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Patients with Alzheimer’s disease (AD) and Parkinson’s disease (PD) often have overlap in clinical
presentation and brain neuropathology suggesting that these two diseases share common underlying
mechanisms. Currently, the molecular pathways linking AD and PD are incompletely understood. Utilizing
Tandem Mass Tag (TMT) isobaric labeling and synchronous precursor selection-based MS3 (SPS-MS3) mass
spectrometry, we performed an unbiased quantitative proteomic analysis of post-mortem human brain
tissues (n= 80) from four different groups defined as controls, AD, PD, and co-morbid AD/PD cases across
two brain regions (frontal cortex and anterior cingulate gyrus). In total, we identified 11 840 protein groups
representing 10 230 gene symbols, which map to ~65% of the protein coding genes in brain. The utility of
including two reference standards in each TMT 10-plex assay to assess intra- and inter-batch variance is
also described. Ultimately, this comprehensive human brain proteomic dataset serves as a valuable
resource for various research endeavors including, but not limited to, the identification of disease-specific
protein signatures and molecular pathways that are common in AD and PD.
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Background & Summary
Many neurodegenerative diseases are found to have common cellular and molecular mechanisms such as
pathological protein aggregation and have been collectively termed as ‘proteinopathies’1,2. Alzheimer’s
disease (AD) and Parkinson’s disease (PD) are two of the most common neurodegenerative diseases that
share both clinical and pathological overlap. In the United States, AD affects approximately 10% people
over 65, whereas PD affects 1–2% of all individuals over 60 (refs 3,4). AD is characterized by the
accumulation of intracellular hyper-phosphorylated tau, neurofibrillary tangles and extracellular beta-
amyloid (Aβ) plaques in the brain, which promote neuronal death, and ultimately dementia5,6. In
contrast, PD is characterized as a chronic and progressive movement disorder with abnormally deposited
Lewy bodies, comprised of aggregated α-synuclein (α-syn)7. Notably, Aβ, tau and α-syn aggregates can
often co-exist and increase the incidence of clinical disease8–13. Following neuropathological examination,
approximately 50% of AD cases harbor Lewy bodies14,15, and an equal percentage of PD cases have co-
morbid AD pathologies (i.e., Aβ plaques and tau tangles)16,17. Despite the prevalence of shared pathology
and clinical overlap, the molecular and cellular events linking AD and PD are incompletely understood.
Here we report a large-scale quantitative proteomic dataset of AD and PD postmortem brain tissue that
can be used to further our understanding of these related neurodegenerative diseases.

Advances in liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) now facilitate
high-throughput detection and quantification of thousands of proteins in numerous clinical samples18–20.
There are currently two prevalent strategies for protein based quantitation, referred to as either label-free
or differential labeling based approaches. In general, label-free methods have been favored for
quantitative proteomic studies of clinical samples due to their low cost and high-throughput21,22. To this
end, we have recently employed a label-free approach to quantify ~3,000 proteins from over 100 human
brain tissues to define signatures associated with neuropathological burden and cognitive dysfunction in
AD23. However, label-free strategies have several limitations, including dependence on accurate mass
measurements and reproducible peptide retention times by liquid chromatography (LC), which if not
carefully controlled can introduce bias in peptide ion intensities24–26. These biases ultimately contribute
to a higher number of missing values and increased variance of lower abundant proteins24–26. By contrast,
metabolic labeling strategies such as stable isotope labeling with amino acids in cell culture (SILAC) and
15N-labeling are currently available and can alleviate these issues, but they have limited applicability
because they require specialized growth conditions contributing to longer development time and
increased cost27. More recently, the development multiplexed quantitation via isobaric chemical tags (e.g.,
tandem mass tags (TMT) and isobaric tags for relative and absolute quantitation-iTRAQ)28, circumvent
the limitations of both metabolic labeling and label-free strategies29. Using a 10-plex TMT based
approach, peptides are first derivatized with either one of ten different isotopically (13C- and 15N) labeled
amine-reactive isobaric tags. Notably, these tags have identical chemical structure, yet have unique mass
reporters ions that are used for MS/MS quantification30. This strategy enables the multiplexing of all
peptide sets prepared from different clinical samples to be combined into a single LC-MS/MS analysis
and thus improves throughput and the breadth of coverage by avoiding missing values that are common
in label-free based quantification. Due to the isobaric nature of the tags, all shared peptides from the 10
samples exhibit the same biochemical properties (i.e., exact mass, and ionization efficiency and retention
time). Only during MS/MS sequencing does each tag fragment and release unique reporter ions, which
are then used for peptide quantitation. Despite their advantages, initial attempts to quantify isobaric tags
at the MS/MS level have been hampered by co-isolation and co-fragmentation of interfering ions that
results in inaccurate TMT ratios31. However, with the release of newer generation mass spectrometers
such as the Orbitrap Fusion Tribrid and the development of the synchronous precursor selection (SPS)-
based MS3 (SPS-MS3) method, the previous limitations of increased duty-cycle time and TMT reporter
ion suppression effects are largely addressed31,32. Thus, when coupled with off-line peptide
prefractionation, the SPS-MS3 quantification approach enables the accurate quantitation of thousands
of proteins across many samples simultaneously for large-scale quantitative proteomic applications33.

