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NETosis is a multi-facetted cellular process that promotes the formation of neutrophil
extracellular traps (NETs). NETs as web-like structures consist of DNA fibers armed with
granular proteins, histones, and microbicidal peptides, thereby exhibiting pathogen-
immobilizing and antimicrobial attributes that maximize innate immune defenses against
invadingmicrobes.However, clinically relevantpathogensoften tolerateentrapmentandeven
take advantage of the remnants of NETs to cause persistent infections in mammalian hosts.
Here, we briefly summarize how Staphylococcus aureus, a high-priority pathogen and
causative agent of fatal diseases in humans as well as animals, catalyzes and concurrently
exploits NETs during pathogenesis and recurrent infections. Specifically, we focus on
toxigenic and immunomodulatory effector molecules produced by staphylococci that
prime NET formation, and further highlight the molecular and underlying principles of
suicidal NETosis compared to vital NET-formation by viable neutrophils in response to
these stimuli. We also discuss the inflammatory potential of NET-controlled
microenvironments, as excessive expulsion of NETs from activated neutrophils provokes
local tissue injury andmay therefore amplify staphylococcal disease severity in hospitalized or
chronically ill patients.Combinedwith an overviewof adaptationandcounteracting strategies
evolvedbyS.aureus to impedeNET-mediatedkilling, these insightsmaystimulatebiomedical
research activities to uncover novel aspects of NET biology at the host-microbe interface.

Keywords: Staphylococcus aureus, immune evasion, neutrophil extracelluar traps, pathogenesis, NETosis
INTRODUCTION

Polymorphonuclear leukocytes (PMNs or neutrophils) are highly abundant immune cells found in
human or animal blood (1). As part of the innate immune response, neutrophils represent crucial
effector cells that substantially contribute to immune surveillance and the clearance of microbial
infections (1, 2). Of note, neutrophils are recruited in large numbers to infectious foci within minutes
followingpathogen entry as these cells rapidly sensemicrobial signatures aswell as inflammatory signals
org February 2022 | Volume 13 | Article 8362781
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released by injured or damaged host tissues (1–3). Specifically,
neutrophils express an array of cellular receptors including pattern
recognition receptors (PRRs), G protein-coupled receptors
(GPCRs), and Fc receptors that mediate recognition of danger
signals, thereby governing chemotactic routingandextravasationof
PMNs from blood vessel into infected tissues (1, 4). Concurrently,
subcellular signaling cascades downstream of these receptors
initiate pathogen-eradicating processes that encompass
phagocytosis, degranulation, and the biogenesis of reactive
oxygen species (ROS) (4). Moreover, neutrophils may kill
pathogens by the formation of neutrophil extracellular DNA
traps (NETs), an extracellular matrix composed of nuclear and
mitochondrial DNA loaded with cell-specific proteases,
antimicrobial peptides, and granular proteins (5, 6). This
mechanism is of particular importance for controlling infectious
diseases asNETs not only display antimicrobial properties, but also
exhibit pathogen-capturing features that help to limit the
dissemination of microbes in the mammalian host (5, 7).
Nevertheless, clinically relevant pathogens have evolved refined
counteracting strategies that mediate tolerance or even evasion
from extracellular trap-mediated killing (6, 8). A prominent
example is Staphylococcus aureus, a deadly and multidrug-
resistant Gram-positive bacterium that colonizes approximately
30% of the human population (9, 10). This microbe is a very
frequent cause of superficial skin and soft tissue infections as well
as life-threatening diseases including sepsis, septic arthritis,
endocarditis, or pneumonia (10, 11). Notably, S. aureus infection
triggers a conspicuously strong infiltration of neutrophils into
infectious foci which is typically coupled with excessive NET-
formation and the development of large abscesses (7, 12, 13).
Surprisingly though, the antimicrobial repertoire of NETs often
fails to promote clearance of persistent S. aureus infections in
humans or animal hosts (14–17). On the contrary, S. aureus
readily outsmarts neutrophil responses and even exploits NET-
formation to kill bystander immune cells, highlighting the cunning
lifestyle of this microbe (18, 19).

Herein, we briefly summarize the molecular prerequisites of
suicidal NETosis, a distinct form of programmed cell death, and
vital NET-formation by viable neutrophils in response to various
staphylococcal effector molecules. Particularly, we describe how S.
aureus simultaneously provokes and takes advantage of NET
formation during acute and relapsing infections. Further, we
review adaptation strategies of staphylococci that confer tolerance
to NET-mediated entrapment and killing. Finally, we discuss the
pathophysiological potential of NET-controlled infectious foci in
the context of severe and chronic S. aureus diseases, with the overall
aim to stimulate scientific investigations that may lead to the
conception of new therapeutic approaches to fight antibiotic-
resistant S. aureus and other NET-evading pathogens.
MOLECULAR MECHANISMS OF SUICIDAL
NETosis AND VITAL NET FORMATION

The formation of NETs can be initiated by a variety of stimuli
including microorganisms, antibodies, immune complexes,
Frontiers in Immunology | www.frontiersin.org 2
microcrystals, and certain chemicals (6, 20, 21). Various pro-
inflammatory cytokines have also been reported to interfere with
the release of NETs from PMNs (20, 21). For example,
interleukin 1-b (IL-1b), IL-6, IL-8, as well as tumor necrosis
factor alpha (TNF-a) elicit NETs and thus may represent crucial
immunoregulatory effector molecules of the host that
presumably modulate NETosis during specific inflammatory or
infectious diseases (5, 20, 22–27).

