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Abstract: Conjugation of phytohormones with glucose is a means of modulating their activities,
which can be rapidly reversed by the action of β-glucosidases. Evaluation of previously characterized
recombinant rice β-glucosidases found that nearly all could hydrolyze abscisic acid glucose ester
(ABA-GE). Os4BGlu12 and Os4BGlu13, which are known to act on other phytohormones, had
the highest activity. We expressed Os4BGlu12, Os4BGlu13 and other members of a highly similar
rice chromosome 4 gene cluster (Os4BGlu9, Os4BGlu10 and Os4BGlu11) in transgenic Arabidopsis.
Extracts of transgenic lines expressing each of the five genes had higher β-glucosidase activities on
ABA-GE and gibberellin A4 glucose ester (GA4-GE). The β-glucosidase expression lines exhibited
longer root and shoot lengths than control plants in response to salt and drought stress. Fusions of
each of these proteins with green fluorescent protein localized near the plasma membrane and in the
apoplast in tobacco leaf epithelial cells. The action of these extracellular β-glucosidases on multiple
phytohormones suggests they may modulate the interactions between these phytohormones.

Keywords: abscisic acid; β-Glucosidase; glycosylation; Oryza sativa; phytohormone conjugates

1. Introduction

β-Glucosidases (EC. 3.2.1.21, β-D-glucopyranosidases) are enzymes that hydrolyze
glycosidic linkages to release glucose from the non-reducing termini of oligosaccharides
and aryl and alkyl glucosides [1]. β-Glucosidases have been found in wide range of living
organisms, from bacteria and archaea to multicellular eukaryotes, including mammals
and plants. A number of crucial biological reactions in living cell are catalyzed by these
enzymes, particularly in plants [2].

Among β-glucosidase enzymatic abilities, hydrolysis of plant phytohormone glyco-
conjugates was addressed in this study. Abscisic acid (ABA) is a crucial plant phytohor-
mone playing a role in biological processes, especially responses to adverse stresses, such
as drought, salinity, cold and pathogen attack [3]. In planta, the ABA level is regulated
by biosynthesis and catabolism [4]. In the de novo biosynthesis of ABA, zeaxanthin is
generated at plastids and consequently changed to xanthoxin. It then translocates from
the plastids to the cytoplasm and is converted to ABA. The translocation of ABA between
cells, tissues and organs also plays an important role in whole plant physiological response
to stress conditions. ABA is a weak acid, which can diffuse passively across biological
membranes when it is protonated [5], but membrane transporters have been identified for
transport between the neutral cytoplasm and the acidic apoplast [4]. Since accumulation of
de novo synthesized ABA negatively affects the biological function of plant cells, ABA is
metabolized to control its level.

One process that controls the activity and localization of ABA is glycosylation to form
ABA glucose ester (ABA-GE) [4,6]. In Arabidopsis, ABA can be converted to ABA-GE by
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UDP-glucosyltransferase 71C5 to allow storage in membranous organelles, including the
endoplasmic reticulum and vacuoles [7–9]. To increase the level of ABA in response to
abiotic stress, such as cold, water-deficiency and salt, ABA-GE can be hydrolyzed to release
free ABA, which can pass through membranes from acidic compartments, like the apoplast
and vacuole, to enter the cytoplasm [10]. β-Glucosidase was reported to release ABA
from the physiologically inactive ABA-GE pool in the leaf apoplast [11]. An Arabidopsis
β-glucosidase (AtBG1) was found to hydrolyze ABA-GE to release free ABA [12]. Loss
of AtBG1 affected stomata closure, and resulted in early germination and sensitivity to
abiotic stress. AtBG1 was localized to the ER, and ABA immunoreactivity was reported
to accumulate in the cytoplasm near ER tubules [13]. Heterologous expression of AtBG1
in creeping bent grass increased ABA levels and enhanced drought tolerance compared
with wild type [14]. A second Arabidopsis β-glucosidase (AtBG2), which is localized in the
vacuole, was also found to hydrolyze ABA-GE to produce free ABA during dehydration
stress [10].

The rice genome contains over 30 glycoside hydrolase family 1 (GH1) genes encod-
ing β-glucosidases and their homologues, including β-mannosidases and transglucosi-
dases [2,15]. The rice GH1 enzymes were given names based on their gene location with a
chromosome number (Os1-12) and a running number starting from the top of chromosome
1 to the end of chromosome 12 (BGlu1-38) [15]. They were divided into eight phylogenetic
clusters which contained both Arabidopsis and rice proteins, At/Os1 to 8, based on protein
sequence similarity (Figure 1A). Initial studies indicated that several of these enzymes have
activity on cell-wall-derived oligosaccharides, as well as assorted glucosides, and a few
were reported to show significant transglycosylation activity [15–17]. Later, Os9BGlu31
was found to have much higher ability to transfer glucose between substrates, including
acidic phytohormones, than to hydrolyze glucosides [18]. Among rice β-glucosidases that
act on phytohormones, Os4BGlu13 was found to hydrolyze tuberonic acid (TA) glucoside
(TAG) to release active TA, leading to its designation as Oryza sativa TAG β-glucosidase 1
(OsTAGG1) [19]. The closely related isoenzyme Os4BGlu12 was also found to hydrolyze
TAG and was designated TAGG2, but was later found to hydrolyze salicylic acid (SA)
glucoside (SAG) more efficiently [20,21]. Hua et al. (2015) reported that Os4BGlu13 also
hydrolyzes gibberellin A4 glucose ester (GA4-GE), in addition to SAG and TAG [22].

