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Abstract 
Background.   Radiogenomic studies of adult-type diffuse gliomas have used magnetic resonance imaging (MRI) 
data to infer tumor attributes, including abnormalities such as IDH-mutation status and 1p19q deletion. This ap-
proach is effective but does not generalize to tumor types that lack highly recurrent alterations. Tumors have in-
trinsic DNA methylation patterns and can be grouped into stable methylation classes even when lacking recurrent 
mutations or copy number changes. The purpose of this study was to prove the principle that a tumor’s DNA-
methylation class could be used as a predictive feature for radiogenomic modeling.
Methods.   Using a custom DNA methylation-based classification model, molecular classes were assigned to dif-
fuse gliomas in The Cancer Genome Atlas (TCGA) dataset. We then constructed and validated machine learning 
models to predict a tumor’s methylation family or subclass from matched multisequence MRI data using either 
extracted radiomic features or directly from MRI images.
Results.   For models using extracted radiomic features, we demonstrated top accuracies above 90% for predicting 
IDH-glioma and GBM-IDHwt methylation families, IDH-mutant tumor methylation subclasses, or GBM-IDHwt mo-
lecular subclasses. Classification models utilizing MRI images directly demonstrated average accuracies of 80.6% 
for predicting methylation families, compared to 87.2% and 89.0% for differentiating IDH-mutated astrocytomas 
from oligodendrogliomas and glioblastoma molecular subclasses, respectively.
Conclusions.   These findings demonstrate that MRI-based machine learning models can effectively predict the 
methylation class of brain tumors. Given appropriate datasets, this approach could generalize to most brain tumor 
types, expanding the number and types of tumors that could be used to develop radiomic or radiogenomic models.

Key Points

• Radiomic and radiogenomic tumor classification has potential clinical benefit but is 
currently available only for tumors with highly recurrent genomic abnormalities.

• Using the TCGA diffuse glioma dataset, this study demonstrates the proof of principle 
that a tumor’s methylation class can effectively be used for radiomic modeling.

• This approach has potential to generalize to most brain tumors with appropriate matched 
methylation and imaging data.

Predicting methylation class from diffusely infiltrating 
adult gliomas using multimodality MRI data  
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Diffusely infiltrating gliomas are the most common brain 
tumors in adults.1 Significant advancement in the molec-
ular classification of infiltrating gliomas has been made 
to improve both diagnosis and risk stratification.2 For ex-
ample, the WHO Classification of the Tumours of Central 
Nervous System in 2016 was updated with IDH-mutant 
and IDH-wildtype tumor classes3 based on the presence 
or absence of mutations in the isocitrate dehydrogenase 
genes (IDH1 or IDH2), making them an important pre-
dictor of clinical risk.4–6 Among IDH-mutant tumors, spe-
cific histopathologic subtypes are also defined based on 
molecular abnormalities in TP53/ATRX (astrocytomas) or 
co-deletion of 1p and 19q and TERT promoter (oligodend
rogliomas).2,6

As molecular classification of tumors has improved, 
there has also been significant interest in predicting molec-
ular features of human tumors from medical imaging data 
including magnetic resonance imaging (MRI) images.7,8 
Successful implementation of these approaches has po-
tential to improve preoperative risk stratification and to 
guide therapeutic intervention when biopsy or tumor re-
section is medically contraindicated or impractical. Using 
extracted radiomic features or structural imaging, models 
have successfully predicted highly recurrent and class-
specific genomic features, including IDH mutation status 
or 1p19q co-deletion status in diffuse gliomas.8–10 Although 
promising, the previous approaches do not generalize out-
side specific use cases because many tumor types do not 
have defined abnormalities or are characterized by mo-
lecular heterogeneity that makes prediction based on in-
dividual genomic abnormalities infeasible. Approaches 
that incorporate molecular class information rather than 
specific mutations or copy number abnormalities could ex-
pand the tumor types available for radiomic modeling and 
could represent a more generalizable approach to molec-
ular class prediction from radiology image data.