In this dataset, we applied TMT labeling with SPS-MS3 to achieve comprehensive global quantitation
of two brain regions (frontal cortex and anterior cingulate gyrus) from four different groups: healthy
controls, AD, PD, and co-morbid AD/PD cases. In total, we identified 127 321 total unique peptides from
over 1.5 million peptide spectral matches (PSMs), which mapped to 11 840 unique proteins groups. To
our knowledge, this is one of the deepest human brain proteomes generated to date34,35. This
comprehensive human brain proteomic dataset will serve as a valuable resource for understanding the
molecular signatures and pathways that link pathologic mechanisms in both AD and PD.

Methods
Human brain tissue
Post-mortem tissues from the dorsolateral prefrontal frontal cortex (Frontal Cortex, Brodmann Area 9)
and anterior cingulate gyrus (Cingulate, Brodmann Area 24) was obtained from the Emory Alzheimer’s
Disease Research Center (ADRC) brain bank. Both regions are affected in AD, whereas Lewy body
densities in anterior cingulate gyrus predict cognitive deficits in PD36. Postmortem neuropathological
evaluation of amyloid plaque distribution was performed according to the Consortium to Establish a
Registry for Alzheimer’s Disease (CERAD) criteria10, while the extent of neurofibrillary tangle pathology
was assessed in accordance with the Braak staging system37. All AD cases met NIA-Reagan criteria for the
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diagnosis of AD (high likelihood)38. Diagnoses were made in accordance with established criteria and
guidelines for PD13. Cases were classified as co-morbid AD and PD (AD/PD) when they met pathological
criteria for amyloid plaque, neurofibrillary tangle and Lewy body burden. All case metadata including
disease state, gender, race, apolipoprotein (ApoE) genotype, age of death, and post-mortem interval
(PMI) are provided [Data citation 1].

Brain tissue homogenization and protein digestion
Procedures for tissue homogenization were performed essentially as described23. In total, 40 samples
across four pathological groups (n= 10 per control, PD, AD and AD/PD groupings) were collected from
each of the brain regions (frontal cortex and anterior cingulate); 31 of these cases had matched tissues
across both brain regions [Data citation 1]. Approximately 100 mg (wet tissue weight) of brain tissue was
homogenize in 8 M urea lysis buffer (8 M urea, 100 mM NaHPO4, pH 8.5) with HALT protease and
phosphatase inhibitor cocktail (ThermoFisher) using a Bullet Blender (NextAdvance). Each Rino sample
tube (NextAdvance) was supplemented with ~100 μL of stainless steel beads (0.9 to 2.0 mm blend,
NextAdvance) and 500 μL of lysis buffer. Tissues were added immediately after excision and samples
were then placed into the bullet blender (in 4 °C cold room). The samples were homogenized for 2 full 5
min cycles and the lysates were transferred to new Eppendorf Lobind tubes. Each sample was then
sonicated for 3 cycles consisting of 5 s of active sonication at 30% amplitude followed by 15 s on ice.
Samples were then centrifuged for 5 min at 15 000 g and the supernatant was transferred to a new tube.
Protein concentration was determined by bicinchoninic acid (BCA) assay (Pierce). Prior to further
processing, protein integrity and concentration accuracy was assessed by SDS-PAGE (Supplementary
Figure 1). For protein digestion, 100 μg of each sample was aliquoted and volumes normalized
with additional lysis buffer. Samples were reduced with 1 mM dithiothreitol (DTT) at room temperature
for 30 min, followed by 5 mM iodoacetamide (IAA) alkylation in the dark for another 30 min. Samples
were then 8-fold diluted with 50mM triethylammonium bicarbonate (TEAB). Lysyl endopeptidase
(Wako) at 1:100 (w/w) was added and digestion continued overnight. Trypsin (Promega) was then added
at 1:50 (w/w) and digestion was carried out for another 12 h. The peptide solutions were acidified to a
final concentration of 1% formic acid (FA) and 0.1% triflouroacetic acid (TFA) and desalted with a C18
Sep-Pak column (Waters). Each Sep-Pak column was activated with 1 mL of methanol, washed with 1 mL
of 80% acetonitrile, and equilibrated with 2 × 1 mL 0.1% TFA. The samples were then loaded and each
column was washed with 2 × 1 mL 0.1% TFA. Elution was performed with 2 rounds of 400 μL of 50%
acetonitrile.

