Pandey et al. (2018). Sixty-six out of the 2652 read sets con-
tained only reads shorter than k=21 and, hence, could not be in-
dexed. The remaining 2586 read sets resulted in a de Bruijn graph
with a total of 3.9 billion canonical k-mers and an annotation ma-
trix of density 0.27%.

We compared the counting de Bruijn graph to REINDEER
(Marchet et al. 2020), which, to the best of our knowledge, is the
only published tool for indexing collections of samples with k-
mer counts. We also compared against two state-of-the-art meth-
ods limited to binary annotations: Mantis-MST (Almodaresi et al.
2020) and RowDiff (Danciu et al. 2021). The latter was used to
highlight the effect of modifications made to the diff-transform
presented in this work.

The results for all methods are summarized in Table 1. When
compressing binary data, our approach achieved a 4.5- and 5.5-
fold size improvement over Mantis-MST and REINDEER, respec-
tively. Compared with the original RowDiff scheme, it achieved
a 20% improvement in annotation compression, which resulted
in an index-size reduction from 7.7 GB to 6.6 GB, thanks to our
methodological improvements. The advantage is maintained
when indexing k-mer counts. Applying local neighborhood
smoothing of counts along the unitigs of single-sample de Bruijn
graphs, as introduced in REINDEER, our approach reduces the
state-of-the-art index size of 59 GB to only 11 GB. This effect be-
comes evenmore pronouncedwhenquerying, as REINDEERneeds
to inflate its index for access. As wemaintain our representation as
compressed at all times, we achieve an eightfold reduction in
memory usage during the query. Even when the smoothing step
is omitted, which is not possible in REINDEER, our index takes
only 21 GB while performing a lossless compression of the full k-
mer spectrum of the input. In all three our indexes (6.6, 11, and
21 GB), the de Bruijn graph representation (the BOSS table) takes
up 1.8 GB (27.3%, 16.4%, and 8.6%, respectively), and the anno-
tation matrix takes up the rest. Our indexing workflow is also
the fastest among all the comparedmethods in all indexing scenar-
ios (see Supplemental Table 1) thanks to its careful implementa-
tion and parallelization, as well as leveraging the efficiently
implemented KMC3 (Kokot et al. 2017) and MetaGraph
(Karasikov et al. 2020a) tools.

A B

Figure 3. Extraction of k-mer coordinates from sequence ACTAGCTAGCTAG for k=3 (panel A) and subsequent compression with a diff-transform (panel
B), where the coordinates at a node’s successor are expected to be the same but incremented by +1, as these nodes are likely to be consecutive in the input
sequence(s). The symmetric set difference ADB := (A< B)\(A> B) is used as a diff-operation. Thus, for example, Ld(TAG) = ({3, 7, 11}⊕ 1)D{4, 8} = {12}.
The inverse transform is performed losslessly by L(v) = (L(vsucc)DLd(v))⊖1, which follows from the following property: (ADB)DB = A ∀A, B.

Lossless indexing with counting de Bruijn graphs

Genome Research 1759
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276607.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276607.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276607.122/-/DC1

Indexing read sets from the SRA

Indexing all viral HiFi reads

In this experiment, we fetched from NCBI Sequence Read Archive
(SRA; https://www.ncbi.nlm.nih.gov/sra) (Leinonen et al. 2011)
all viral sequencing samples sequenced with the Pacific
Biosciences (PacBio) single-molecule real-time (SMRT) technology,
including many recently sequenced SARS-CoV-2 samples. Out of
all 152,957 samples (accessed onOctober 3, 2021), we could down-
load 152,884 (99.95%) successfully.Wewill refer to this data set as
Virus PacBio SMRT. Next, we filtered this set by selecting only high-
fidelity read sets to ensure a low sequencing error rate (see
Supplemental Section 4; Supplemental Fig. 2). This left 152,418
read sets (99.7%), which we refer to as Virus PacBio HiFi. Note
that here and in all other experiments, the headers of the reads (se-
quence names) and their quality scores were removed before in-
dexing or compressing with the tools tested, including gzip.

All 152,418 read sets combined contained a total of 717 Gbp
and were compressed with gzip-9 down to 112 GB, which corre-
sponds to 1.25 bits per base pair (bits/bp), or a compression ratio
of 6.4× over the ASCII coding (8 bits/bp). Far better compression
of 38× was achieved by Spring (Chandak et al. 2019), a specialized
method for read compression.Note, neither gzip nor Spring enable
search or alignment against the input data. Then, we individually
constructed lossless searchable representations of the read sets
with counting de Bruijn graphs over the {A, C, G, T, N} alphabet
with coordinate annotations, as well as BLAST databases and
sparse PufferFish indexes. To compare the alignment speed for
counting de Bruijn graphswith TCG-Aligner (see theMethods sub-
section “Trace-consistent graph-based aligner (TCG-Aligner)”) and
other methods that support queries (BLAST, MegaBLAST, and
PufferFish), we assembled a list of nine defining mutations of the

SARS-CoV-2 21A (Delta) variant spike protein. This included six se-
quences of length 59 and one of length 53 (to cover the deletion
variants, see Supplemental Section 6 for a list of the sequences).
The results are shown in Table 2.