Although it is known that some enzymes can hydrolyze ABA-GE in plants like
Arabidopsis [10,12], it is not clear how many enzymes in one plant are capable of this
function. To assess which rice β-glucosidases may act on ABA-GE, we screened several
GH1 enzymes recombinantly expressed in Escherichia coli for ABA-GE hydrolysis. Although
most of these enzymes hydrolyze ABA-GE, we found that Os4BGlu12 and Os4BGlu13
hydrolyzed ABA-GE better than the other rice β-glucosidases tested. A set of closely
related rice β-glucosidases, belonging to GH1 phylogenetic cluster At/Os7, were found to
hydrolyze ABA-GE via exogenous expression in Arabidopsis and their green fluorescent
protein (GFP)-tagged proteins were localized near the plasma membrane and cell wall when
expressed in tobacco leaves. Expression of these enzymes also modulated the response of
the transgenic Arabidopsis to salt and drought stress.
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Figure 1. Phylogenetic and genomic relationships between rice family GH1 cluster At/Os7 genes. (A) Phylogenetic tree 
showing the relationship of the predicted protein sequences of rice and Arabidopsis GH1 genes falling in At/Os7 and 
previously characterized Arabidopsis ABA-GE β-glucosidases (AtBG1 and AtBG2) and other At/Os phylogenetic clusters 
and two Arabidopsis specific clusters (At I and At II). Characterized rice proteins in other clusters, including those assayed 
for ABA-GE hydrolysis, and Arabidopsis SENSITIVE TO FREEZING2 (SFR2) and rice galactolipid transgalactosidase are 
labeled on unexpanded clusters. (B) Genomic map of the section on chromosome 4 containing Os4BGlu9-13. 

2. Results 
2.1. Hydrolysis of ABA-GE by Rice Enzymes Belonging to GH1 Family 

To identify which enzymes may hydrolyze ABA-GE, several GH1 β-glucosidases ex-
pressed in E. coli were screened. Rice Os4BGlu12, Os4BGlu13, Os1BGlu4, Os3BGlu7, 
Os4BGlu18, Os3BGlu6, Os7BGlu26, Os9BGlu31 and barley βII showed activity with ABA-
GE, albeit low in some cases, as shown in Table 1. Os4BGlu12 and Os4BGlu13, which have 
previously been shown to hydrolyze other phytohormone gluco-conjugates [19–22], 
showed the highest hydrolysis activity with ABA-GE. It was noted that Os4BGlu12 and 
Os4BGlu13 belong to GH1 phylogenetic cluster At/Os7, which also contains Os4BGlu9, 
Os4BGlu10 and Os4BGlu11, the genes for which are found within 60 kb of those for 
Os4BGlu12 and Os4BGlu13 on rice chromosome 4, suggesting a repetitive gene duplica-
tion (Figure 1) and genes that might have redundant or similar functions. However, at-
tempts to express Os4BGlu9, Os4BGlu10 and Os4BGlu11 in E. coli failed to produce active 
enzymes (data not shown), so their activities could not be explored in the same manner. 

  

Figure 1. Phylogenetic and genomic relationships between rice family GH1 cluster At/Os7 genes. (A)
Phylogenetic tree showing the relationship of the predicted protein sequences of rice and Arabidopsis
GH1 genes falling in At/Os7 and previously characterized Arabidopsis ABA-GE β-glucosidases
(AtBG1 and AtBG2) and other At/Os phylogenetic clusters and two Arabidopsis specific clusters (At
I and At II). Characterized rice proteins in other clusters, including those assayed for ABA-GE hydrol-
ysis, and Arabidopsis SENSITIVE TO FREEZING2 (SFR2) and rice galactolipid transgalactosidase
are labeled on unexpanded clusters. (B) Genomic map of the section on chromosome 4 containing
Os4BGlu9-13.

2. Results
2.1. Hydrolysis of ABA-GE by Rice Enzymes Belonging to GH1 Family

To identify which enzymes may hydrolyze ABA-GE, several GH1 β-glucosidases
expressed in E. coli were screened. Rice Os4BGlu12, Os4BGlu13, Os1BGlu4, Os3BGlu7,
Os4BGlu18, Os3BGlu6, Os7BGlu26, Os9BGlu31 and barley βII showed activity with ABA-
GE, albeit low in some cases, as shown in Table 1. Os4BGlu12 and Os4BGlu13, which
have previously been shown to hydrolyze other phytohormone gluco-conjugates [19–22],
showed the highest hydrolysis activity with ABA-GE. It was noted that Os4BGlu12 and
Os4BGlu13 belong to GH1 phylogenetic cluster At/Os7, which also contains Os4BGlu9,
Os4BGlu10 and Os4BGlu11, the genes for which are found within 60 kb of those for
Os4BGlu12 and Os4BGlu13 on rice chromosome 4, suggesting a repetitive gene duplication
(Figure 1) and genes that might have redundant or similar functions. However, attempts to
express Os4BGlu9, Os4BGlu10 and Os4BGlu11 in E. coli failed to produce active enzymes
(data not shown), so their activities could not be explored in the same manner.
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Table 1. ABA-GE hydrolysis activity of rice and barley GH1 β-glucosidases produced by recombinant
expression in E. coli. The activities were assayed by incubating 0.25 µg of enzyme with 1 mM ABA-GE
in 50 mM buffer (sodium acetate, pH 5) at 30 ◦C for 30 min.