Similar to molecular classification of tumors by their ge-
netic abnormalities, brain tumors and other solid tumors 
can also be characterized epigenetically by highly specific 
genome-wide DNA methylation signatures. These DNA 
methylation signatures are believed to represent a combi-
nation of the methylation pattern derived from a tumor’s 
cell of origin and those derived from specific tumor driving 
abnormalities.11 Tumor-specific methylation signatures 
have been successfully exploited to resolve novel brain 
tumor entities and to uncover molecular subtypes within 

established histopathologically defined tumor types.12–14 
More recently, supervised classification models have been 
deployed in the clinical diagnostic laboratory, extending 
the utility of methylation profiling.15–18 The approach has 
some advantages over traditional histopathologic clas-
sification including, objective class designation with 
less opportunity for interobserver variability, the ability 
to modulate clinical classification stringency through 
thresholding, and classification may be possible even in 
tumors lacking defining genomic abnormalities.15,19

Despite the adoption of methylation profiling in sev-
eral clinical laboratories, only selected studies have in-
corporated methylation class labels into radiogenomic 
models.20,21 Progress is significantly impeded by a paucity 
of datasets with matched methylation and imaging data. 
Furthermore, the few studies that have utilized methylation 
class in imaging models have relied on extracted radiomic 
features within specific histomorphologic tumor types 
such as glioblastoma.

Herein, we used a custom deep neural network (DNN) 
model to assign methylation class to the TCGA adult-type 
diffuse glioma datasets, expanding the public datasets 
with class labels matched to MRI images. Using the molec-
ular class labels, we evaluated whether machine learning 
models could be constructed to predict methylation class 
in our cohort from either extracted radiomic features or 
directly from multisequence MRI data. Using explainable 
methods, we evaluated the regional and MRI sequence 
specific importance in our predictive models.

Methods

Ethics Statement

The data utilized in this study are publicly available through 
The Cancer Genome Atlas and The Cancer Imaging Archive 
and exempt from institutional review board oversight.

Processing of Methylation Data

All methylation data were processed from raw IDAT files. 
Illumina Infinium 450K methylation data from the TCGA 
Lower grade glioma (LGG) and glioblastoma (GBM) datasets 
were downloaded from https://portal.gdc.cancer.gov/.22 

Importance of the Study

Classification of brain tumors increasingly relies on mo-
lecular testing of tumor tissue acquired during an inva-
sive surgical procedure. In some instances, surgical 
intervention may be infeasible or medically contraindi-
cated. In addition, the knowledge of a brain tumor’s mo-
lecular type in advance may inform surgical approach 
or facilitate adjuvant therapy. Radiomic models could 
facilitate clinical decision making in the absence of sur-
gical intervention but have largely been restricted to 

those that model-specific histomorphologic tumor types 
or tumors with highly recurrent genomic abnormalities. 
In this proof of principle study, we demonstrate that a 
tumor’s methylation class can be used in image classifi-
cation models derived from extracted radiomic features 
or directly from MRI images. This represents a general-
izable approach that could be applied to most brain tu-
mors and will significantly expand the number and types 
of tumors that could be used for radiomic modeling.

https://portal.gdc.cancer.gov/
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The brain tumor reference methylation cohort (GSE90496 
15) was downloaded from Gene Expression Omnibus 
(GEO) database. Raw idat files were processed in R (http://
www.r-project.org, version 4.0.2), using several packages 
from Bioconductor and other repositories. Specifically, 
array data were preprocessed using the minfi package 
(v.1.36.0).23 Background correction with dye-bias normali-
zation was performed for all samples using noob (normal-
exponential out-of-band) with “single” dye method24 with 
preprocessFunNorm. Probe filtering was performed after 
normalization. Specifically, probes located on sex chromo-
somes containing a nucleotide polymorphism (dbSNP132 
Common) within five base pairs of and including the tar-
geted CpG-site, or mapping to multiple sites on hg19 (al-
lowing for one mismatch), and cross-reactive probes were 
removed from the analysis. To make the DNA methylation 
model generalizable to both 450K and 850K/EPIC arrays, 
only overlapping probes between the two arrays were used. 
After the filtering process, 408,862 probes remained.