The BLAST database required on average 2.68 bits/bp, and
constructing an additional MegaBLAST index on top increased
its size to an average of 125.85 bits/bp, whereas PufferFish required
on average 21.8 bits/bp. We note, however, that these tools are in-
tended for indexing reference genomes (Altschul et al. 1990;
Morgulis et al. 2008; Almodaresi et al. 2018), and hence, their rep-
resentations are not intended to take full advantage of the degree
of similarity among the reads in the indexed read set for compres-
sion. In contrast, the compression performance of counting de
Bruijn graphs was even better than gzip-9. They required on aver-
age only 0.54 bits/bp (57% <1.25 bits/bp for gzip-9) while at the
same time being fully searchable. Of these 0.54 bits/bp, on average
28% is taken by the de Bruijn graph representation, and the re-
maining 72% is taken to represent the positional annotations.
For a more detailed comparison of the top four methods, see
Supplemental Figure 3. Despite the considerably higher compres-
sion ratio, ourmethod achieves an alignment speed that is compa-
rable to the state-of-the-artmethods (Table 2).We also did a similar
evaluation of the methods on the full Virus PacBio SMRT data set
(see Supplemental Table 3).

Indexing Illumina RNA-seq reads

To evaluate compression performance on short reads, we used the
RNA-seq read sets described in the preceding Results subsection
“Indexing k-mer counts from 2652 RNA-seq read sets.”
However, instead of indexing k-mer counts, here we constructed
counting de Bruijn graphs with coordinate annotations. We

Table 1. Comparison of the state-of-the-art methods for indexing raw sequencing data and the proposed approach across three scenarios of
indexing 2586 RNA-seq read sets: (1) encoding k-mer presence/absence only (binary), (2) encoding k-mer counts averaged over unitigs for
each read set (smooth counts), and (3) encoding the original k-mer counts (raw counts)

Index size Peak RAM during query Query time

Method Binary Smooth counts Raw counts Binary Smooth counts Raw counts Binary Smooth counts Raw counts

Mantis-MST 24.9 GB — — 25.1 GB — — 0.6 sec — —
RowDiff 7.7 GB — — 8.0 GB — — 8.6 sec — —

REINDEER 30.3 GB 59 GB — 58.9 GB 91 GB — 53.1 sec 56.5 sec —

This work 6.6 GB 11 GB 21 GB 6.9 GB 11 GB 21 GB 6.4 sec 17.6 sec 21.2 sec

Query time (wall time, excluding loading of the index into RAM) and peak RAM were measured while querying 100 random human transcripts
(∼90 kbp in total). If a method was not applicable to a given annotation scenario, the table shows “—”. Best results per column are highlighted in
bold.

Table 2. The summary of different representations constructed from Virus PacBio HiFi read sets

Method Compression ratio Size Alignment time

MegaBLAST 0.1× 125.85 bits/bp 0.09±0.49 sec
PufferFish -s 0.4× 21.82 bits/bp 0.06±1.06 sec
BLAST 3.0× 2.68 bits/bp 0.08±0.10 sec
gzip-9 6.4× 1.25 bits/bp N/A
This work 14.7× 0.54 bits/bp 0.15±0.40 sec
Spring 38.4× 0.21 bits/bp N/A

The methods generating searchable representations are highlighted in bold. The last column represents the time (the average and the standard deviation) taken
to query each indexed read set, excluding the index loading time, with the nine defining Delta gene variants of the SARS-CoV-2 spike protein.

Karasikov et al.

1760 Genome Research
www.genome.org

https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276607.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276607.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276607.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276607.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276607.122/-/DC1

indexed all 31-mers in each read set without any other filtering. In
total, 2411 read sets (7.55 Tbp) were indexed, with the remaining
samples discarded owing to containing reads of variable length or
only reads shorter than 31.

Again, we compared the presented approach with two alter-
natives commonly used for compressing read data: the general-
purpose compressor gzip and the domain-specific Spring. The re-
sults are presented in Supplemental Figure 4 and discussed in
Supplemental Section 5. Counting de Bruijn graphs generated
on average 27% smaller representations of the input reads com-
pared with gzip-9 (1.488 bits/bp vs. 2.030 bits/bp) (see
Supplemental Table 4).