β-Glucosidase Specific Activity
(µM·mg−1·min−1)

Os4BGlu13 1.63 × 10−3 ± 0.005
Os4BGlu12 1.54 × 10−3 ± 0.027
Os1BGlu4 1.31 × 10−3 ± 0.019
Os3BGlu7 1.18 × 10−3 ± 0.040

Os4BGlu18 1.16 × 10−3 ± 0.026
Barley βII 0.57 × 10−3 ± 0.008
Os3BGlu6 0.39 × 10−3 ± 0.004

Os7BGlu26 0.11 × 10−3 ± 0.009
Os9BGlu31 0.06 × 10−3 ± 0.004

2.2. Kinetic Analysis of Os4BGlu12 and Os4BGlu13 Hydrolysis of ABA-GE

Kinetic parameters for hydrolysis of ABA-GE were determined for Os4BGlu12 and
Os4BGlu13 (Table 2). Os4BGlu13 has higher catalytic efficiency (kcat/KM = 12.4 mM−1s−1)
for hydrolysis of ABA-GE than Os4BGlu12 (kcat/KM = 0.689 mM−1s−1). This reflects the
6-fold lower KM and 2.7-fold higher kcat of Os4BGlu13 compared to Os4BGlu12.

Table 2. Kinetic parameters of Os4BGlu12 and Os4BGlu13 for hydrolysis of ABA-GE.

β-Glucosidase KM (mM) kcat (s−1) kcat/KM (mM−1s−1)

Os4BGlu12 10.9 ± 0.9 7.50 ± 0.0002 0.689
Os4BGlu13 1.66 ± 0.09 20.6 ± 0.5 12.4

2.3. Subcellular Localization Examination of Rice β-Glucosidases Os4BGlu9, Os4BGlu10,
Os4BGlu11, Os4BGlu12 and Os4BGlu13

Nicotiana benthamiana leaves co-infiltrated with expression vectors producing rice
β-glucosidase-GFP fusions and red fluorescent protein (RFP)-Korrigan exhibited partially
overlapping signals between the GFP and RFP signals (Figure 2). The red Kor signal is
expected to be anchored to the inner surface of the plasma membrane, thereby marking
the plasma membrane position. Most of the green signals appeared to colocalize with
the plasma membrane and cell wall. This fluorescence microscopy of the fusion proteins
supports the localization of Os4BGlu9, Os4BGlu10, Os4BGlu11, Os4BGlu12 and Os4BGlu13
in the apoplast near the plasma membrane and cell wall, although some may have been
localized to intracellular organelles, such as endoplasmic reticulum, that was pressed
tightly against the cell membrane.

To clarify the localization further, we established rice lines expressing Os4BGlu10 and
Os4BGlu13 with GFP fused to their C-termini. The Os4BGlu10-GFP and Os4BGlu13-GFP
green signals colocalized with the plasma membrane marker FM4-64 (Supplementary
Figure S1A–H). Upon plasmolysis to separate the plasma membrane from the cell wall,
the bulk of the green fluorescent signal colocalized with the membrane, but a significant
portion was left in the cell wall (Supplementary Figure S1I–P), suggesting partitioning
between the membrane and cell wall.
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trated into the leaves with pCaMV35S:Os4BGlu9-GFP (A), pCaMV35S:Os4BGlu10GFP (B), pCaMV35S:Os4BGlu11-GFP 
(C), pCaMV35S: Os4BGlu12- GFP (D) and pCaMV35S:Os4BGlu13-GFP (E). At 3-4 days after infiltration, the epidermal 
cells were plasmolyzed by infiltrating 0.8 M mannitol. Microscope images were captured at 10 min after the infiltration of 
leaves with mannitol by confocal scanning microscopy. For each gene, the images are from left to right: GFP fluorescence, 
RFP fluorescence, light microscopy, and merged images. Bars = 30 µm (A,B), 15 µm (C–E). 
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pected band amplified for each specific rice gene in the respective expression line, and no 
band for rice β-glucosidase expression was detected in wild-type lines. 

Figure 2. Subcellular localization of rice GH1 At/Os7 proteins in tobacco epithelial cells. Os4BGlu9-
GFP, Os4BGlu10-GFP, Os4BGlu11-GFP, Os4BGlu2-GFP and Os4BGlu13-GFP co-infiltrated with
RFP-KOR1 were transiently expressed in N. benthamiana leaves. The Arabidopsis Korrigan1
(AT5G49720) gene expression construct pCaMV35S:RFP-KOR1 was co-infiltrated into the leaves with
pCaMV35S:Os4BGlu9-GFP (A), pCaMV35S:Os4BGlu10GFP (B), pCaMV35S:Os4BGlu11-GFP (C),
pCaMV35S: Os4BGlu12- GFP (D) and pCaMV35S:Os4BGlu13-GFP (E). At 3-4 days after infiltration,
the epidermal cells were plasmolyzed by infiltrating 0.8 M mannitol. Microscope images were
captured at 10 min after the infiltration of leaves with mannitol by confocal scanning microscopy. For
each gene, the images are from left to right: GFP fluorescence, RFP fluorescence, light microscopy,
and merged images. Bars = 30 µm (A,B), 15 µm (C–E).