Construction of Supervised Classification Model 
for DNA Methylation Data

The DNN for DNA methylation-based tumor classification 
model was constructed in Python using the scikit-learn 
package,25,26 using a public reference dataset (GSE90496) 
for training. A detailed description of the training and 
validation of the model can be found in Supplementary 
Material.

Assignment of Methylation Class for TCGA 
Samples

To obtain methylation class labels from the diffuse 
gliomas cohorts of the TCGA, consisting of tumors in 
the lower-grade glioma (LGG) and glioblastoma (GBM) 
datasets, the preprocessed methylation data were subset 
to include only probes selected for the methylation-based 
classification model. For each tumor, a class label was as-
signed representing the top output score from the DNA 
methylation-based DNN model. Family labels were as-
signed by addition of the respective subclass scores, as 
previously described.15 Tumors assigned to an adult-
type diffuse glioma subtypes with subclass classifica-
tion scores above 0.8 were deemed high-confidence and 

carried forward for subsequent analysis and MRI mod-
eling. Validation of the class assignment for the high-
confidence samples was performed by comparing the 
class specific summarized metadata downloaded from the 
TCGA portal.2

Classification Models from Defined Radiomic 
Features

Radiomic features from TCGA MRI data were downloaded 
from cancerimagingarchive.net and matched to tumors 
with high-confidence methylation class labels.27 The 724 
radiomic features were normalized in python using the 
min-max normalization method in scikit-learn. Three ma-
chine learning model types were deployed, including a 
DNN model implemented in Tensorflow and a random 
forest (RF) classifier and support vector machine (SVM) 
implemented using scikit-learn. Models were trained to 
predict the IDH-mutant versus glioblastoma, IDH-wildtype 
(GBM-IDHwt) methylation families, the astrocytoma, IDH-
mutant (AIDH) versus oligodendroglioma, IDH-mutant 
(OIDH) methylation subclasses, and the glioblastoma, 
IDHwt, subclass Receptor Tyrosine Kinase I/II (GBM-RTK) 
versus glioblastoma, IDHwt, subclass mesenchymal (GBM-
MES) groups. Each DNN model had an input dimension of 
724 and an output dimension of 2, with seven total layers 
(724, 500, 300, 200, 100, 50, 2 nodes at each layer, respec-
tively). Each layer was fully connected with a ReLU ac-
tivation function followed by a batch normalization and 
dropout layers (0.3) except the final layer which utilized a 
SoftMax layer for classification. The RF and SVM models 
were trained using scikit-learn in python, with default 
parameters.25 Each model was evaluated using the av-
erage accuracy of 10 bootstraps following five-fold cross 
validation.

MRI Preprocessing Pipeline

For direct MRI-based classification models, preoperative 
multisequencing MRI data and tumor segmentation masks 
were downloaded from the cancer imaging archive (https://
www.cancerimagingarchive.net).27,28 T2-weighted (T2WI), 
T2-weighted-fluid attenuated inversion recovery (FLAIR), 
T1 with contrast enhancement (T1GD), and pre-contrast 
T1 weighted MRI images (T1WI) from 78 patients meeting 

Table 1. Demographic Features of TCGA MRI Cohort

Methylation family Methylation subclass # Included Gender
(M:F) 

Mean Age (range) 

IDH-glioma OIDH 13 (5:8) 54.363 (28-74)

IDH-glioma AIDH 38 (19:19) 38.66 (21-67)

GBM-IDHwt GBM-RTK 13 (7:6) 60.2(50-72)

GBM-IDHwt GBM-MES 14 (8:6) 54.38(46-74)

IDH-glioma, methylation family IDH glioma; GBM-IDHwt, methylation family glioblastoma, IDH-wildtype; AIDH, methylation subclass astrocytoma; 
OIDH, methylation subclass 1p19q co-deleted oligodendroglioma; GBM-RTK, methylation subclass receptor tyrosine kinase I/II; GBM-MES, methyla-
tion subclass mesenchymal.

