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Abstract: Prediction of blood transfusion after adult spinal deformity (ASD) surgery can identify
at-risk patients and potentially reduce its utilization and the complications associated with it. The
use of artificial neural networks (ANNs) offers the potential for high predictive capability. A total of
1173 patients who underwent surgery for ASD were identified in the 2017–2019 NSQIP databases. The
data were split into 70% training and 30% testing cohorts. Eighteen patient and operative variables
were used. The outcome variable was receiving RBC transfusion intraoperatively or within 72 h
after surgery. The model was assessed by its sensitivity, positive predictive value, F1-score, accuracy
(ACC), and area under the curve (AUROC). Average patient age was 56 years and 63% were female.
Pelvic fixation was performed in 21.3% of patients and three-column osteotomies in 19.5% of cases.
The transfusion rate was 50.0% (586/1173 patients). The best model showed an overall ACC of 81%
and 77% on the training and testing data, respectively. On the testing data, the sensitivity was 80%,
the positive predictive value 76%, and the F1-score was 78%. The AUROC was 0.84. ANNs may
allow the identification of at-risk patients, potentially decrease the risk of transfusion via strategic
planning, and improve resource allocation.

Keywords: artificial intelligence; neural network; adult spinal deformity; transfusion; scoliosis

1. Introduction

Corrective surgery for adult spinal deformity (ASD) is associated with significant blood
loss [1]. Perioperative red blood cell (RBC) transfusion rates have been estimated to range
from 27% up to 90% in some series [2–5]. Although the use of blood products can improve
tissue oxygenation, their administration does not come without health and economic
costs. Multiple studies have shown associations between RBC transfusion and adverse
events such as transfusion reactions, transfusion-related lung injury, infection, venous
thromboembolism, and prolonged intensive care unit and overall length of stay [3,6–9].

Multiple studies have reported “risk factors” for transfusion in deformity surgery,
but estimating an individual patient’s probability is challenging. Identifying a high-risk
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patient could allow for better preoperative optimization or alterations in the surgical plan to
minimize the transfusion rate and associated complications [10]. In recent years, advanced
computer algorithms such as artificial neural networks (ANN) have emerged as powerful
tools for prediction in spine surgery [11–14]. These models are inspired by biological neural
networks and are excellent at problems, such as classifying a patient into needing or not
needing a transfusion based on input parameters.

In this study, we attempted to predict the need for RBC transfusion in ASD surgery by
creating an ANN model. Input data from a prospectively collected database was used to
train the model and a withheld dataset was used for testing.

2. Materials and Methods
2.1. Data Source and Patient Selection

This is a retrospective study of prospectively collected data. We utilized the American
College of Surgeons National Surgical Quality Improvement Program (NSQIP) dataset
from 2017 to 2019. The NSQIP prospectively collects patient and operative data on major
surgical cases performed at over 700 participating institutions, as well as 30-day morbidity
and mortality. A trained “Surgical Clinical Reviewer” at each institution performs data
collection; current inter-rater reliability is over 95% [15].

Adult patients >18 years of age who underwent surgery for ASD were identified
via the use of CPT codes (primary CPT code: 22206, 22207, 22800, 22802, 22804, 22808,
22810, 22812, 22818, 22819, 22843, 22844, or 22846). The initial search yielded 1446 patients;
273 were excluded (18.9%) given they had one or more of the following characteristics:
missing data, emergency case, transfer from a facility other than home, disseminated
cancer, outpatient surgery, ventilator dependency, preoperative sepsis, or a history of recent
unintentional weight loss. The final analytic sample consisted of 1173 cases.

We followed the guidelines by Luo et al. for developing and reporting machine
learning predictive models in biomedical research [16].

2.2. Collected Parameters

Collected data included patient age, sex, ASA (American Society of Anesthesiolo-
gists) class, smoking status, chronic steroid use, history of bleeding disorder, dependent
functional status, body weight, preoperative hematocrit, surgeon specialty (neurosurgery
vs. orthopedic surgery), surgery duration in hours, the use of pelvic fixation, the use of
interbody grafts, the use of osteotomy or three-column osteotomy (3CO), the number of
posterior levels fused (6–12 or 7–13), and revision status.