2.4. Generation of Transgenic Arabidopsis Plants Expressing Rice β-Glucosidases

The pH7FWG2 expression vectors containing the Os4BGlu9, Os4BGlu10, Os4BGlu11,
Os4BGlu12 or Os4BGlu13 cDNA under control of the CaMV35S promoter (Figure 3A) were
transformed into Arabidopsis thaliana Col-0 and selected to obtain homozygous transgenic
Arabidopsis lines expressing rice β-glucosidases. RT-PCR (Figure 3B) gave the expected
band amplified for each specific rice gene in the respective expression line, and no band for
rice β-glucosidase expression was detected in wild-type lines.
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Cloned full-length cDNAs including partial sequence of 5′ and 3′ untranslated regions were inserted under the control of 
the pCaMV35S promoter. LB and RB, left and right borders of T-DNA; HPT II, hygromycin phosphotransferase II gene. 
(B) RT-PCR analysis of β-glucosidases gene expression in Arabidopsis thaliana wild type ecotype Col-0 to two independent 
lines of transgenic Arabidopsis expressing rice β-glucosidases Os4BGlu9, Os4BGlu10, Os4BGlu11, Os4BGlu12 and 
Os4BGlu13, respectively. 
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glucosidases, the lines of transgenic Arabidopsis expressing Os4BGlu10-13 showed al-
most two-fold the activity of wild type on pNPGlc, while extracts of the lines expressing 
Os4BGlu9 had 10-40% higher activity than those of the control plants. 

 
Figure 4. Hydrolysis of ABA-GE, GA4-GE and pNPGlc by plant extracts. Hydrolysis activity of extracts of wild type Col-
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Figure 3. Heterologous expression of rice GH1 Cluster At/Os7 genes in Arabidopsis. (A) Schematic diagram of expression
vectors in which Os4BGluX represents the cDNA for Os4BGlu9, Os4BGlu10, Os4BGlu11, Os4BGlu12 or Os4BGlu13.
Cloned full-length cDNAs including partial sequence of 5′ and 3′ untranslated regions were inserted under the control
of the pCaMV35S promoter. LB and RB, left and right borders of T-DNA; HPT II, hygromycin phosphotransferase II
gene. (B) RT-PCR analysis of β-glucosidases gene expression in Arabidopsis thaliana wild type ecotype Col-0 to two
independent lines of transgenic Arabidopsis expressing rice β-glucosidases Os4BGlu9, Os4BGlu10, Os4BGlu11, Os4BGlu12
and Os4BGlu13, respectively.

2.5. In Vitro Hydrolysis of pNPGlc, ABA-GE and GA4-GE by Extracts of Transgenic Arabidopsis
Expressing Rice β-Glucosidases

The extracts of the two independent lines of transgenic Arabidopsis expressing rice β-
glucosidases Os4BGlu9, Os4BGlu10, Os4BGlu11, Os4BGlu12 and Os4BGlu13 had higher hy-
drolysis activity with the synthetic substrate p-nitrophenyl- β-D-glucopyranoside (pNPGlc)
than the wild type plant extracts, although for the Os4BGlu9 lines, the difference was
not significant (Figure 4A). Among the extracts of plants expressing rice β-glucosidases,
the lines of transgenic Arabidopsis expressing Os4BGlu10-13 showed almost two-fold
the activity of wild type on pNPGlc, while extracts of the lines expressing Os4BGlu9 had
10–40% higher activity than those of the control plants.
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Figure 4. Hydrolysis of ABA-GE, GA4-GE and pNPGlc by plant extracts. Hydrolysis activity of extracts of wild type
Col-0 Arabidopsis and transgenic Arabidopsis expressing rice β-glucosidase with pNPGlc (A), ABA-GE (B) and GA4-GE
(C). Two independent lines of transgenic Arabidopsis expressing rice β-glucosidases Os4BGlu9-13 were grown under the
same conditions. Three separate plant extracts were made for each line and extracts were incubated at 30 ◦C for 4 h in
each substrate reaction. The asterisks (*) above the bars indicate significant differences from both control lines with a
p-value < 0.05.
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Since the Os4BGlu12 and Os4BGlu13 expressed in E. coli had high activity on ABA-
GE and Os4BGlu13 was previously shown to have high activity on GA4-GE [22], we
tested the extracts activities on these two phytohormone glucose-conjugates (Figure 4B,C).
The extracts of the two independent lines of transgenic Arabidopsis expressing rice β-
glucosidases Os4BGlu12 and 13 had the highest hydrolysis activities for ABA-GE and
GA4-GE (approximately 2.3–4 times that of control plants), while extracts from plants
expressing Os4BGlu9-11 had 1.5–3 times the activity of controls. Clearly, expression of each
gene increased the phytohormone glucose ester β-glucosidase activity in the plant.

2.6. Growth of Arabidopsis Seedlings Expressing Rice β-Glucosidases upon Stress Treatments

Since ABA is known to be crucial in salt stress and drought response [3–5], we tested
the response to NaCl and PEG stress of Arabidopsis lines expressing rice β-glucosidases.
Under unstressed conditions, the lines expressing rice β-glucosidases were indistinguish-
able from wild type plants (Supplementary Figure S2). Salt (125 mM NaCl) and drought
(20% PEG8000) stress shortened the roots and shoots in wild type plants, but this ef-
fect was significantly smaller for the transgenic plants heterologously expressing the rice
β-glucosidases (Figure 5).
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both control lines with p < 0.05. 