 

http://www.r-project.org
http://www.r-project.org
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdad045#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdad045#supplementary-data
https://www.cancerimagingarchive.net
https://www.cancerimagingarchive.net
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our inclusion criteria were utilized for modeling. The dem-
ographic information describing the TCGA MRI cohort is 
provided in Table 1. For each tumor, the MRI sequences 
were registered and up to seven axial slices (slice with 
greatest area of the segmentation mask, and three slices 
superior and inferior) were used for model training. The 
MRI images were normalized using Z-score normalization 
prior to model training, as previously described.29

End-to-end MRI Molecular Class Prediction

For direct MRI-based prediction models, processed 
MRI images from T2 alone or multimodality (MM) MRI 
sequences were used to train a modified version of VGG-
net, ResNET50, and denseNET deep convolutional neural 
network (DCNN) models. For the VGG-Net model archi-
tecture, we used a modified version of VGG-Net with six 
convolutional neural networks (CNN) units. Each CNN 
unit consists of a convolutional layer with Exponential 
Linear Unit (ELU) activation function, batch normaliza-
tion layer, and dropout layer. The Global Average Pooling 
(GAP) layer was used instead of fully connected layers 
to reduce the number of network parameters. Finally, a 
SoftMax layer was used at the end of the classification 
model. We used the default architecture of ResNet50 for 
the input size of 240 × 240 pixels30 and DenseNet31 with a 
number of dense blocks of 4, a growth rate of 64, number 
of filters of 128, depth of 7, and a dropout rate of 0.2, 
respectively.

Separate models were constructed to predict either 
methylation family, IDH-glioma subclasses, or GBM-IDHwt 
subclasses. For the T2 specific models, we evaluated the 
performance of the models with only T2 modality with input 
dimension of N × 240 × 240 × 7, where N stand for number 
of cases. Eventually, the seven slices from each modality 
were merged for implementing the multimodality-based 
learning system. Hence, input dimension of the multi-
modal system was N × 240 × 240 × 28.

For all CNN models, the following training features were 
utilized: Adam optimization with default parameters, cat-
egorical cross entropy loss function, batch size of 4, 150 
epochs, patience of 15 used to model performance with 
respect to validation loss. Ten-fold bootstrapping was per-
formed on five-fold cross validation, maintaining repre-
sentation of each appropriate tumor classes in each split. 
Accuracy was reported as the mean bootstrapped ac-
curacy. The deep learning features were extracted from 
the bottleneck layers of all the models. The dimension of 
the feature representation of the bottleneck layers were 
(7 × 7 × 1024), (8 × 8 × 512), and 8 × 8 × 512 for VGG-Net, 
ResNet50, and DenseNet models, respectively.

Interpretability Analysis for End-to-end Family 
and Subclass Models

For interpretability models, an output heatmap was gener-
ated from the feature representation of the bottleneck layer 
of the VGG-net model and then the cumulative importance 
was represented as an importance per area of tissue mask 
for the tumor and nontumor brain regions. The steps for 
generating the final outputs heatmaps and the calculation 

of the importance scores for each region are represented 
as pseudo-code in Supplementary Methods and described 
in Procedure S1.

Statistical Analysis

Statistical analysis was performed using the SciPy and 
bioinfokity packages in python.32 For continuous variables, 
one-way analysis of variance (ANOVA) was performed 
followed by Tukey honest significant difference post hoc 
analysis.

Code Availability

The code for this manuscript will be made available upon 
request to the corresponding author.

Results

Development of a Methylation-based 
Classification Model for Brain Tumor 
Classification

To establish a predictive model for methylation classes 
using radiology images, we first had had to establish 
the methylation classes from a brain tumor cohort with 
matched MRI data (see Figure 1). Combining the TCGA 
LGG and GBM adult-type diffuse gliomas datasets, we 
identified 665 tumors with Illumina Infinium 450K methyla-
tion data. To assign class labels to the TCGA diffuse glioma 
dataset, we developed a custom supervised deep neural 
network (DNNmeth) using a previously published compre-
hensive methylation cohort for training (Supplementary 
Figure 1).15 The DNA methylation-based classification 
model produced an overall accuracy of 98.56% for meth-
ylation class, and average precision of 99% (Figure 2A and 
2B). The accuracy in distinguishing the IDH-glioma family 
from the GBM-IDHwt methylation family was 100% on hold 
out testing. The subclass-specific accuracies on hold out 
test samples for adult-type diffuse glioma classes expected 
to be represented in the TCGA GBM and LGG datasets was 
between 80% and 100% (Figure 2C).