Dependence on k-mer length

To investigate the relationship of k-mer length on index size, we
compressed several representative read sets for 12 different k-mer
lengths (Supplemental Fig. 5). We chose one of the human RNA-
seq samples (SRA: SRR805801), representing low-error Illumina se-
quencing, and a Sinorhizobium genome sequencing sample, repre-
senting higher-error PacBio long-read sequencing. Although for
short, low-error reads, the graph size slightly increases with k,
the number of paths in the graph grows as well, which makes
the annotation size drop steadily, owing to longer unitig length.
As a result, the overall index size (combining graph and annota-
tion) decreases with k. In contrast, the higher error rate in PacBio
reads (SRA: SRR3747284) leads to a very large number of k-mers
in the graph and, hence, its size. However, long reads with lower
error (SRA: SRR13577847, PacBio HiFi) benefit from an increase
of k. As a practical consequence, the choice of a large k is beneficial
for compression in most scenarios.

Lossless index of RefSeq with k-mer coordinates

To show the use of counting de Bruijn graphs with coordinate an-
notations for indexing reference genomes, we used a data set con-
sisting of all 32,881,422 reference sequence accessions from release
97 of the NCBI RefSeq database (O’Leary et al. 2016). Each se-
quence has been annotated with its associated accession ID along
with all k-mer coordinates (k=31). This approach forms an alterna-
tive to the commonly usedMegaBLAST search tool, which requires
an additional database index (Morgulis et al. 2008) for competitive
high-throughput search. The summary of both indexes is present-
ed in Table 3 (an extended version is available in Supplemental
Table 5).

Using our method, the input of 1.7 Tbp was losslessly repre-
sented in a self-index comprising 509 GB, which is 4.6× smaller
than the corresponding MegaBLAST index (Table 3). We also pre-

sent the performance for the subset of RefSeq containing all fungi
genomes, which we have used for measuring the sequence align-
ment performance in the following section.

To measure the alignment speed against the constructed in-
dexes, we aligned reads from a metagenomic sequencing sample
(SRA: SRR10002688) in two settings. Because the entire
MegaBLAST representation did not fit in our SSD, we split it into
five parts, which we queried separately and aggregated the total
query time and peak RAM from these five separate queries. To
benchmark the alignment speed in an online regime where only
a single read is aligned, we randomly selected 100 reads and
aligned each of them to each of the constructed representations
(BLAST, MegaBLAST, and counting de Bruijn graph). Then we av-
eraged the alignment time and the peak RAM across these queries.
In the second setting, we measured the alignment speed in the
batch mode when aligning 1000 random reads from the same
metagenomic sample. One can see that our approach has a favor-
able alignment speedwhile being orders of magnitude faster when
aligning a single read. In contrast to MegaBLAST, our current im-
plementation does not support memory mapping of the index
and, hence, has to load the entire compressed index into RAM.
However, because of its high compression, the representation
size is still moderate, and in addition, ways for offloading it to
disk and usingmemorymapping can be considered in futurework.

Sequence-to-graph alignment with k-mer coordinates

We evaluated the accuracy of our algorithm for alignment to
counting de Bruijn graphs and compared it to the state-of-the-art
aligners. We used simulated reads as queries and defined the desir-
able ground truth for these alignments as the corresponding seg-
ments of the reference from which the query reads were
simulated. Given the human GRCh38 reference Chromosome 22
(Schneider et al. 2017) and the Escherichia coli NC_000913.3
(Riley et al. 2006) genomes, we use ART (Huang et al. 2012) and
pbsim (Ono et al. 2013) to simulate 2000 Illumina-type and 200
PacBio-type reads of lengths 150 and 10,000, respectively. After
aligning each read back to their respective reference (or graph for
sequence-to-graph aligners), we compute the edit distance of the
matching sequence (alignment) to the ground-truth sequence
(i.e., the original reference segment from which the read was sim-
ulated) to measure alignment accuracy. In our evaluation, all nu-
cleotides that are clipped from a query sequence by the aligner
contribute as edits when measuring distance. Note, this measure
is agnostic to the choice of the scoring approach used by the align-
ers. In addition, even a simulated read with a large number of er-
rors can still contribute an edit distance of zero in the evaluation
if an aligner matches it to the exact ground-truth sequence.