Figure 5. Effect of NaCl and osmotic stress on wild type and rice β-glucosidase-expressing Arabidopsis seedling roots
and shoots. Control Arabidopsis plants and plants expressing Os4BGlu9-13 were grown on 1/2 MS plates for 7 d and
transplanted to 1/2 MS containing 125 mM NaCl (A,C) or 20% PEG (B) for 5 d. To quantify growth response, root and shoot
lengths were measured in three independent sets of 20 plants each for each line. White and black bars represent two lines of
plants with heterologous expression of the same gene. Asterisks (*) above the bars indicate a significant difference from
both control lines with p < 0.05.

3. Discussion

Based on protein sequence similarity, Os4BGlu9, Os4BGlu10, Os4BGlu11, Os4BGlu12
and Os4BGlu13 are closely related and fall into a rice chromosome 4-specific subclade
of the protein-sequence-based phylogenetic cluster At/Os7 (Figure 1) [15]. Among these,
Os4BGlu12 and Os4BGlu13 are two of the rice β-glucosidases that have been produced by
recombinant expression in E. coli. Both of these enzymes have been isolated from plants
based on their hydrolysis of tuberonic acid glucoside and have been shown to hydrolyze the
glucoside of the phytohormone SA, in addition to cell wall derived oligosaccharides [17,19–21].
Os4BGlu13 was also isolated from rice plants based on its ability to hydrolyze GA4-GE [22].
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Although two β-glucosidases, AtBG1 and AtBG2, have been identified to act on ABA-
GE in Arabidopsis [10,12], no clear orthologues of these enzymes have been identified in
rice. The rice β-glucosidases Os1BGlu4, Os3BGlu7, Os4BGlu12, Os4BGlu13, Os4BGlu18
and Os7BGlu26 that were expressed in E. coli had significant activity to release glucose
from ABA-GE, with Os4BGlu13 and Os4BGlu12 exhibiting highest hydrolysis activity.
Although Os9BGlu31 has little activity to release glucose, it is known to transglycosylate
acidic phytohormones [18], allowing us to use it to produce ABA-GE. This result suggests
several β-glucosidase isoenzymes may affect ABA-GE metabolism in the plant, although
knockouts of single genes have been shown to have significant effects on ABA metabolism
and stress response [10,12]. Os7BGlu26 β-mannosidase had >10-fold lower activity than
most of the other GH1 hydrolases tested, indicating some GH1 hydrolases have relatively
little activity against ABA-GE, despite its wide acceptability as a substrate.

Recently, Os3BGlu6 expression was shown to modulate ABA-GE levels in the plant
and affect ABA-related plant traits, and its overexpression increased ABA-GE hydrolysis
activity in rice leaf extracts [23], although it had relatively low level of activity on ABA-GE
in our assay. The dwarf phenotype of the Os3BGlu6 knockout line in that report suggests
that it may increase plant growth via release of GA from GA4-GE, upon which it has high
activity [24]. The relatively high levels of activity of Os4BGlu12 and Os4BGlu13 supplement
the previous investigations showing their hydrolysis activity toward phytohormone gluco-
conjugates. Recently, knockout mutation of Os4BGlu10 provided evidence for its role in
ABA-GE metabolism, as well [25]. Thus, we hypothesized a role for rice GH1 phylogenetic
cluster At/Os7 enzymes as phytohormone glucoconjugate β-glucosidases, particularly
those in the closely related subclade of genes on rice chromosome 4 (Os4BGlu9-13).

Kinetic characterization of hydrolysis of ABA-GE indicated Os4BGlu13 had an 18-fold
higher kcat/KM value with ABA-GE than Os4BGlu12. Since the levels of ABA-GE in the
plant are expected to remain much below the KM values of these enzymes, these kcat/KM
values would reflect the relative rates of hydrolysis in the plant, suggesting that, in principle,
expression of Os4BGlu13 could have a greater effect on ABA-GE levels than Os4BGlu12.
The kcat/KM of Os4BGlu13 for ABA-GE of 12.4 mM−1s−1 is higher than that for TAG
(6.68 mM−1s−1), GA4-GE (3.63 mM−1s−1) and SAG (0.88 mM−1s−1) [23], indicating higher
specificity for ABA-GE. Nonetheless, the similar values for these different phytohormones
suggest that Os4BGlu13 could act on multiple phytohormone conjugates in the plant,
including ABA-GE. The expression of Os4BGlu9-13 in Arabidopsis also increased ABA-GE
and GA4-GE hydrolysis more than that of the general synthetic substrate p-nitrophenyl-β-
D-glucoside, suggesting they are selective for the phytohormone glucose esters.