Methylation-based Classification of TCGA Glioma 
Data

Next, we used our supervised DNNmeth model to assign 
methylation family and class labels to the TCGA adult-
type gliomas cohort. To increase certainty in classification 
criteria, we restricted subsequent analysis to unique tu-
mors with a supervised classification score of 0.8 or higher 
(619/689) (Supplementary Figure 3). The family and class 
assignments from the methylation-based model are pro-
vided in Supplementary Table 1. The majority of tumors 
fell into two methylation families, IDH-glioma (410 tumors) 
and GBM-IDHwt (164 tumors). The remaining samples fell 
into methylation classes representing a control group, a 
pediatric-type low- or high-grade glioma, or selected other 
rare entities.

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdad045#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdad045#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdad045#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdad045#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdad045#supplementary-data
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Restricting the high-confidence class calls to only 
adult-type diffuse gliomas yielded a cohort of 574 tu-
mors representing 8 methylation classes (Figure 3A and 
Supplementary Figure 3). Unsupervised projection of the 
of these high-confidence tumors with the reference dataset 

by t-SNE demonstrated that the TCGA tumors grouped 
with reference groups matching their respective class calls 
(Figure 3B). To further validate the class labels, we com-
pared the assigned class calls to the known molecular 
tumor attributes. None of the tumors in the GBM-IDHwt 
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Figure 1. Schematic of modeling approach. Using a public reference cohort (GSE9046) as training data, a deep neural network (DNN) classifica-
tion model was constructed to assign methylation class labels to tumors from the TCGA diffuse gliomas cohorts. Next, the radiomic features from 
TCGA tumors with matched MRI data were used as an input to random forest (RF), support vector machine (SVM), or DNN models to predict the 
methylation class labels. To test whether images could be used directly to predict methylation class, multisequence MRI images were utilized as 
input to an end-to-end convolutional neural networks (CNN) to predict the methylation class labels. Finally, explainable AI models were utilized 
in conjunction with the highest performing end-to-end classification model to determine the specific spatial locations and MRI sequences being 
utilized for class prediction. 
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Figure 2. Construction and validation of comprehensive DNN classification model. Using a brain tumor reference dataset, a DNN was trained 
to predict 75 methylation family and 91 subclasses of brain or normal control tissue types. The model demonstrated good overall classification 
performance. The receiver operator characteristics (ROC) curve for the methylation-based classification model is presented in panel (A), the 
precision-recall curve in panel (B), and the confusion matrix for adult-type diffuse gliomas following cross validation in panel (C). The continuous 
color scale represents the proportion of tumors in each methylation class positive for specific genomic features from 0 to 1, with 0 represented by 
white and 1 represented by black.

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdad045#supplementary-data
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family had IDH-mutations, compared to 99.5% of tumors 
assigned to the IDH-glioma family (Figure 3C). One hun-
dred percent of tumors in O-IDH methylation subclass had 
an IDH-mutation while 97.5% of O-IDH tumors had 1p19q 
deletion and TERT promoter mutations. In contrast, the 
A-IDH and A-IDH-HG groups were characterized by a high 
proportion of ATRX mutations (74.4%) (Figure 3C). Tumors 
assigned to GBM-IDHwt group were enriched for TERT mu-
tations, gain of chromosome 7, and loss of chromosome 
10; a pattern considered a molecular surrogate of GBM-
IDHwt.33 Our findings support the fidelity of the class as-
signments of our DNNmeth model on the TCGA diffuse 
gliomas cohorts.

Interestingly, 55 total samples in the LGG dataset ex-
hibited a high confidence class score for an adult-type 
HGG group. Survival analysis demonstrated that tumors 
coming from the TCGA LGG cohort that classified in a 
GBM-IDHwt group showed a significant worse survival 
compared to tumors in the LGG cohort falling into an IDH-
glioma subtype and overall aligned well with the other 

GBM-IDHwt tumors (Supplementary Figure 4). These find-
ings suggest that traditional histopathologic classification 
may be imprecise when labeling for down-stream predic-
tive models.