To date, two predominant pathways have been described in
detail that lead to the expulsion of NETs from neutrophils:
suicidal (lytic) NETosis, which causes neutrophil cell death,
and vital NET formation that results in the release of NET-
loaded vesicles from viable PMNs (Figure 1) (21, 28). Suicidal
NETosis, a process that provokes NET formation within 3-4
hours post-stimulation (23), largely depends on calcium
signaling along with the protein kinase C (PKC)- or Raf-MEK-
ERK pathway-dependent activation of the membrane-bound
NADPH oxidase, which represents a multisubunit protein
complex that synthesizes ROS for the subsequent activation of
PAD4 (protein-arginine deiminase type 4) (Figure 1) (6, 21, 23,
29, 30). PAD4 is a Ca2+-binding protein and key driver of
NETosis as it causes citrullination of core histone (6, 31).
Particularly, activated PAD4 migrates to the nucleus where it
catalyzes the conversion of positively charged arginine residues
of histones into citrullines, thereby inducing the process of
chromatin decondensation (6, 31). Concurrently, ROS break
down the azurosome, a serine protease- as well as
myeloperoxidase (MPO)-encompassing protein complex found
in neutrophil granules (32). In this manner, azurophilic
proteases (e.g. azurocidin, cathepsin G, and neutrophil elastase
(NE)) as well as MPO are released into the cytosol, where NE
disrupts the actin cytoskeleton and simultaneously traffics
together with MPO to the nucleus, further contributing to
histone degradation and chromatin decondensation (6, 32, 33).
Interestingly, recent work demonstrated that mitochondrial ROS
(mtROS) can also contribute to the phenotype of suicidal
NETosis, particularly in response to S. aureus (34, 35).
Subsequent steps involve disruption of the nuclear cell
envelope and electrostatic interaction of core-derived
decondensed chromatin with cytosolic and granular proteins in
the cytoplasm (Figure 1) (23). In this scenario, the human
cathelicidin LL-37 and its mouse analogue mCRAMP (mouse
cathelicidin related antimicrobial peptide) have been shown to
contribute to the perforation of nuclear membranes in NET-
forming neutrophils (36). Moreover, emerging literature suggests
that NE-processed gasdermin D (GSDM-D), a crucial executor
protein of the pyroptotic cell death pathway (37–39), may also
alter the membrane integrity of PMNs at this stage (30, 40, 41).
Specifically, cleaved GSDM-D displays potent pore-forming and
membrane-damaging capacities and is therefore believed to
puncture the core as well as the plasma membranes of netting
neutrophils, ultimately culminating in the expulsion of
antimicrobial NETs from dying PMNs into the extracellular
space (Figure 1) (30, 37–41). Of note, processed GSDM-D
may further contribute to a non-canonical form of suicidal
NETosis, which occurs exquisitely in response to intracellular
February 2022 | Volume 13 | Article 836278
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Gram-negative bacteria (42). In summary, suicidal NETosis of
neutrophils differs from other cell death mechanisms based on
the specific phenomenon that chromatin decondensation and
disintegration of the nuclear membrane occurs concomitant with
cytoplasmic granule dissolution, allowing the NET components
to mix in the cytoplasm prior to their extracellular release (23).