Among the proteins encoded in the rice genome, the sequence of Os4BGlu12 was the
most similar to that of a rice cell wall β-glucosidase determined by protein sequencing,
suggesting it is localized to the cell wall [15,25]. The fluorescence observed from Os4BGlu9-
GFP, Os4BGlu10-GFP, Os4BGlu11-GFP, Os4BGlu12-GFP and Os4BGlu13-GFP relative
to RFP-KOR1 in N. benthamiana leaf epithelial cells and also from Os4BGlu10-GFP and
Os4BGlu13-GFP in coleoptile cells of transgenic rice by confocal microscopy supports the
localization of these β-glucosidases in the apoplast between the plasma membrane and
cell wall, although some may also be localized in organelles close to the plasma membrane.
Overexpression of the secreted β-glucosidases in the plant may increase the enzyme level
throughout the secretory pathway, from the endoplasmic reticulum (ER) to the Golgi
and apoplast. The fact that Os4BGlu12 and Os4BGlu13 are produced in active form in
E. coli without eukaryotic posttranslational modification, suggests the enzymes could be
active upon folding in the ER. Os4BGlu12 and Os4BGlu13 have pH optima around pH
5 and low activity at the neutral pH of the ER and Golgi [15,19,24], so they may have a
relatively small effect on β-glucosidase activity in these compartments. Nevertheless, over
production of secreted β-glucosidase might affect pools of ABA-GE sequestered in the
ER [4,7], as well as those in the apoplast, if the enzyme concentration is increased in the
intracellular compartment.
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At first, we had expected transgenic Arabidopsis seedlings expressing Os4BGlu9-13
might have shorter shoots and stems due to release of ABA from ABA-GE [26]. However,
ABA can have positive effects on root and shoot lengths at low concentration but negative
effects at high concentration [27,28]. It is worth noting that GH1 enzymes have been
shown to catalyze transglycosylation as well as hydrolysis [18], suggesting that in some
conditions these enzymes may catalyze a net glycosylation of the phytohormone, rather
than deglycosylation.

ABA is known to mediate the response to abiotic stresses, including the NaCl re-
sponse [29]. The rice β-glucosidase expression lines had root and shoot lengths longer than
control plants after growth in 125 mM NaCl (Figure 5A,C), supporting the idea that rice
β-glucosidases in family GH1 phylogenetic cluster At/Os7 are involved in stress responses.
In the case of drought stress, simulated by PEG osmotic stress, roots and shoots of the
β-glucosidase expression lines were significantly longer than those of wild type, as well
(Figure 5B). An Os4BGlu10 knockout rice line characterized by Ren and colleagues [30]
showed decreased tolerance to salt and drought stress, consistent with the expression of
Os4BGlu10 and its homologues in Arabidopsis improving salt stress resistance.

ABA and gibberellins (GAs) are generally thought to have antagonistic roles in plant
development and response to stress [31]. For instance, a gain of function mutant of the
Gibberellic Acid Insensitive (GAI) DELLA protein, a negative regulator of GA signaling,
was shown to cause improved resistance to drought, by decreasing stomata aperture in the
presence of ABA [32]. It apparently interacts with the ABA signaling positive regulator
ABF2 (ABA-responsive element binding transcription factor 2), revealing the crosstalk
between ABA and GA in response to drought tolerance. This finding hints at a fine-tuned
balance between signaling of different phytohormones in response to environmental stress.
The presence of β-glucosidases that can activate the glucosylated storage forms of multiple
phytohormones may provide a way to buffer the effects of these pathways to help maintain
that balance.

In summary, several rice β-glucosidases have the ability to hydrolyze ABA-GE, some
of which are known to act on other phytohormone gluco-conjugates. Rice family GH1
phylogenetic cluster At/Os7 members Os4BGlu9, Os4BGlu10, Os4BGlu11, Os4BGlu12
and Os4BGlu13 are β-glucosidases located around the cell wall. Based on their activities
in plant extracts, these enzymes may hydrolyze ABA-GE and GA4-GE in the apoplast to
release free phytohormones that may then enter into the cell. The action of these enzymes
on multiple phytohormones may help fine-tune the response to stress and phytohormones
and suggests intricate regulation of phytohormone activity by the enzymes involved in
glycosylation and deglycosylation.

4. Materials and Methods
4.1. Production of ABA-GE by Os9BGlu31 Transglucosidase

Os9BGlu31 transglycosidase was produced as previously described [18] and used to
transfer glucose from pNPGlc to ABA to generate ABA-GE (Patent pending Thai patent
application 1801003832). Briefly, 10 µg of Os9BGlu31 enzyme catalyzed the reaction of
10 mM ABA with 10 mM pNPGlc in citrate buffer, pH 4.5, at 37 ◦C overnight. The reac-
tion was stopped by boiling for 5 min. The ABA-GE product was purified by silica gel
chromatography in 8% methanol 2% acetic acid and C18 reverse phase chromatography
with increasing methanol in water. The identity and purity of the ABA-GE was verified by
Nuclear Magnetic Resonance (NMR) and Ultra-High Performance Liquid Chromatogra-
phy (UHPLC).

4.2. The Hydrolysis Activity of Rice GH 1 Enzymes toward ABA-GE

The rice enzymes belonging to GH1, including Os1BGlu4 [33], Os3BGlu6 [34], Os3BGlu7 [19],
Os4BGlu12 [15,18], Os4BGlu13 [22], Os4BGlu18 [35], Os7BGlu26 [36], Os9BGlu31 [18] and
barley β2 [36] were expressed and purified by immobilized metal affinity chromatography
(IMAC), as previously described. The purified enzymes were tested for ABA-GE hydrolysis
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in reactions containing 0.5 µg of enzyme with 1 mM ABA-GE in 50 mM sodium acetate,
pH 5.0, incubated at 30 ◦C for 30 min. The reactions were stopped by boiling for 5 min,
and the glucose released was quantified by the peroxidase/glucose oxidase assay method
(PGO assay, Sigma Aldrich, St. Louis, MO, USA) measuring absorbance at 405 nm and
comparing to a glucose standard curve. The blank was a control reaction incubated without
enzyme and processed in the same way.