MRI Cohort

From our methylation cohort, we identified 78 tumors 
with matched MM MRI data (Supplementary Figure 3). 
Overall,the MRI cohort consisted of 51 IDH-gliomas and 
27 GBM-IDHwt tumors. Among the IDH-mutant tumors, 
13 represented tumors in the O-IDH subclass and 38 rep-
resented AIDH or AIDH-HG molecular classes. Due to the 
relatively restricted representation, the AIDH and AIDH-HG 
tumors were combined into a single AIDH class for MRI 
models. Among the GBM-IDHwt tumors, 13 of tumors 
were assigned to the GBM-RTKII and 14 were assigned to 
the GBM-MES groups. The patient information and demo-
graphics for the MRI cohort is presented in Table 1.
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Figure 3. Labeling TCGA diffuse glioma dataset. Labeling of the adult-type diffuse glioma cohorts in the TCGA was performed by applying the 
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http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdad045#supplementary-data
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Prediction of Methylation Class from Radiomic 
Features

As initial evaluation of the feasibility to predict methylation 
class from MRI data, we used 724 previously published 
radiomic features derived from multiple MRI sequences to 
build supervised models to predict the class labels in our 
MRI cohort.27 We trained three different models including 
a deep neural net, random forest, and support vector ma-
chine to predict methylation families (IDH-glioma vs GBM-
IDHwt tumors) or subclasses (AIDH vs OIDH tumors or 
GBM-MES vs GBM-RTK tumors).

To generalize the proposed tumor classification methods, 
we conducted experiments with 10 bootstraps and fivefold 
validation for radiomic feature-based classification models. 
At the family level, the deep neural net achieved the highest 
accuracy (94.6%), followed by the RF (82.1%) and SVM 
(78.4%), despite failing to show a statistically significant dif-
ference between models. The deep neural net significantly 
outperformed the conventional machine learning models at 
the subclass levels, achieving a median accuracy to predict 
OIDH vs AIDH gliomas of 95.9% and for distinguishing GBM-
IDHwt subclasses of 93.8% (Figure 4). To confirm the learned 
representations for the highest performing models, we visu-
alized the learned feature representations from the DNN 
models for training and test data and demonstrated that for 
each classification task, the individual modeled classes can 
be separated by their learned feature representations and test 
samples project into the same feature space (Supplementary 
Figure 5). The finding suggests that extracted radiomic fea-
tures carry sufficient features to distinguish methylation fam-
ilies or subclasses using machine learning.

Direct Prediction of Methylation Family and 
Subclass from MRI Data

Next, to test whether MRI images contained sufficient in-
formation to directly predict methylation class from MRI 

data, we constructed deep convolutional neural networks 
(DCNN) using multiple previous published architectures. 
Because previous studies have demonstrated good clas-
sification performance using T2WI images alone,34–36 we 
trained models to predict methylation family or subclass 
using multimodality or T2 images alone (Figure 5).

The classification accuracies of the DCNN models for 
family-level tumor classification are shown in Figure 
5A. The VGG-Net and denseNet with MM showed the 
highest accuracy, achieving an accuracy of 80.59% ± 2.13 
and 80.73% ± 2.08, respectively. For each model, the MM 
models showed higher accuracy but no statistically signifi-
cant difference to their respective counterpart models util-
izing T2 sequences alone.

In the IDH-glioma subtype classification tasks, the 
VGG-Net model showed the best performance compared 
to ResNet and denseNet, achieving mean accuracies of 
87.21% ± 1.59 and 87.60% ± 2.64, respectively (Figure 5B). 
For this classification task, an appreciable difference be-
tween MM and T2 models was not detected for any of the 
model architectures. For subclassification of GBM, IDH-
wildtype tumors, the VGG-Net model again showed su-
perior performance achieving a mean accuracy of 89.00% 
± 4.20 for MM models and 83.4% ± 6.30 for the T2 alone 
model (Figure 5C).

Overall, the VGG-Net demonstrated the best overall 
stability and performance compared to the ResNet and 
DenseNet models for multimodality and T2-modality based 
learning. Multimodality models were characterized by 
overall higher accuracy scores and lower variability com-
pared to T2-alone models; however, multimodality models 
were not statistically better than their T2-alone counterparts.