Table 3. Lossless indexing of RefSeq (rel. 97) with k-mer coordinates for the complete data set (32,881,422 accessions, 1.7 Tbp, 483 GB com-
pressed with gzip-9) and the set of all fungi (69,034 accessions, 8.8 Gbp, 2.6 GB compressed with gzip-9)

BLAST MegaBLAST This work

Fungi Index size 2.2 GB (2.02 bits/bp) 12.4 GB (11.19 bits/bp) 3.3 GB (2.97 bits/bp)
Align 1 reada 2.1 sec, 2.2 GB 4.3 sec, 0.034 GB 0.021 sec, 3.4 GB
Align 1000 reads 11.4 sec, 2.2 GB 7.8 sec, 1.1 GB 14.8 sec, 3.5 GB

All Index size 437 GB (2.05 bits/bp) 2358 GB (11.07 bits/bp) 509 GB (2.39 bits/bp)
Align 1 reada 353 sec, 417 GB 12.5 sec, 0.090 GB 0.66 sec, 500 GB
Align 1000 reads 1857 sec, 428 GB 1542 sec, 22.0 GB 575 sec, 513 GB

The alignment speed is measured for two scenarios: (1) align single read and (2) align a batch of 1000 reads. All reads are taken from a metagenomic
sequencing sample (SRR10002688_1). Best results are highlighted in bold.
aFor aligning single reads, the experiment is independently performed for the 100 first reads, and the average time and RAM usage are presented.

Lossless indexing with counting de Bruijn graphs

Genome Research 1761
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276607.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276607.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276607.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276607.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276607.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276607.122/-/DC1

We computed the measure described above and compared
our TCG-Aligner (see the Methods subsection “Trace-consistent
graph-based aligner (TCG-Aligner)”) to other state-of-the-art
methods (Morgulis et al. 2008; Garrison et al. 2018; Li 2018;
Rautiainen and Marschall 2020; Karasikov et al. 2020a;
Almodaresi et al. 2021), run with default settings. As shown in
Figure 4, the degree to which incorporation of coordinates in the
alignment procedure improves accuracy and query execution
time (see also Supplemental Table 2) is dependent on the complex-
ity of the target genome.

This is evident for the alignments of simulated E. coli reads,
where the use of coordinates provides a limited improvement in ac-
curacy and query time owing to the simplicity of the genome (Fig. 4,
top row; Supplemental Table 2). On the other hand, as can be seen
in the bottom row of Figure 4, it significantly improves alignment
accuracy and query time for human reads: 40.2% of human
PacBio reads align to the exact ground-truth sequence when using
TCG-Aligner compared with 0.49% with the MetaGraph aligner.

For MetaGraph and vg, the large edit distances of the PacBio
readmatches relative to the ground truth are owing to the aligners
reporting shorter local alignments, rather than alignments of the
full reads. By incorporating coordinates to more effectively filter
seeds and by restricting the alignment
search space to graph traces, TCG-
Aligner provides improved accuracy and
query execution time when aligning
against reference genomes.

Searching for the delta variant of SARS-

CoV-2 in SRA

Finally, to enable fast search in the entire
collection of all 152,884 viral PacBio
SMRT read sets from SRA (see the Results
subsection “Indexing all viralHiFi reads”),
we also indexed them in a joint counting

de Bruijn graph with coordinate annota-
tion. Being 178 GB in size and only 19%
larger than the input reads without quali-
ty scores compressed with gzip-9 (150 GB,
875 Gbp), our index provides a fully loss-
less representation of them and can be
used for search and alignment of arbitrary
sequences. A total of 152,272 (99.6%) of
the indexed read sets originate from the
NCBI BioProject database (https://www
.ncbi.nlm.nih.gov/bioproject/) under ac-
cessionnumber PRJNA716984, consisting
of PacBio Sequel II sequencing runs from
SARS-CoV-2 samples.

We queried DNA sequences flank-
ing the nine defining mutations of the
SARS-CoV-2 21A (Delta) variant spike
protein (the same mutations as used for
the alignment benchmark in the Results
subsection “Indexing all viral HiFi
reads”) against this joint index to retrieve
all the occurrences of its specific muta-
tions within the reads. In total, six se-
quences of length 59 and one of length
53 (to cover the deletion variants, see
Supplemental Section 6 for a list of the

sequences) were queried. Each sequence was matched to an aver-
age of 107,892 samples and 7.68 million positions in the joint in-
dex. Despite the enormous number of returned hits, the query
took under 4 min on a single thread.

In this experiment, for a given sample, we classified it as con-
taining SARS-CoV-2 21A if, for each of the defining mutations of
the spike protein, there exists at least one read in the sample sup-
porting that variant. If a sample is classified as such, we enumerate
all reads containing any of the defining mutations. As shown in
Figure 5, 90.5% of samples deposited after July 2021 contain
each of the Delta variants of the spike protein, leading to a sharp
growth in the number of reads containing these variants. We
would like to note that this analysis is derived only from the dates
onwhich these sampleswere uploaded to the SRA and, hence, can-
not be used to determine when these variants actually emerged.
Although these metadata can be derived for further analysis, it is
outside the scope of this work.