NET formation can also be induced via a secondary mechanism
which retains PMN integrity and viability by an active release of
DNA-containing vesicles (Figure 1). This process (i.e. vital NET
formation; sometimes referred to as vesicular NETosis) is mainly
NADPH oxidase-independent and rapidly occurs within less than
hour upon stimulation (43, 44). Activation of vital NET formation
involves complement-mediated pathogen opsonization or sensing
via toll-like receptors (TLRs) (44). Particularly, Clark and colleagues
have initially shown that TLR-4-activated platelets trigger vital NET
formation in order to capture bacteria in septic blood (45), while
subsequent in vitro and in vivo work by the same laboratory
demonstrated vital NET release and involvement of TLR-2 and
complement receptor 3 upon neutrophil stimulation with Gram-
positive bacteria (7, 43). Similar to suicidal NETosis, vital NET
formation has also been shown to be partially dependent on calcium
influx and activated PAD4 and NE, both of which migrate to the
nucleus to initiate unpacking of histones and chromatin
decondensation (Figure 1) (28, 46). Subsequently, nuclear
envelope blebbing leads to the formation of DNA-containing
vesicles that eventually fuse with the plasma membrane to expel
Frontiers in Immunology | www.frontiersin.org 3
their antimicrobial content into the extracellular space (Figure 1)
(44). Notably, this process does not damage the plasma membrane
so that neutrophils initially maintain their ability to migrate and
phagocytose microbial invaders (7, 43). At later stages, however, the
nuclear membranemay rupture thereby causing an accumulation of
chromatin fibers in the cytosol (43). Thus, vital NET formation may
indirectly be coupled with suicidal NETosis and lytic NET
formation respectively. In this regard, we finally note that a
specific form of vital NET formation involves a rapid release of
mitochondrial DNA (mtDNA) from viable PMNs (47). Opposed to
the canonical pathway of vital NET formation, this form of vital
NET release requires the activity of the NADPH oxidase along with
granulocyte-macrophage colony-stimulating factor (GM-CSF)-
mediated priming of neutrophils, followed by subsequent
stimulation by complement factor 5a (C5a) or lipopolysaccharide
(LPS) (47). Yet, mechanistic details and the exact role of this form of
vital NET release during infectious diseases or other
pathophysiological conditions remain largely unknown.
STAPHYLOCOCCAL CATALYSTS
OF NET FORMATION

Neutrophils release NETs in response to multiple infectious
agents such as Gram-negative and Gram-positive bacteria (20,
43). Intriguingly, S. aureus is considered one of the most potent
FIGURE 1 | NET formation pathways in response to S. aureus. NET formation in response to live staphylococci and their exoproducts may occur via two
predominant signaling pathways. While suicidal NETosis leads to neutrophil cell death (left panel), rapidly occurring vital NET formation retains the ability of PMNs to
migrate and phagocytose bacterial invaders (right panel). Numbers 1-6 in each panel indicate the order of events during NET formation. S. aureus readily escapes
from NET-mediated entrapment and killing by secreting multiple virulence determinants (e.g. thermonuclease (Nuc)), thereby boosting staphylococcal persistence and
dissemination of disease. Characteristic features and key host signaling molecules including toll-like receptor 2 (TLR2), myeloperoxidase (MPO), neutrophil elastase
(NE), protein-arginine deiminase type 4 (PAD4), cathelicidin LL-37, reactive or mitochondrial reactive oxygen species (ROS; mtROS), protein kinase C (PKC), Raf–
MEK–ERK cascade (Raf; MEK; ERK), membrane-bound NADPH oxidase, processed gasdermin D (GSDM-D) and associated pores are highlighted.
February 2022 | Volume 13 | Article 836278
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inducers of NETosis, irrespective of whether PMNs sense live or
metabolically inactive (dead) staphylococci (43). Nevertheless,
the magnitude of NET induction is significantly increased when
PMNs are exposed to viable S. aureus cells or staphylococcal
culture supernatants, suggesting that secreted exoproteins
together with intact structural components of the bacterial cell
envelope substantially affect S. aureus-triggered NET formation
(Figure 2) (43). In fact, various studies revealed that stimulation
with live bacteria or S. aureus pore-forming toxins contribute to
this phenomenon (Table 1) (23, 34, 43, 51, 56). For example, the
staphylococcal bi-component toxin PVL (Panton-Valentine
leukocidin) has been shown to prime vital NET formation in
freshly isolated human neutrophils (43, 56). In this NADPH-
independent process, endocytosed PVL particularly targets
mitochondria thereby triggering the formation of mtROS from
these organelles (Figure 1) (56). Further, PVL-mediated release
of NETs involves MPO, Ca2+-signaling and PAD4 activation, as
well as citrullination of histone H3 (56). However, PVL-induced
NET formation seems to be highly dose-dependent as elevated
levels of PVL may promote necroptotic or apoptotic cell death
rather than classical NETosis (61, 62). Dose-dependency may
also play a crucial role during NET formation induced by LukAB
Frontiers in Immunology | www.frontiersin.org 4
(also known as LukGH), another staphylococcal pore-forming
toxin that lineage-dependently targets human CD11b or the
hydrogen voltage-gated channel 1 (HVCN1) (51, 63, 64). Like
PVL, LukAB consists of two subunits and promotes NET release
from PMNs exclusively at sublytic concentrations in vitro
(Table 1) (51). LukAB-induced NETs, however, did not
display enhanced bactericidal activity towards staphylococci
suggesting that S. aureus may systematically induce or even
exploit NET formation during persistent infections (51). In
agreement with this idea, recent studies by Bhattacharya et al.
uncovered that extracellular traps augment chronic
staphylococcal infections (15). Specifically, the combined
activity of LukAB and PVL provokes NET formation within
biofilms, a rather detrimental effect that affects the clinical
outcome of chronic burn wounds in pigs (15). In this regard,
we note that many staphylococcal toxins and virulence
determinants are controlled by the global accessory regulatory
system Agr (65). Agr is a quorum sensing system that consists of
several structural components including AgrD, the precursor
molecule of the autoinducing peptide AIP which facilitates
staphylococcal communication and target gene regulation via
activation of AgrC-AgrA two component system (65).
FIGURE 2 | Fluorescence microscopy images of human blood-derived neutrophils forming NETs during incubation with S. aureus. Human blood-derived neutrophils
were stimulated with FITC-labelled S. aureus Newman for 90 min (green). Next, the formation of NETs was visualized using confocal fluorescence microscopy with
antibodies against DNA-histone-complexes (red) as previously described (48). Nuclei were stained with DAPI (blue). The main image shows staphylococci (green)
entrapped by NETs (red).
February 2022 | Volume 13 | Article 836278
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Surprisingly, truncated and formylated peptide variants of AgrD
solely exhibit immunomodulatory and NETosis-promoting
capacities, a phenomenon which raises the question of whether
staphylococci directly process components of the Agr system to
enhance NET formation in infectious foci (Table 1) (50). Agr is
also controlling an array of amphipathic, a-helical peptides
designated phenol-soluble modulins (PSMs) (65, 66). These
small peptides have strong lytic properties and usually trigger
necroptotic or pyroptotic cell death in target cells (66, 67). At
micromolar concentrations, purified PSM-a peptides were also
found to initiate a very rapidly occurring and NADPH oxidase-
independent form of NETosis in purified PMNs, a process that is
reminiscent of vital NET formation (57). Moreover, PSM-a
peptides govern budding of lipoprotein-containing extracellular
membrane vesicles from staphylococcal cytoplasmic membranes
(68, 69). Since S. aureus-derived lipoproteins constitute potent
inducers of TLR-2 (70–72), and TLR-2 signaling along with
complement-mediated opsonization correlates with vital
Frontiers in Immunology | www.frontiersin.org 5
NETosis in human neutrophils (7), lipoprotein-comprising
plasma membrane preparations of the methicillin-resistant S.
aureus (MRSA) strain USA300 have recently been identified as
another potent driver of vital and PAD4-depenent NET
formation (Table 1) (52).