Interpretability of MRI Models

One potential limitation of using deep learning models 
for biomedical applications is the lack of human inter-
pretability and quality control of the output. To help aid 
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Figure 4. Accuracy of methylation class label prediction from MRI radiomic features. Seven hundred and twenty-four radiomic features from 
TCGA diffuse glioma MRI data were used to predict the IDH-mutant or GBM-IDHwt methylation families (A), to distinguish the OIDH from the 
AIDH/AIDH-HG methylation subclasses (B), or the GBM-RTK from GBM-MES methylation subclasses (C). For both family and subclass prediction 
a DNN, a random forest (RF), or a support vector machine (SVM) model was evaluated. The accuracy of each model is presented as ten boot-
straps of the average accuracy under fivefold cross validation. A statistically significant difference was detected between subclass level models, 
with the DNN model showing significantly higher average accuracy compared to the RF and SVM models.

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdad045#supplementary-data
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human-level interpretation to our classification models, we 
constructed an explainable system for the VGG-net based 
models to align importance scores to image region and 
modality. We found importance was focused on the tissue 
regions even in the absence of segmentation. The models 

used a combination of tumor and nontumor regions for 
each classification task, with focus split between tumor 
and the deep grey structures. The latter suggests the use 
of location specific cues in addition to tumor intrinsic sig-
nals in class predictions (Figure 6). We observed variability 
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Figure 5. Accuracy of direct prediction of methylation class label prediction from multimodality MRI data. MM or T2WI MRI sequences from 
TCGA diffuse glioma MRI data were used to predict the IDH-mutant or GBM-IDHwt methylation families (A), to distinguish the OIDH from the 
AIDH/AIDH-HG methylation subclasses (B), or the GBM-RTK from GBM-MES methylation subclasses (C). For both family and subclass predic-
tion a Deep Convolutional Neural Networks models including VGGNet, ResNet50, and DenseNet were evaluated. The accuracy of each model is 
presented as ten bootstraps of the average accuracy under fivefold cross validation. While a significant difference was not detected for family 
level classification tasks, with the VGGNet model showing overall higher average accuracy compared to the ResNet50 and DenseNet models 
for subclass level classification tasks. A significant difference between MM or T2 based models was not appreciated within individual models.
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with respect to the MRI sequences most important for clas-
sification between the individual tasks, but the FLAIR and 
T2 weighted images were consistently of high importance. 
Contrast-enhanced sequences within the tumor region 
showed the greatest importance in differentiating IDH-
glioma which largely represent lower grade gliomas from 
GBM-IDHwt tumors (Figure 6).

Because the T2-FLAIR mismatch sign has previously 
been reported to distinguish AIDH from OIDH tumors,37 
we evaluated whether our models may also be relying 
on this feature. We found the T2-FLAIR mismatch sign in 
43% of sampled slice images of AIDH tumors compared 
to 0% of OIDH tumors. There was no statistically signif-
icant difference between be correctly called AIDH and 
having the T2-FLAIR mismatch sign, and selected ex-
amples were miscalled OIDH even the presence of the 
sign (Supplementary Figure 6). While the findings do not 
exclude the T2-FLAIR mismatch as a contributing factor, it 
cannot be the primary determinant of class call in the IDH-
glioma subtype model.

Discussion

In this study, we show that methylation class can be pre-
dicted either indirectly from extracted radiomic features 
or directly from MM MRI images across histomorphologic 
tumor types using tumor methylation class labels from 
TCGA diffuse glioma cohorts assigned using a custom 
DNN. In addition, using explainable AI methods, we dem-
onstrate that our direct prediction models utilize tumor 
intrinsic and nontumor intrinsic tissue regions and show 
variability in specific MRI sequence importance, providing 
important quality control and adding additional insight to 
the classification output.