Discussion

We have presented a novel approach for the efficient and com-
pressed representation of quantitative annotations on de Bruijn

Figure 4. Alignment accuracy on simulated Illumina- and PacBio-type reads (E. coliNC_000913.3 and
human Chr 22). The edit distance is measured between the alignment (the returned path in the graph)
and the ground-truth sequence. In the top left subplot, the curves of vg- and TCG-Aligner are
superimposed.

N
um

be
r o

f S
M

R
T

sa
m

pl
es

N
um

be
r o

f S
M

R
T

re
ad

s

Figure 5. Detection of the delta variants of the SARS-CoV-2 spike protein in SMRT virus sequencing
samples deposited on the SRA. (Left) The number of samples detected to contain (orange) and not con-
tain (blue) the SARS-CoV-2 delta variant. (Right) The number of reads containing definingmutations con-
tributed by samples containing the SARS-CoV-2 delta variant.

Karasikov et al.

1762 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276607.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276607.122/-/DC1
https://www.ncbi.nlm.nih.gov/bioproject/
https://www.ncbi.nlm.nih.gov/bioproject/
https://www.ncbi.nlm.nih.gov/bioproject/
https://www.ncbi.nlm.nih.gov/bioproject/
https://www.ncbi.nlm.nih.gov/bioproject/
https://www.ncbi.nlm.nih.gov/bioproject/
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276607.122/-/DC1

graphs. Together with the underlying graph, these annotations
make up a data structure which we call a counting de Bruijn graph.
It can be used to represent quantitative information and, in partic-
ular, encode traces of the input sequences in de Bruijn graphs. This
not only provides a much higher flexibility of graph annotations
but also allows for the truly lossless representation of any set of in-
put sequences in them. This offers a practical solution to a long-
standing problem of many methods using de Bruijn graphs as a
base structure and opens the doors to implementing novel se-
quence alignment algorithms on top of them. The method is ag-
nostic to the alphabet and, hence, can be used for indexing not
only nucleotide sequences but also protein sequences or sequences
over any other alphabet.

In addition to the presented approach for the compressed rep-
resentation of sparse nonbinary matrices, we have generalized the
RowDiff scheme (Danciu et al. 2021) to nonbinary graph annota-
tions and optimized it by improving the algorithms for anchor
and successor assignment. We have considered and have shown
the advantages of the coding where multiple successor nodes
may be assigned to each node. In future extensions, the aggregat-
ing operator g could act not only on the immediate successors of
the node but on the whole tree of all successors spanning from it
until the terminating anchor nodes. This would lead to a signifi-
cantly better compression, for instance, in the case of k-mer
counts linearly increasing within the paths in the graph.
Moreover, an adaptive model can be trained with machine learn-
ing methods to predict annotation at a node from its successors
and their annotations to further reduce the deltas stored explicit-
ly in compressed data structures. We believe this has promising
potential for this coding to benefit from the recent advances in
machine learning.

Finally, we devised an algorithm for aligning sequences to
counting de Bruijn graphs with coordinate annotations, which
avoids spurious paths. This algorithm correctly estimates the align-
ment score even when aligning sequences with repeats to loops in
the graph, which would be impossible with de Bruijn graphs alone.
Because sequences shared by many samples are represented by a
simple path, de Bruijn graph–based approaches can greatly reduce
the overhead of aligning to collections of highly similar sequences,
whereas more traditional database search methods would align to
each database entry independently. The added availability of k-
mer coordinates to the MetaGraph alignment framework
(Karasikov et al. 2020a) allows for various other seeding or extension
heuristics to be implemented, such as those used in MegaBLAST
(Morgulis et al. 2008). Although the alignment method and evalua-
tion presented here are restricted to graphs constructed from assem-
bled reference genomes, such seed extension methods can be
adapted for alignment to de Bruijn graphs constructed from raw
read sets, which, we believe, is a promising direction for futurework.

Playing a similar role for indexing sequences in de Bruijn
graphs as gPBWT does in the realm of variation graphs and the in-
dexing of pangenomes, we believe our approach is a significant
step forward for the representation of and the search in very large
collections of sequences, addressing a still increasing demand for in-
teractive access to growing archives of biological sequences. We en-
vision this as the first step toward enhancing the performance of
BLAST-based sequence searches using graph-based approaches.

Software availability

The methods presented in this work were implemented
within the MetaGraph framework (https://github.com/ratschlab/

metagraph), which provides a means and base data structures for
indexing very large collections of sequences in annotated de
Bruijn graphs with amodular support of different graph and anno-
tation representations, including the space-efficient BOSS table
(Bowe et al. 2012), the optimized multi-BRWT (Karasikov et al.
2020b) scheme, and routines for the RowDiff (Danciu et al.
2021) sparsification, graph cleaning, differential assembly, and se-
quence-to-graph alignment (Karasikov et al. 2020a). We also used
implementations of basic compression algorithms and data struc-
tures from the sdsl-lite library (Gog et al. 2014). The resources and
scripts used to create figures and start experiments presented in
section sec:results are available as Supplemental Code or at
GitHub (https://github.com/ratschlab/counting_dbg).