Apart from toxin- or lipoprotein-mediated induction of NET
formation, certain peptidoglycan-associated molecules
synthesized by staphylococci contribute to the release of
extracellular traps from PMNs (Table 1). For example,
staphylococcal protein A (SpA) and Sbi (second binding
protein of immunoglobulin), both cell surface-displayed
proteins that exhibit strong immunoglobulin-binding
properties (73), affect the generation of NETs as a S. aureus
Newman Dspa Dsbi double-mutant lost the ability to promote
release of NETs from human neutrophils in tissue culture-based
assays (58). In this context, Hoppenbrouwers et al. discovered
that the amount of SpA in staphylococcal cell walls correlates
with the capacity of S. aureus to provoke NETosis (58). Isolates
TABLE 1 | Selected staphylococcal factors that induce or interfere with NET formation.

Staphylococcal
factor

Gene Category Effect References

Adenosine
synthase A

adsA Surface protein interfering factor; collaborates with Nuc to convert NETs into cytotoxic dAdo thereby preventing
macrophage infiltration into abscesses

(17, 49)

AgrD agrD Precursor molecule of
the autoinducing
peptide AIP

promotes NET formation in human neutrophils1 (50)

Autolysin atl Peptidoglycan
hydrolase

indirect effector molecule of vital NET formation (43)

Leukocidin AB lukAB Pore-forming toxin triggers NET formation2; interacts with PVL to promote release of NETs in biofilms (15, 51)
Lipase geh Exoenzyme putative role during vital NETosis (43)
Lipoproteins —

3 Plasma membrane
components

potent driver of vital and PAD4-depenent NET formation (52)

Extracellular
adherence protein

eap Exoprotein4 interfering factor; disturbs the stability of the NET scaffold by binding and aggregating DNA fibers;
exhibits neutrophil serine proteases-blocking capacities

(53, 54)

Extracellular
adherence protein
homolog 1

eapH1 Exoprotein4 interfering factor; inhibits neutrophil serine proteases (54)

Extracellular
adherence protein
homolog 2

eapH2 Exoprotein4 interfering factor; blocks neutrophil serine proteases (54)

Fibronectin-
binding protein B

fnbB Surface protein neutralizing factor; scavenges NET-associated histones (55)

Panton-Valentine
leukocidin

lukFS Pore-forming toxin primes vital NET formation in human PMNs2; collaborates with LukAB to drive NET release within
biofilms; punctures mitochondria to induce alternative NETosis

(15, 43, 56)

Phenol-soluble
modulins
(a-type)

psma1-
4

Cytolysin initiates an NADPH oxidase-independent and vital-like form of NETosis (57)

Staphylococcal
protein A

spa Surface protein stimulates formation of NETs from human PMNs5 (58)