Our results validate methylation class as a viable target 
for MRI-based prediction models, extending the list of ge-
nomic targets that have been successfully predicted from 
MRI data. Initial attempts at radiomic modeling were geared 
toward histomorphologic diagnosis or tumor grade.27 
Subsequent efforts successfully implemented models to 
predict genomic features in diffuse gliomas such as IDH-
mutation status, 1p19q co-deletion,8,38,39 or cytogenetic 
abnormalities.9,40Using methylation class for radiogenomic 
prediction offers advantages over histomorphology-
defined tumor types and individual genomic features such 
as SNV or copy number abnormalities. Histopathologic 
tumor types are known to contain molecular heterogeneity 
which may add noise to predictive models. Similarly, tumor 
grade may be unreliable due to sampling bias. This was 
highlighted by our observation that high-confidence meth-
ylation class assignments for adult-type high-grade glioma 
classes in the GBM-IDHwt family were identified among 
cases in the TCGA LGG cohort. A tumor’s genome-wide 
DNA methylation signature is objective, and the core signa-
ture is maintained between diagnostic, recurrent, and met-
astatic samples.41–43 Because methylation class can be used 
as a predictive target even in tumor types that lack highly 
recurrent SNVs or copy number, the approach substantially 
expands the number and types of tumors that can be mod-
eled using these methods.

Using a custom dataset, Kickingereder et al. previously 
used MRI radiomic features to predict three methylation 
classes of glioblastoma.20 Subsequently, the same group 
used methylation class combined with radiomic features 
to demonstrate that radiomic features were an inde-
pendent predictor of risk in their cohort.21 Our findings, 
relying on the widely used and comprehensive TCGA dif-
fuse glioma cohort, validates the previous use of radiomic 
features to predict methylation classes and expands the 
types of diffuse adult-type gliomas to include lower grade 
tumor classes. While we observed a slight improvement 
in performance metrics compared to Kickingereder et al., 
this can probably be explained by our use of contempo-
rary activation functions and model architectures and the 
use of a DNN compared to classical machine learning 
methods. In addition to previous studies, our findings also 
represent the first direct prediction of methylation class 
from multisequence MRI data without the pre-extraction of 
radiomic features.

One criticism of using machine learning for biomedical 
applications is that the models often lack interpretability. 
Our explainable models provide important quality control 
and add insight to our implementation. Remarkably, even 
though we did not perform specific tumor segmentation 
when training our direct classification modes, we demon-
strate that our predictive models rely on tumor intrinsic 
elements for the specific classification task. In each clas-
sification task, the T2 weighted sequence showed overall 
high importance across all tumor regions. In contrast, the 
importance of contrast enhanced sequences showed the 
overall lowest contribution and seemed to be only slightly 
more important in the non-tumor regions. The high im-
portance of T2WI in classification tasks may explain why 
models using T2 alone are nearly equivalent to multi-
modality models. Of note, our explainable models focused 
attention on both tumor and nontumor brain regions sug-
gesting that location within the brain may be an important 
feature related to methylation class. This would be sup-
ported by previous studies that have demonstrated distinct 
locations within the brain associated with molecular tumor 
subtypes.44 Because the focus is in deep grey structures, 
suggesting general location cues, it isn’t clear to what ex-
tent location specific signal could confuse the models.

There are significant limitations to our current models 
and approach which would need to be addressed prior to 
clinical implementation. While the accuracy was relatively 
high for individual tasks, the cohort was restricted to adult-
type diffuse gliomas. The clinical utility would be enhanced 
if the models were expanded to be more comprehensive, 
and representative of the full spectrum of tumor types 
encountered. Several limitations were related to the re-
stricted training examples available with matched MRI and 
methylation data. Our implementation relied on multiple 
binary classification tasks, whereas single comprehensive 
models could be constructed with sufficient training data. 
Although the current model performance is slightly better 
if extracted radiomic features are use as the input, we have 
demonstrated feasibility for direct image classification. The 
latter would prevent significant preprocessing steps when 
constructing input data for training.

Overall, our results demonstrate the feasibility of indirect 
or direct prediction of methylation class from MRI data which 

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdad045#supplementary-data
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theoretically expands the tumor types which could be mod-
eled using radiogenomics to nearly all known brain tumor 
types. Future studies should expand the number and types 
of tumors used to match methylation and MRI data which 
should enhance model robustness and improve accuracy.

Supplementary material

Supplementary material is available online at Neuro-
Oncology Advances online.
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