Competing interest statement

The authors declare no competing interests.

Acknowledgments

We thank Mario Stanke, Matthis Ebel, Daniel Danciu, and Stefan
Stark for their helpful feedback. M.K. and H.M. are funded by
the Swiss National Science Foundation grant 407540_167331
“Scalable Genome Graph Data Structures for Metagenomics and
Genome Annotation” as part of Swiss National Research
Programme (NRP) 75 “Big Data.”M.K., H.M., and A.K. are also par-
tially funded by ETH core funding (to G.R.).

Author contributions: The idea and design of counting de
Bruijn graphs and their representation techniques were conceived
and developed byM.K.; the TCG-Aligner was conceived and devel-
oped by H.M.; and A.K. and G.R. conceptualized and supervised
the research and acquired funding. All authors contributed towrit-
ing the manuscript and provided feedback on the algorithms, the-
ory, and experiments.

References

Almeida A, Nayfach S, BolandM, Strozzi F, BeracocheaM, Shi ZJ, Pollard KS,
Sakharova E, Parks DH, Hugenholtz P, et al. 2021. A unified catalog of
204,938 reference genomes from the human gut microbiome. Nat
Biotechnol 39: 105–114. doi:10.1038/s41587-020-0603-3

Almodaresi F, Pandey P, Patro R. 2017. Rainbowfish: a succinct colored de
Bruijn graph representation. In 17th International Workshop on
Algorithms in Bioinformatics (WABI 2017) (ed. Schwartz R, Reinert K),
Vol. 88, pp. 18:1–18:15. Leibniz International Proceedings in
Informatics (LIPIcs), Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik Dagstuhl, Germany.

Almodaresi F, Sarkar H, Srivastava A, Patro R. 2018. A space and time-effi-
cient index for the compacted colored de Bruijn graph. Bioinformatics
34: i169–i177. doi:10.1093/bioinformatics/bty292

Almodaresi F, Pandey P, FerdmanM, Johnson R, Patro R. 2020. An efficient,
scalable, and exact representation of high-dimensional color informa-
tion enabled using de Bruijn graph search. J Comput Biol 27: 485–499.
doi:10.1089/cmb.2019.0322

Almodaresi F, Zakeri M, Patro R. 2021. PuffAligner: a fast, efficient and accu-
rate aligner based on the Pufferfish index. Bioinformatics 37: 4048–4055.
doi:10.1093/bioinformatics/btab408

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local
alignment search tool. J Mol Biol 215: 403–410. doi:10.1016/S0022-
2836(05)80360-2

Barbay J, Claude F, Navarro G. 2013. Compact binary relation representa-
tions with rich functionality. Inf Comput 232: 19–37. doi:10.1016/j.ic
.2013.10.003

Bingmann T, Bradley P, Gauger F, and Iqbal Z. 2019. COBS: a compact bit-
sliced signature index. In International Symposium on String Processing and
Information Retrieval, Segovia, Spain, pp. 285–303. Springer, Cham.

Bowe A, Onodera T, Sadakane K, Shibuya T. 2012. Succinct de Bruijn graphs.
In Algorithms in bioinformatics. WABI 2012. Lecture notes in computer sci-
ence (ed. Raphael B, Tang J), Vol. 7534, pp. 225–235. Springer, Berlin,
Heidelberg.

Lossless indexing with counting de Bruijn graphs

Genome Research 1763
www.genome.org

https://github.com/ratschlab/metagraph
https://github.com/ratschlab/metagraph
https://github.com/ratschlab/metagraph
https://github.com/ratschlab/metagraph
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276607.122/-/DC1
https://github.com/ratschlab/counting_dbg
https://github.com/ratschlab/counting_dbg
https://github.com/ratschlab/counting_dbg

Bradley P, Den Bakker HC, Rocha EP, McVean G, Iqbal Z. 2019. Ultrafast
search of all deposited bacterial and viral genomic data. Nat Biotechnol
37: 152–159. doi:10.1038/s41587-018-0010-1

Brisaboa NR, Ladra S, Navarro G. 2013. DACs: bringing direct access to var-
iable-length codes. Inf Process Manag 49: 392–404. doi:10.1016/j.ipm
.2012.08.003

Chandak S, Tatwawadi K, Ochoa I, Hernaez M, Weissman T. 2019. SPRING:
a next-generation compressor for FASTQ data. Bioinformatics 35: 2674–
2676. doi:10.1093/bioinformatics/bty1015