Second binding
protein of
immunoglobulin

sbi Surface protein triggers together with protein A the release of NETs5 (58)

Thermonuclease nuc Exoenzyme neutralizing factor; degrades NETs during local, systemic, and chronic S. aureus infection thereby
catalyzing escape from NET-mediated entrapment and killing; converts NETs together with AdsA
into dAdo to promote persistent infections

(14, 16, 17,
34, 59)
February 2022 | Volume 13 | A
1NETosis induction requires truncated peptide variant of AgrD.
2occurs at sublytic concentrations.
3no specific gene listed as S. aureus genomes bear approximately 70 lipoprotein-encoding genes (60).
4member of the SERAM (secretable expanded repertoire adhesive molecules) protein family.
5mechanism requires live staphylococci and probably an additional secreted cofactor.
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that display elevated amounts of SpA in the cell wall (SpAhigh)
activated NET formation more efficiently as compared to strains
that exhibit a SpAlow phenotype (58). However, purified SpA
alone failed to stimulate NETosis in purified PMNs indicating
that other, presumably secreted factors of live staphylococci
along with a unique mechanism are required to promote SpA-
associated NET formation (58). This may also hold true for the
major autolysin Atl, which has been identified as another
possible effector molecule of vital NET formation (43). Albeit
release of NETs from human PMNs occurred in response to high
concentrations of recombinant autolysin, Atl may rather
contribute indirectly to vital NETosis (43). Specifically, Wang
et al. demonstrated that the peptidoglycan-hydrolyzing activity
of Atl and Sle1, an N-acetylmuramyl-L-alanine amidase (74),
impacts trafficking of S. aureus-derived membrane vesicles
across murein layers (68), and thus may contribute to
lipoprotein-induced stimulation of TLR-2 and vital NET
formation. Finally, we note that a staphylococcal lipase has
also been implicated in vital NETosis, although mechanistic
details remain elusive (43). Together, these comprehensive
studies demonstrate that S. aureus together with its
exoproducts predominantly elicits vital NET formation, albeit
viable staphylococci may also skew neutrophils toward suicidal
NETosis in a manner requiring NADPH oxidase-derived ROS or
even mtROS, especially when co-cultivated with PMNs for
longer time periods or during infection of the heart (Figure 1)
(23, 34, 35).
STAPHYLOCOCCAL EVASION FROM NET-
MEDIATED ENTRAPMENT AND KILLING

Pioneering work by Brinkmann et al. uncovered that NETs have
pathogen-capturing and antimicrobial properties (5). Multiple
microbes including bacteria, viruses, and fungi can be entangled,
disarmed, or neutralized by these extracellular structures, readily
preventing pathogen spread and dissemination of disease (5, 27,
44). Of note, not only various NET-associated factors such as
calprotectin, histones, cathepsin G, or the DNA itself have been
discussed to mediate antimicrobial activity of NETs (5, 75–77),
but also the boosting of NET-formation has been demonstrated
to be protective in some disease conditions, e.g. during systemic
S. aureus infections in mitochondrial calcium uptake 1
(MICU1)-deficient (MICU1-/-) mice or during lung infections
upon treatment with statins that block cholesterol biosynthesis
(35, 78). However, NETs often fail to eradicate replicating S.
aureus during persistent infections as this pathogen releases a
plethora of virulence factors into the extracellular milieu that
antagonize NET-mediated entrapment and killing (Table 1)
(79). For example, S. aureus secretes a robust thermonuclease
(Nuc) which rapidly dismantles NETs thereby affecting local,
systemic, as well as chronic infections (Figure 1) (14, 16, 17, 34,
59). In that regard, we note that Nuc-mediated degradation of
NETs may further restrict the communication of PMNs and
macrophages (34). This striking observation seems to be of
Frontiers in Immunology | www.frontiersin.org 6
particular importance during slowly-occurring suicidal
NETosis since an accelerated and mtROS-controlled form of
lytic NETosis, as observed in S100A9-deficient neutrophils,
abrogated Nuc-derived effects and simultaneously enhanced
macrophage-mediated killing of S. aureus and other
extracellular bacterial pathogens (34). Nonetheless,
macrophages often reside at the periphery of infectious foci in
wild-type animals, a pathophysiological phenomenon that also
involves the activity of Nuc (17). Particularly, Nuc-mediated
degradation of NETs together with the activity of AdsA
(adenosine synthase A), a cell wall anchored 5’-3’-nucleotidase,
leads to the biosynthesis of deoxyadenosine (dAdo) (Figure 1)
(17). dAdo is a cytotoxic deoxyribonucleoside which exquisitely
kills macrophages during abscess formation by targeting the
purine salvage pathway and apoptotic signaling cascade (17, 49,
80). In this manner, S. aureus and related staphylococci not only
prevent NET-mediated killing within abscesses, but rather
exploit excretion of NETs to suppress phagocyte entry into
deeper cavities of infectious foci, ultimately enhancing
pathogen survival and establishment of persistent infections
(17, 49, 81). Overall, staphylococcal Nuc represents a key
determinant utilized by staphylococci to prevent NET-
associated enmeshment and killing.