4.3. Kinetic Study of Os4BGlu12 and Os4BGlu13 with ABA-GE

Os4BGlu12 and Os4BGlu13 were purified by IMAC, followed by cleavage of the N-
terminal thioredoxin and His6 tags with enterokinase [22]. The fusion tags were removed
by IMAC to yield >90% pure proteins (Supplementary Figure S3). All of kinetic parameters
were determined in triplicate reactions. The assays were done at 30 ◦C in 50 mM sodium
acetate (NaOAc), pH 5. The glucose released was determined as described in the previous
section. A time course was conducted to ensure that initial rates were measured. Kinetic
parameters (KM and Vmax) were calculated by fitting the rate of product formation and
substrate concentrations by nonlinear regression of the Michaelis–Menten curves with
GraFit 5.0. The apparent kcat values were calculated by dividing the Vmax by the total
amount of enzyme in the reaction.

4.4. Subcellular Localization of Os4BGlu-GFP Fusion Proteins in Plant Cells

To determine subcellular localization of rice Os4BGlu9, Os4BGlu10, Os4BGlu11,
Os4BGlu12 and Os4BGlu13, the entire open reading frames of their cDNA sequences
not including the stop codons were amplified by polymerase chain reaction (PCR) with a
proofreading EF-Taq polymerase (SolGent, Daejeon, Korea) and the primers listed in Sup-
plementary Table S1. The respective PCR products were further cloned into the pENTR/D-
TOPO® vector by the supplier’s protocol (Invitrogen, Thermo Fischer Scientific, Waltham,
MA, USA). Afterward, those amplicons were cloned into the binary vector pH7FWG2 [37]
to generate recombinant vectors encoding chimeric proteins that fused the β-glucosidases’
C-termini to GFP with their expression controlled by a CaMV35S promoter. In addition,
a vector encoding RFP fused to Korrigan1 (GenBank: AK318891) was used to provide a
plasma membrane protein marker [38]. All constructs were introduced into N. benthamiana
leaves together with a Tomato Bushy Stunt Virus P19 protein expression vector by an
Agrobacterium-mediated infiltration method [39]. Subcellular localization was monitored at
day 3 to 5 after infiltration under a scanning confocal microscope (LSM 510 META; Carl
Zeiss, Jena, Germany). To monitor GFP, the argon laser was used for excitation at 488 nm
wavelength and GFP filter for emission at 515–530 nm; to monitor RFP and FM4-64: He-Ne
laser for excitation at 543 nm and mChFP filters for emission at 580–700 nm.

For further examination of subcellular localization of the members of the cluster
At/Os7 of GH1 in rice, we cloned Os4BGlu10 and Os4BGlu13 into the pENTR/D-TOPO®

vector, then subcloned in-frame between the maize (Zea mays) Ubiquitin1 promoter and
GFP in the pIPKb002 binary vector, respectively [40]. The final constructs were transformed
into rice callus via Agrobacterium-mediated transformation [41]. Coleoptile samples from
their progeny seedlings 5 days after germination on 1/2 Murashige and Skoog media
containing hygromycin were observed with a confocal microscope (LSM 510 META; Carl
Zeiss GmbH, Jena, Germany). Coleoptile tissues were stained with a plasma membrane
marker FM4-64 (Invitrogen) by the manufacturer’s instructions. Thereafter, 20% sucrose
was added on one side of the coverslip for 5–10 min for plasmolysis.

4.5. Construction of Plant Expression Vectors and Arabidopsis Transformation

Transgenic Arabidopsis plants expressing the 5 rice β-glucosidase proteins were gen-
erated, as described for Os4BGlu14, Os4BGlu16 and Os4BGlu18 by Baiya et al. [39]. Briefly,
the full-length cDNAs were amplified with a Pfu DNA polymerase (SolGent) from japonica
rice (cv. Nipponbare) cDNA clones (J013092D04 for Os4BGlu9, accession number AK066908;
J013041M21 for Os4BGlu10, accession number AK065793; J090089B01 for Os4BGlu11, ac-
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cession number AK242955; J023122G03 for Os4BGlu12, accession number AK100820; and
J023066D17 for Os4BGlu13 accession number AK070962), which were ordered from the
Knowledge-based Oryza Molecular biological Encyclopedia (KOME) [42]. The primer pairs
used for PCR amplification are given in Supplementary Table S1. The respective PCR
products were cloned into the pENTR/D-TOPO vector and the inserts were verified by
sequencing. The cDNA inserts were cloned via LR clonase recombination (Invitrogen,
Thermo Fischer Scientific) into the Gateway binary vector pGWB502, containing CaMV35S
promoter. All recombinant binary vectors for expression were introduced into A. tumefa-
ciens strain GV3101 by electroporation and subsequently transformed into Arabidopsis
plant ecotype Columbia (Col-0) by the floral dip method, as described by Clough and
Bent [43]. The T1 transformants were selected on plates containing 25 mg/L hygromycin.
The homozygous transgenic plants were selected by choosing T3 transformants from T2
parents from which >99% of seeds germinated on hygromycin.