Chikhi R, Rizk G. 2013. Space-efficient and exact de Bruijn graph represen-
tation based on a bloom filter. Algorithms Mol Biol 8: 22. doi:10.1186/
1748-7188-8-22

Collado-Torres L, Nellore A, Kammers K, Ellis SE, TaubMA,Hansen KD, Jaffe
AE, Langmead B, Leek JT. 2017. Reproducible RNA-seq analysis using re-
count2. Nat Biotechnol 35: 319–321. doi:10.1038/nbt.3838

Danciu D, Karasikov M, Mustafa H, Kahles A, Rätsch G. 2021. Topology-
based sparsification of graph annotations. Bioinformatics 37: i169–
i176. doi:10.1093/bioinformatics/btab330

Danko D, Bezdan D, Afshin EE, Ahsanuddin S, Bhattacharya C, Butler DJ,
Chng KR, Donnellan D, Hecht J, Jackson K, et al. 2021. A global metage-
nomic map of urban microbiomes and antimicrobial resistance. Cell
184: 3376–3393.e17. doi:10.1016/j.cell.2021.05.002

Garrison E, Sirén J, Novak AM, Hickey G, Eizenga JM, Dawson ET, Jones W,
Garg S,Markello C, LinMF, et al. 2018. Variation graph toolkit improves
read mapping by representing genetic variation in the reference. Nat
Biotechnol 36: 875–879. doi:10.1038/nbt.4227

Gog S, Beller T, Moffat A, Petri M. 2014. From theory to practice: plug and
play with succinct data structures. In Experimental algorithms. SEA
2014. Lecture notes in computer science (ed. Gudmundsson J, Katajainen
J), Vol. 8504, pp. 326–337. Springer International Publishing, Cham.

Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P,
Cournapeau D, Wieser E, Taylor J, Berg S, Smith NJ, et al. 2020. Array
programming with NumPy. Nature 585: 357–362. doi:10.1038/
s41586-020-2649-2

HuangW, Li L, Myers JR, Marth GT. 2012. ART: a next-generation sequenc-
ing read simulator. Bioinformatics 28: 593–594. doi:10.1093/bioinfor
matics/btr708

Iqbal Z, Caccamo M, Turner I, Flicek P, McVean G. 2012. De novo assembly
and genotyping of variants using colored de Bruijn graphs. Nat Genet
44: 226–232. doi:10.1038/ng.1028

Italiano GF, Prezza N, Sinaimeri B, Venturini R. 2021. Compressed weighted
de Bruijn graphs. In 32nd Annual Symposium on Combinatorial Pattern
Matching (CPM 2021) (ed. Gawrychowski P, Starikovskaya T), Vol. 191,
pp. 16:1–16:16. Leibniz International Proceedings in Informatics
(LIPIcs), Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik Dagstuhl,
Germany.

Karasikov M, Mustafa H, Danciu D, Zimmermann M, Barber C, Rätsch G,
Kahles A. 2020a. MetaGraph: indexing and analysing nucleotide ar-
chives at petabase-scale. bioRxiv doi:10.1101/2020.10.01.322164

Karasikov M, Mustafa H, Joudaki A, Javadzadeh-No S, Rätsch G, Kahles A.
2020b. Sparse binary relation representations for genome graph annota-
tion. J Comput Biol 27: 626–639. doi:10.1089/cmb.2019.0324

Kokot M, Długosz M, Deorowicz S. 2017. KMC 3: counting and manipulat-
ing k-mer statistics. Bioinformatics 33: 2759–2761. doi:10.1093/bioinfor
matics/btx304

Leinonen R, Sugawara H, Shumway M, International Nucleotide Sequence
Database Collaboration. 2011. The sequence read archive. Nucleic
Acids Res 39: D19–D21. doi:10.1093/nar/gkq1019

Li H. 2018. Minimap2: pairwise alignment for nucleotide sequences.
Bioinformatics 34: 3094–3100. doi:10.1093/bioinformatics/bty191

Liu B, Guo H, Brudno M, Wang Y. 2016. deBGA: read alignment with de
Bruijn graph-based seed and extension. Bioinformatics 32: 3224–3232.
doi:10.1093/bioinformatics/btw371

Luhmann N, Holley G, Achtman M. 2021. BlastFrost: fast querying of
100,000s of bacterial genomes in Bifrost graphs. Genome Biol 22: 30.
doi:10.1186/s13059-020-02237-3

Marchet C, Iqbal Z, Gautheret D, Salson M, Chikhi R. 2020. REINDEER: ef-
ficient indexing of k-mer presence and abundance in sequencing data-
sets. Bioinformatics 36: i177–i185. doi:10.1093/bioinformatics/btaa487