S. aureus evolved additional virulence determinants to block
NET-mediated entrapment (Table 1). Most of these Nuc-
independent mechanisms target the structural backbone of
NETs along with NET-associated proteins such as histones,
NE, or cathepsin G (53–55). Staphylococcal extracellular
adherence protein (Eap), for example, binds and aggregates
NET fibers in vitro and therefore affects the formation and
stability of neutrophil-derived DNA traps (53). Together with
two orphan Eap homologes (EapH1 and EapH2), Eap has also
neutrophil serine proteases-blocking capacities, as proteins of the
Eap family efficiently bind to the catalytic domains of NE,
cathepsin G, or proteinase 3 (54). Accordingly, S. aureus
variants lacking the Eap protein-encoding genes are attenuated
in a mouse model of blood stream infection (54). More recent in
vitro work showed that staphylococcal fibronectin-binding
protein B (FnBPB) contributes to the neutralization of NETs
(55). In this model, FnBPB binds with very high affinity to
histones thereby suppressing their bactericidal activity (55).
Scavenging histones further enhances survival of live S. aureus
exposed to NETs since FnBPB-deficient mutant cells were more
prone to NET-mediated killing as compared to the enmeshed
parental S. aureus strain (55). Finally, we note that S. aureus
alters the net charge of the bacterial cell surface by lysinylating
membrane phosphatidylglycerol and alanylating teichoic acids
(TAs) (82, 83). Interestingly, D-alanylation of TAs by the
DltABCD machinery together with the formation of a capsule
mediates tolerance to the microbicidal attributes of NETs in
Streptococcus pneumoniae (84), raising the possibility that
alanylated TAs and encapsulation may similarly protect S.
aureus from NET-mediated killing. In this context, it should
also be considered that D-alanylation of TAs confers resistance
to several cationic antimicrobial peptides including the NET-
associated cathelicidin LL-37 (82, 85). However, Jann et al.
February 2022 | Volume 13 | Article 836278
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uncovered that S. aureus wild type bacteria and their dltA
variants were killed by NETs in a similar fashion, indicating
that neutrophils use the cathelicidins mainly for the
phagolysosomal but not NET-associated antimicrobial defense
(86). In agreement with this data, previous in vitro work found
that particularly LL-37 lost its antimicrobial properties when
bound to NETs, and rather represents a stabilization factor that
antagonizes Nuc-mediated degradation of extracellular traps
(48). This may also explain why S. aureus secretes further
nucleases including the membrane-bound Nuc2 enzyme as
well as EssD (or EsaD), a substrate of the staphylococcal type
VII secretion apparatus (87–89). Direct evidence that these
enzymes significantly contribute to the escape from NET-
mediated entrapment has, however, not been provided so far.
Collectively, S. aureus secretes multiple virulence factors to
incapacitate the microbicidal features of NETs, presumably to
promote immune evasion and dissemination in the
mammalian host.
IMMUNOPATHOLOGICAL
CONSEQUENCES OF ABERRANT NET
FORMATION DURING STAPHYLOCOCCAL
INFECTIONS

Recent advances suggest that excessive or dysregulated NETosis
maycause severe pathologiesduringvarioushumandiseases (6, 90).
During acute or chronic infections, for example, aberrant NET
formation has been linked to inflammatory processes, tissue and
organ injury, and negative disease outcomes along with increased
mortality rates (6, 91). This is exemplified in the context of
pulmonary diseases and cystic fibrosis (CF), a genetic disorder
caused by a mutation in the CF transmembrane conductance
regulator-encoding gene CFTR (91, 92). CF patients develop a
highly viscous mucus which favors pathogen colonization and
infection, especially by NETosis-triggering microbes such as
Pseudomonas aeruginosa or S. aureus (92, 93). Not surprisingly
though that sputum samples derived of P. aeruginosa- or S. aureus-
infected CF patients contain elevated amounts of NETs together
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with NET-bound pept ides (16, 94) . Yet , NET-rich
microenvironments of CF lungs that are often associated with
hypoxia (95), a condition that retains the ability of PMNs to form
NETs in response to staphylococci (96), typically fail to clear
microbial invaders and rather initiate detrimental events that
affect lung pathology and chronic airway inflammation (16, 91).
Particularly, several NET-associated proteins exhibit cytotoxic and
tissue destructive capacities (97–100). For example, sputum
specimens from CF patients were found to contain large amounts
of MPO along with MPO-derived oxidizing and nitrating species
(94, 100). These factors may contribute to respiratory dysfunction
and poor disease prognosis in S. aureus-infected CF patients, as
MPO and MPO-derived oxidants confer tracheobronchial or
alveolar epithelial cell damage (99, 100). Epithelial injury and
NET-associated cytotoxicity toward CF lung tissue may further
occur in response to NET-assembled histones or NE that have also
been identified in sputum samples of affected individuals (94, 101).
Especially extracellular histones display toxigenic properties toward
epithelial and endothelial cells due to their membrane-binding and
damaging attributes (97, 99). Similarly, uncontrolled release of NE
and NE-DNA complexes during MRSA-induced pneumonia is
considered as a substantial mediator of acute lung injury and may
therefore exacerbatediseaseoutcomesof staphylococcal pulmonary
infections (Table 2) (98, 113). In light of this, increased
concentrations of histones, NE, and calprotectin, a NET-bound
alarmin (75), could potentiate the release of cytokines and
chemokines into lung fluids (102, 116, 117), presumably
explaining hyper-inflammatory responses and the non-ending
recruitment of neutrophils along with excessive NETosis in S.
aureus-infected CF lungs. Thus, dysregulated NETosis potentially
mediates adverse and harmful effects during CF and S. aureus-
caused infections of the respiratory tract (Table 2).