2.3. Model Creation

Our model was built to solve a diagnostic problem. It is a classification algorithm with
the main outcome variable being the administration of at least one RBC unit intraoperatively
or within 72 h after surgery (as defined by NSQIP). The 18 collected parameters were used as
input neurons in the model based on previously reported risk factors for transfusion [5,17].
The feedforward ANN model was built using Python 3.0 (Python Software Foundation,
Wilmington, DE, USA) and the TensorFlow (Google Brain, Mountain View, CA, USA) and
Keras libraries (open source software, developed by Francois Chollet). For model creation,
a 70/30 random split was made for training and testing data, respectively. Data were scaled
before analysis. Ten percent of the data used for training was used for internal validation
(150 epochs, verbose = 2). Several ANN models were tested with various hidden layers
and different activation functions. These were compared based on the following accuracy
metrics: sensitivity, positive predictive value, F1-score (harmonic mean between sensitivity
and positive predictive value), and overall accuracy (ACC). The area under the curve of the
receiver operating characteristic analysis (AUROC) was also calculated for the final model.
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2.4. Data Analysis and Model Creation

Statistical analyses were performed in Stata IC 16 (StataCorp, College Station, TX, USA).
Comparisons between no transfusion and transfusion groups were made via
t-tests or chi-square tests when appropriate. Descriptive statistics were used for the
study population. Statistical significance was defined as a probability (p-value) value less
than 0.05.

3. Results
3.1. Patient Population

A total of 1173 cases were analyzed in this study (Table 1). Mean age was 55.7 years
and 62.9% of patients were female. The most common ASA classification was 3 (56.8%),
and 14.9% of patients were smokers. Average duration of surgery was 5.8 h and 3CO was
performed in 19.5% of cases. Overall, the transfusion rate was 50.0% (586/1173 patients).

Table 1. Baseline and operative characteristics of all patients.

Parameter Value

Age (mean, standard deviation) 55.7 (18.9)

Sex

Male 435 (37.1%)

Female 738 (62.9%)

ASA Class

1 56 (4.8%)

2 420 (35.8%)

3 666 (56.8%)

4 31 (2.6%)

Smoker 175 (14.9%)

Chronic steroid use 56 (4.8%)

Bleeding disorder 35 (3.0%)

Dependent functional status 62 (5.3%)

Body weight (mean kg, standard deviation) 77.8 (20.9)

Preoperative hematocrit (mean, standard deviation) 40.6 (4.5)

Orthopedic surgeon as attending 617 (52.6%)

Surgery duration (mean hours, standard deviation) 5.8 (2.7)

Pelvic fixation 250 (21.3%)

Interbody graft 254 (21.7%)

Any osteotomy 345 (29.4%)

3CO 229 (19.5%)

6–12 posterior levels fused 263 (22.4%)

13+ posterior levels fused 240 (20.5%)

Revision surgery 119 (10.1%)

Comparisons between the no transfusion and transfusion groups are summarized in
Table 2. Statistically significant differences were found across most parameters examined.
Notably, patients requiring a transfusion were older (57 vs. 54 years, p = 0.005), had
a higher comorbidity burden as determined by the ASA Class (p < 0.001), and they were
also more likely to be dependent for activities of daily living (p < 0.001). Operative time
was also significantly longer (7.1 vs. 4.4 h, p < 0.001) and these patients were more likely to



J. Clin. Med. 2022, 11, 4436 4 of 8

undergo pelvic fixation (35.3% vs. 7.3%, p < 0.001), 3CO (28.3% vs. 10.7%, p < 0.001), and
revision surgery (13.3% vs. 7.0%, p < 0.001), among other differences.

Table 2. Baseline and operative characteristics of all patients stratified by transfusion requirement.

Parameter No Transfusion Transfusion p-Value

Age (mean, standard deviation) 54.1 (19.2) 57.2 (18.6) 0.005 *

Sex

Male 231 (39.4%) 204 (34.8%) 0.107

Female 356 (60.6%) 382 (65.2%)

ASA Class

1 38 (6.5%) 18 (3.1%) <0.001 *

2 244 (41.6%) 176 (30.0%)

3 294 (50.1%) 372 (63.5%)

4 11 (1.9%) 20 (3.4%)

Smoker 102 (17.4%) 73 (12.5%) 0.018 *

Chronic steroid use 23 (3.9%) 33 (5.6%) 0.169

Bleeding disorder 12 (2.0%) 23 (3.9%) 0.058

Dependent functional status 15 (2.6%) 47 (8.0%) <0.001 *

Body weight (mean
kg, standard deviation) 79.3 (20.9) 76.3 (20.9) 0.016 *

Preoperative hematocrit
(mean, standard deviation) 41.2 (4.4) 39.9 (4.6) <0.001 *