4.6. RNA Isolation and RT-PCR Analysis

Gene expression levels were validated in 1-month-old leaves of the two independent
transgenic Arabidopsis lines expressing one of the 5 β-glucosidase genes of the At/Os7
phylogenetic cluster. Three to four leaves were detached from a single plant and ground
in liquid nitrogen. Total RNA was extracted from 10 mg of the powdered leaf sample in
TRIzol Reagent, as described in the company protocol (Thermo Fischer Scientific). The
RNA concentration was determined from 260 nm absorbance and 1 µg was used for reverse
transcription. The isolated RNA extracts were reverse-transcribed in 20 µL reactions with
an oligo-dT primer and a First Strand cDNA Synthesis Kit (Roche, Mannheim, Germany).
The first-strand cDNAs (1 µL) were used as templates in the PCR with the primers listed
in Supplementary Table S1. PCR reactions using Taq polymerase were conducted for
28–35 cycles, depending on the gene expression level. The Arabidopsis ubiquitin gene-
specific primers were used as the internal control [44]. PCR products were visualized by
agarose gel electrophoresis with ethidium bromide staining.

4.7. Growth and Treatments of Transgenic Arabidopsis

Two independent lines of transgenic Arabidopsis expressing rice β-glucosidases
Os4BGlu9, Os4BGlu10, Os4BGlu11, Os4BGlu12, Os4BGlu13 and control plants were grown.
Seeds were surface sterilized with 80% ethanol for 20 min followed by 10% Clorox, and
washed with water 5 times. They were grown on 1/2 MS (HiMedia, Mumbai, India)
containing 1% (w/v) sucrose and 1% (w/v) phytagel (HiMedia). The lines were grown at
23 ◦C in a culture room 16-h/8/h light/dark cycle under fluorescent lamps.

To test whether heterologous expression of the rice β-glucosidases affects NaCl and
osmotic stress responses, plants were grown in 1/2 MS medium for 7 days and transplanted
to 1/2 MS containing 125 mM NaCl or 20% PEG (molecular weight 8000; Sigma-Aldrich,
St Louis, MO, USA). Water potential was lowered by pouring approximately 20 mL of PEG
solution on top of an equal volume of solidified nutrient agar in a Petri plate, according
to a previously described protocol [45]. MES buffer was added to stabilize the pH of the
media. Root and shoot growth were measured 5 days after the plants were transplanted.
To quantify root and shoot lengths at the end of each treatment, three independent sets of
20 plants each were measured for each line.

4.8. Extraction of Total Protein from Transgenic Arabidopsis and Determination of
β-Glucosidase Activity

Two independent lines of transgenic Arabidopsis expressing rice β-glucosidases
Os4BGlu9, Os4BGlu10, Os4BGlu11, Os4BGlu12, Os4BGlu13 and control plants were grown
on 1/2 MS plates at 23 ◦C in a culture room with 80% relative humidity and a 16-h/8-h
light/dark cycle for 7 days. Three separate extractions were made per line. Fresh Arabidop-
sis seedlings (10 mg) were ground in liquid nitrogen and mixed with 1 mL of lysis buffer
(150 mM NaCl in 20 mM Tris-HCl, pH 8.0, containing 1 mM phenylmethylsulfonyl fluoride)
by vortexing for 5 min, after which they were sonicated with ultrasonic output 40 W and
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ultrasonic frequency 35 kHz (Ultrasonic Bath, DT series, Bandelin, Berlin, Germany) on ice
for 30 min. The suspensions were centrifuged at 20,400× g 10 min, and the supernatant
was analyzed for protein concentration and hydrolysis activities toward pNPGlc, ABA-GE
and GA4-GE. The protein concentrations were assayed by the Bradford method [41] with
bovine serum albumin (BSA) as the standard.

Protein extracts (10 µg of total protein) in lysis buffer were incubated with 1 mM
pNPGlc in 50 mM NaOAc, pH 5, at 30 ◦C for 8 h. The reactions were stopped by adding
2 M sodium carbonate (Na2CO3). The released p-nitrophenol (pNP) was quantified by
measuring the absorbance at 405 nm (A405) with a microplate reader (Thermo Labsystems,
Helsinki, Finland) and comparing to a pNP standard curve.

The hydrolysis of ABA-GE and GA4-GE was determined by similar reactions in 50 mM
NaOAc buffer, pH 5, which were incubated for 4 h at 30 ◦C, then boiled 5 min, and the
glucose was determined with a peroxidase/glucose oxidase-based glucose assay (PGO
assay), as described in Section 4.2.

4.9. Statistical Analysis

Statistical analysis was performed using GraphPad Prism software (GPW7). Data
are plotted as mean ± standard deviation of three biological replicates. To verify the
significance of differences between the Arabidopsis expressing the rice β-glucosidases
with control wild type lines, significance was evaluated via the SPSS statistics software
with one-way ANOVA followed by post hoc Scheffe’s test method at a significance level of
p < 0.05.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijms22147593/s1, Figure S1: Subcellular localization of Os4BGlu10-GFP and Os4BGlu13-
GFP in coleoptile cells of transgenic rice plants, Figure S2: Root and shoot lengths of seedlings of
wild type Arabidopsis and transgenic lines expressing rice β-glucosidases under control conditions,
Figure S3: Sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis of E. coli-expressed
Os4BGlu12 and Os4BGlu13 purified by IMAC and cut with enterokinase, Table S1: PCR primers
used in this study.
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