Dysfunctional NETosis can also complicate staphylococcal
infections in the context of other chronic diseases (Table 2). In
diabetic mice, staphylococcal a-toxin drives the transforming
growth factor b (TGF-b)-signaling-dependent expansion of low-
density neutrophils (LDN) (104). LDN in turn excrete large
amounts of NETs, an adverse feature that has been linked to
increased mortality rates in mice challenged with the community-
acquiredMRSA strainUSA300 (104). These effectsmay clarify why
TABLE 2 | Detrimental effects of NETs during infection with S. aureus.

Type of infection or
medical condition

Consequence of NET formation or aberrant NETosis1 References

Abscess NETs trigger staphylococcal persistence and macrophage cell death as a result of Nuc- and AdsA-mediated conversion of
these structures into cytotoxic dAdo

(17, 49)

Burn wound toxin-induced release of NETs tunes survival of MRSA within chronic burn wounds and biofilms in pigs (15)
Cystic fibrosis NETs represent a key source of inflammation and presumably affect staphylococcal long-term persistence in cystic fibrosis

lungs2
(16, 102,
103)

Diabetes NET-overproduction by low-density neutrophils increases susceptibility of diabetic mice to S. aureus blood stream infection;
NETs impair wound healing in diabetics, probably complicating staphylococcal skin and deep tissue infections2

(104, 105)

Infective endocarditis NETs facilitate S. aureus vegetation formation on damaged heart valves in an experimental endocarditis rat model (106)
Inflamed skin enhanced NET formation at injured body sites promotes S. aureus skin colonization in mice (107)
Psoriasis NETs potentially correlate with increased S. aureus colonization rates in psoriatic patients2 (108–112)
Pneumonia abnormal NETosis in response to MRSA provokes lung injury in a mouse model of acute respiratory infection (113)
Sepsis excessive release of NETs from neutrophils triggers intravascular coagulation and tissue injury in septic mice (114, 115)
February 2022 | Volume 13 | A
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diabetic patients are more vulnerable to S. aureus bacteremia as
compared to non-diabetic individuals (118). In this regard, we
further note that NETs alter the wound healing process in patients
with diabetes (105), probably explaining why this population often
suffers from complicated S. aureus-mediated skin or foot ulcer
infections (119). Moreover, recent work by Bitschar et al. revealed
that NETs interact with keratinocytes at injured or inflamed skin
sites thereby promoting S. aureus vegetation formation on body
sites that are typically not colonized by this microbe (107). This
appears highly relevant as S. aureus is frequently isolated from the
skin of patients with atopic dermatitis or psoriasis (108–110, 120),
both chronic inflammatory skin diseases that affect large segments
of the human population (121, 122). At least skin lesion sites of
psoriatic patients are characterized by increased amounts of NETs
(111, 112), which could correlate with increased S. aureus
colonization rates. Nonetheless, aberrant NETosis can also affect
staphylococcal disease pathogenesis in otherwise healthy
individuals and immunocompetent laboratory animals as, for
example, enhanced neutrophil influx and NET formation boost
biofilm and implant-associated infections in wild-type mice (15,
123). Further, it is worth noting that a massive release of NETs in
foci of infection causes tissue damage and organ injury during
staphylococcal systemic infection (Table 2) (114). Innovative in
vivo imaging technologies uncovered that NETs along with NET-
bound peptides accumulated in the liver vasculature of septic mice
(114). Here, NET-associated NE and histones were found to co-
localize with necrotic tissue sites suggesting that NET components
exhibit organ-damaging attributes during severe staphylococcal
diseases (114). In line with these observations, McDonald and
colleagues discovered that a sepsis-provoked release of NETs into
the vasculature triggers networking of platelets and extracellular
traps, ultimately leading to intravascular coagulation and injury of
hepatic tissues (115). Finally, the platelet-NET axis impairs S.
aureus-induced infective endocarditis (106). Specifically, NETs
have been found to amplify S. aureus vegetation formation on
injured heart valves in an experimental rat model of infective
endocarditis (106), a fatal side-effect of NETs that is also exploited
by other endocarditis-promoting pathogens such as Streptococcus
mutans (124). Collectively, these compelling studies demonstrate
that excessive formation ofNETs alongwith elevated levels ofNET-
associated peptides in response to acute or chronic staphylococcal
infectionscanbedetrimental to themammalianhost, particularly in
the context of systemic or pulmonary diseases.
CONCLUDING REMARKS