Orthopedic surgeon as attending 327 (55.7%) 290 (49.5%) 0.033 *

Surgery duration (mean
hours, standard deviation) 4.4 (2.3) 7.1 (2.4) <0.001 *

Pelvic fixation 43 (7.3%) 207 (35.3%) <0.001 *

Interbody graft 147 (25.0%) 107 (18.3%) 0.005 *

Any osteotomy 114 (19.4%) 231 (39.4%) <0.001 *

3CO 63 (10.7%) 166 (28.3%) <0.001 *

6–12 posterior levels fused 163 (27.8%) 100 (17.1%) <0.001*

13+ posterior levels fused 63 (10.7%) 177 (30.2%) <0.001 *

Revision surgery 41 (7.0%) 78 (13.3%) <0.001 *
* statistically significant result.

3.2. ANN Models

A summary of the different model architectures is shown in Table 3. They were all
sequentially built on the training data (70% of patients) and compared via their accuracy
metrics on the testing data (30% of patients). All models had 18 input neurons and
2–4 hidden layers (with 8–128 neurons per layer). Model validation was carried out
on 10% of the data. Sigmoid or rectified linear unit (ReLU) activation functions were used.
A dropout of 10–20% of neurons was also used to prevent overfitting.

After comparing the models, model #3 achieved the highest accuracy metrics. This
model consisted of only two hidden layers (one with 128 and one with 64 neurons) and
used ReLU activation function as the main function (Figure 1). The model achieved the
highest sensitivity and positive predictive value of 0.80 and 0.76, respectively. Its F1-score
was 0.78 and overall ACC was 0.77. The AUROC was calculated at 0.84.
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Table 3. Artificial neural network models’ architectures and accuracy metrics on the testing data.

Parameter Model 1 Model 2 Model 3 Model 4

Input features 18 18 18 18

Hidden layers 4 4 2 2

Activation function Sigmoid ReLU ReLU Sigmoid

Accuracy metrics

Sensitivity 0.79 0.76 0.80 0.71

Positive predictive value 0.72 0.73 0.76 0.75

F1-Score 0.76 0.75 0.78 0.73

Accuracy (ACC) 0.74 0.74 0.77 0.73
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4. Discussion

Corrective surgery for ASD is associated with high blood loss given the need for exten-
sive soft tissue dissection, osteotomies, and prolonged operative duration [18]. Although
RBC transfusion can improve tissue oxygenation and prevent hypoperfusion to the spinal
cord and vital organs, multiple studies have reported an association between transfusion
and postoperative complications [3,6,7,19–23]. Another current issue is the severe shortage
of blood products resulting in a national crisis [24]. Thus, the implementation of predictive
algorithms can potentially identify at-risk patients and reduce the potential transfusion
rate or improve resource allocation. In this study, we created an ANN model in an attempt
to identify at-risk patients for perioperative RBC transfusion. One of our models was able
to correctly identify 80% of at-risk patients and showed a positive predictive value of 76%
and an overall ACC of 77%.

The current estimated blood loss during deformity surgery is approximately 2 L [1].
Transfusion rates are high and although multiple studies have identified “risk factors” for
their need [2,3], predicting their occurrence is based on a “best guess” by the clinician based
on prior experience with patients presenting with similar risk factors. Puvanesarajah et al.
examined 165 adult patients who underwent ASD surgery, finding an intraoperative trans-
fusion rate of 90%. Authors found that preoperative hemoglobin < 11.5 g/dL, increasing
operative time, and the use of osteotomies were all significantly associated with the num-
ber of allogenic RBC unites transfused intraoperatively [5]. In another investigation of
5805 patients, authors found age over 65 years, ASA Class ≥ 3, cardiac comorbidities, and
bleeding disorders to all be independently associated with perioperative transfusion. In
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terms of surgical risk factors, independent predictors included posterior approaches, pelvic
fixation, and osteotomy [17].