Marchet C, Boucher C, Puglisi SJ, Medvedev P, Salson M, Chikhi R. 2021.
Data structures based on k-mers for querying large collections of se-
quencing data sets. Genome Res 31: 1–12. doi:10.1101/gr.260604.119

Morgulis A, Coulouris G, Raytselis Y, Madden TL, Agarwala R, Schäffer AA.
2008. Database indexing for production MegaBLAST searches.
Bioinformatics 24: 1757–1764. doi:10.1093/bioinformatics/btn322

Muggli MD, Bowe A, Noyes NR, Morley PS, Belk KE, Raymond R, Gagie T,
Puglisi SJ, Boucher C. 2017. Succinct colored de Bruijn graphs.
Bioinformatics 33: 3181–3187. doi:10.1093/bioinformatics/btx067

Nayfach S, Páez-Espino D, Call L, Low SJ, Sberro H, Ivanova NN, Proal AD,
Fischbach MA, Bhatt AS, Hugenholtz P, et al. 2021. Metagenomic com-
pendium of 189,680 DNA viruses from the human gut microbiome.Nat
Microbiol 6: 960–970. doi:10.1038/s41564-021-00928-6

Novak AM, Garrison E, Paten B. 2017. A graph extension of the positional
Burrows–Wheeler transform and its applications. Algorithms Mol Biol
12: 18. doi:10.1186/s13015-017-0109-9

O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, Rajput
B, Robbertse B, Smith-White B, Ako-Adjei D, et al. 2016. Reference se-
quence (RefSeq) database atNCBI: current status, taxonomic expansion,
and functional annotation. Nucleic Acids Res 44: D733–D745. doi:10
.1093/nar/gkv1189

Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S,
Phillippy AM. 2016. Mash: fast genome and metagenome distance esti-
mation using MinHash. Genome Biol 17: 132. doi:10.1186/s13059-016-
0997-x

Ono Y, Asai K, Hamada M. 2013. PBSIM: PacBio reads simulator: toward ac-
curate genome assembly. Bioinformatics 29: 119–121. doi:10.1093/bioin
formatics/bts649

Pandey P, Almodaresi F, Bender MA, Ferdman M, Johnson R, Patro R. 2018.
Mantis: a fast, small, and exact large-scale sequence-search index. Cell
Syst 7: 201–207.e4. doi:10.1016/j.cels.2018.05.021

Raman R, Raman V, Rao SS. 2002. Succinct indexable dictionaries with ap-
plications to encoding k-ary trees and multisets. In Proceedings of the
Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
’02), pp. 233–242. Society for Industrial and Applied Mathematics,
Philadelphia.

Rautiainen M, Marschall T. 2020. GraphAligner: rapid and versatile se-
quence-to-graph alignment. Genome Biol 21: 253. doi:10.1186/
s13059-020-02157-2

RileyM, Abe T, ArnaudMB, BerlynMK, Blattner FR, Chaudhuri RR, Glasner
JD, Horiuchi T, Keseler IM, Kosuge T, et al. 2006. Escherichia coli K-12: a
cooperatively developed annotation snapshot—2005. Nucleic Acids Res
34: 1–9. doi:10.1093/nar/gkj405

Schneider VA, Graves-Lindsay T, Howe K, Bouk N, Chen HC, Kitts PA,
Murphy TD, Pruitt KD, Thibaud-Nissen F, Albracht D, et al. 2017.
Evaluation of GRCh38 and de novo haploid genome assemblies demon-
strates the enduring quality of the reference assembly. Genome Res 27:
849–864. doi:10.1101/gr.213611.116

Schulz T, Wittler R, Rahmann S, Hach F, Stoye J. 2021. Detecting high-scor-
ing local alignments in pangenome graphs. Bioinformatics 37: 2266–
2274. doi:10.1093/bioinformatics/btab077

Solomon B, Kingsford C. 2018. Improved search of large transcriptomic se-
quencing databases using split sequence bloom trees. J Comput Biol 25:
755–765. doi:10.1089/cmb.2017.0265

Stephens ZD, Lee SY, Faghri F, Campbell RH, Zhai C, EfronMJ, Iyer R, Schatz
MC, Sinha S, Robinson GE. 2015. Big data: astronomical or genomical?
PLoS Biol 13: e1002195. doi:10.1371/journal.pbio.1002195

Su X, Jing G, Zhang Y, Wu S. 2020. Method development for cross-study
microbiome data mining: challenges and opportunities. Comput Struct
Biotechnol J 18: 2075–2080. doi:10.1016/j.csbj.2020.07.020

Received January 17, 2022; accepted in revised form May 5, 2022.

Karasikov et al.

1764 Genome Research
www.genome.org