NETs as part of the innate immune response are generally believed to
correlate with clinical outcomes of many infectious diseases. As long
as the magnitude of NET formation is coordinated and tightly
balanced, these extracellular structures exhibit beneficial properties
and contribute to the entrapment, disarming, and killing of
microorganisms (5, 6). This may also hold true for local infections
causedby S. aureus asNETs are not only formedwithin abscesses but
also diminish the risk of pathogen entry into circulating body fluids
and the development of invasive diseases (7). Paradoxically, NETs
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may exacerbate staphylococcal infections and disease progression,
specifically when excessively synthesized during acute or chronic
infections (16, 104, 106, 114, 115). This raises the questionofwhether
S. aureus selectively induces or even gains advantage of NET
formation under certain pathophysiological conditions. In line with
this model, earlier work demonstrated that induction of NETosis
promotes intra-abscess survival of S. aureus, colonization of injured
skin sites, andbiofilm formation (15, 17, 107).As aberrantNETosis is
also linked to severe staphylococcal infections and the establishment
of pulmonary infections in chronically ill patients (16, 114), it is
further tempting to speculate thatS. aureusmay take advantageof the
organ-damaging capacities of NETs or NET-associated components
to traverse endothelial or epithelial barriers for subsequent
penetration of deep tissues. If so, concurrent stimulation and
exploitation of excessive NETosis may represent a refined
immune-evasive maneuver evolved by S. aureus to create new
proliferative niches in the mammalian host, a fact that may clarify
why staphylococci excrete a plethora of NET-inducing effector
molecules into the extracellular space. In this context, it should also
be taken into account that NETosis-catalyzingmolecules released by
S. aureus represent predominant immune evasionmolecules,most of
which thepathogen secretes in anyway tomanipulate orkill host cells
(19, 125, 126). This is exemplified by staphylococcal LukAB which
primarily lyses various immune cells but concurrently has the
capacity to trigger NET formation in human neutrophils (51, 127).
Expulsion of microbicidal NETs from viable or dying neutrophils
may therefore simply reflect an inadvertent side-effect within foci of
infection that S. aureus readily tolerates or even exploits due to the
biogenesis of numerous virulence and entrapment-protective factors
such as Nuc. Nevertheless, owing to the expression of these evasion
molecules, it appears irrelevant at first glance whether the host
induces vital or suicidal NETosis during S. aureus-mediated
infections. When compared to suicidal NETosis, however, a rapid
release of vital NETs might be more advantageous for mammalian
hosts in terms of combating staphylococci as this route of NET
generation not onlymediates prompt trapping of themicrobe at very
early infection stages, but also retains theability ofPMNs to crawl and
phagocytose the bacterial invader (7, 43). Further, vital NET
formation is known to maintain the membrane integrity of netting
PMNs (7, 43) and thus presumably evolved to limit a release of
inflammation-promoting and otherwise-sequestered intracellular
molecules, ultimately minimizing the risk of developing a hyper-
inflammatory milieu that eventually potentiates tissue injury and
staphylococcal disease severity. However, it remains elusive whether
S. aureus-infected hosts are capable of selectively activating a specific
type of NET formation during infection. Assuming a particular form
of NETosis is indeed more effective against S. aureus but
concomitantly less detrimental to the host, the discovery of
appropriate host factors controlling specific NET-forming events
along with the optimization of individual therapeutics or antibiotics,
some of which are known to interfere with NETosis or NET-
mediated killing of MRSA (128–131), may help to better manage
staphylococcal infectious diseases in the future.

Overall, the formation of NETs shapes staphylococcal disease
pathogenesis and clinical manifestations in many aspects. Whilst
NETs display antimicrobial properties and to some extend
February 2022 | Volume 13 | Article 836278
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reduce pathogen spread, these web-like matrices may also unfold
adverse characteristics and constitute a bio-scaffold utilized by
staphylococci to establish persistent infections in humans or
animal hosts. Thus, deciphering all molecular facets and
mechanistic details by which clinical S. aureus isolates
stimulate or manipulate various forms of NET formation,
along with the discovery of contributing host signaling
cascades and NET-stabilizing factors, may help to conceive
innovative and selective therapeutic approaches to improve
staphylococcal infection outcomes, especially in hospitalized or
critically ill patients.
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