Compared to traditional statistical modeling, ANNs are considered deep-learning
algorithms, a branch of artificial intelligence. These networks are inspired by biological
neural networks and are very useful in classification problems. They use training data
and can learn how much each input variable (such as age, sex, preoperative hematocrit,
or use of osteotomies) influences a particular outcome; they are then able to adjust them-
selves accordingly to make the most accurate prediction possible. The model can then
be tested on new data and its accuracy metrics calculated. Some of the most common
neural networks include feedforward neural networks, recurrent neural networks, and
convolutional neural networks. In feedforward networks such as the one used in this study,
data travel from input neurons towards the output neuron(s). In recurrent networks such as
Hopfield’s network, data/signals can travel in both directions and also within a same layer.
Lastly, convolutional neural networks are a specialized algorithm predominantly used in
image recognition.

When deciding which models to develop and test, no universal guidelines exist.
However, some of the most common features that are adjusted include the number of
hidden layers and activation functions. Hidden layers are layers of mathematical functions
located between the input neurons (the patient/surgical parameters to be examined) and
the output neurons (classifying a patient into no transfusion vs. transfusion). These layers
contain a certain number of neurons/nodes that each produce a probability value from
0 to 1 depending on the activation function used. In terms of activation functions, these
algorithms take the input from previously activated neurons and transforms the value
into an ON or OFF state. Some of the most used activation functions include sigmoid and
rectified linear unit functions.

Durand et al. also utilized advanced learning algorithms in an attempt to predict
the need for RBC transfusion in ASD [2]. They used data on 824 patients for training and
205 patients for testing. Surgical duration, surgical invasiveness, preoperative hemat-
ocrit, and patient weight and age were the most influential parameters associated with
transfusion [2]. Using a random forest classifier model, they achieved an AUROC of
0.85 (compared to 0.84 for our model). Unfortunately, other than the model’s discriminative
capacity, no data were provided regarding its ACC, sensitivity, or positive predictive value
on the testing data. Simply using the AUROC as a measurement of a model’s performance
is insufficient, as it does not provide any clinically useful data [25].

Raman et al. performed a single-center review of 909 patients who underwent de-
formity correction and used decision-tree-based modeling to identify predictors of blood
loss and transfusion [3]. They reported a 41.5% transfusion rate and found that the fusion
of >13 levels, ASA Class > 1, hypertension, three-column osteotomies, pelvic fixation,
and operative time > 8 h were all significant risk factors associated with perioperative
transfusion [3]. Although they used a machine learning approach to identify risk factors,
no predictive model was created.

On the other hand, our study’s proposed model can correctly predict 80% of patients
needing a transfusion. When faced with an at-risk patient, several strategies could be
employed such as the modification of the surgical plan to reduce the number of levels fused
or osteotomies performed; improving intraoperative resuscitation without blood products;
optimization of antifibrinolytic agents; preoperative iron supplementation; improving
preoperative nutritional status; and others [10].

While our proposed model could correctly identify 80% of at-risk patients, one of the
concerns that may arise is that an ANN is considered a “black box” model. This means that
exact parameter weights are unknown and function optimization is carried out by the model
without human input. In other words, we cannot know exactly which parameters (age,
comorbidities, or surgical invasiveness for example) are the most “significantly associated”
with transfusion. This machine learning philosophy differs from traditional statistical
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approaches that focus more on the specific variables associated with an outcome rather
than focusing on the optimal predictive capability of the model.

Nonetheless, we believe the model can be useful as is given its high accuracy metrics.
Further improvements in positive predictive value can be made (currently at 76%). This
means that 24% of patients will be false positives and incorrectly classified as needing
a transfusion. However, implementing blood-saving strategies would not necessarily
be detrimental to patients. Although the NSQIP database contains high-quality data,
information on curve types or degrees of deformity is missing and cannot be used as input
parameters; thus, whether these data can improve the model’s performance is unknown.
Another limitation is that NSQIP does not quantify the total units of RBCs given. The
transfusion of one versus multiple units of blood reflects different patient profiles and
circumstances; as such, it is unclear as to whether our model would perform differently
when predicting single versus multiple transfusions. Not knowing the specific threshold
for transfusion initiation is also a limiting factor. Thresholds of <7 g/dL or <8 g/dL
may result in different transfusion rates and practices among surgeons or centers; thus,
the model needs to be interpreted within each context. Ultimately, the development
and implementation of predictive algorithms should be unique to each institution and
target population.

5. Conclusions

Different ANN models were tested for their ability to predict perioperative RBC
transfusion after surgery for ASD. One of the models achieved high sensitivity, being
able to correctly classify 80% of patients needing a transfusion. Further research and
external validation is needed. These advanced models may allow the identification of
at-risk patients, potentially decrease the risk of transfusion via strategic planning, and
improve resource allocation.
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