Tandem mass tag (TMT) peptide labeling
Assuming complete digestion of all samples, an aliquot equivalent to 20 μg was taken from each sample
and combined to make a global internal standard (GIS) per brain region. All peptides mixtures were dried
down under vacuum. For each tissue region, 5 batches of 10-plex TMT kits (ThermoFisher) were used to
label the 40 samples and 10 GIS mixtures. Sample arrangement is shown in Supplementary Tables 1 and
2. In each batch, TMT channels 126 and 131 were used to label GIS standards, while the 8 middle TMT
channels were used to label 2 samples from each disease state. Labeling was performed according to
manufacturer’s protocol. Briefly, each sample (80 μg of peptides each) was resuspended in 100 μL of 100
mM TEAB buffer. The TMT labeling reagents were equilibrated to room temperature and 41 μL
anhydrous acetonitrile was added to each reagent channel and softly vortexed for 5 min. Peptide
suspensions were transferred to the corresponding TMT channels and incubated for 1 h at room
temperature. The reaction was quenched with 8 μl of 5% hydroxylamine. To ensure complete labeling
select channels from each batch were analyzed by LC-MS/MS according to previously published
methods39. All 10 channels were then combined and dried by vacuum to ~ 500 μL. Sep-Pak desalting was
performed and the elution was dried to completeness.

Electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) fractionation
Dried samples were resuspended in 100 μL of ERLIC buffer A (90% acetonitrile with 0.1% acetic acid)
and loaded onto a PolyWAX LP column (20 cm by 3.2 mm packed with 300 Å 5 μm beads from PolyLC
Inc) as reported previously35. An Agilent 1100 HPLC system consisting of a degasser, a binary pump, an
autosampler, a microflow UV detector, and a fraction collector was used to carry out the fractionation.
The gradient was from 0 to 50% ERLIC buffer B (30% ACN with 0.1% FA) over 45 min. A total of 44
fractions were collected and then combined to 21 fractions. Final fractions 1 to 20 consisted of alternating
combinations (1 and 21, 2 and 22, etc.) and fraction 21 consisted of the last fractions (41 to 44) as
previously described35.

LC-MS/MS and TMT data acquisition on an orbitrap fusion mass spectrometer
Assuming equal distribution of peptide concentration across all 21 ERLIC fractions, 40 μL of loading
buffer (0.1% TFA) was added to each of the fractions and 2 μL (2 μg equivalent) was separated on 25 cm
long 75 μm ID fused silica columns (New Objective, Woburn, MA) packed in-house with 1.9 μm
Reprosil-Pur C18-AQ resin (Dr Maisch). The LC-MS platforms consisted of a Dionex RSLCnano UPLC
coupled to an Orbitrap Fusion mass spectrometer with a Flex nano-electrospray ion source
(ThermoFisher). Sample elution was performed over a gradient of 3 to 30% Buffer B (0.1% formic
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acid in ACN) over 105 min, from 30 to 60% B over 20 min, and from 60 to 99% B over 5 min at 300 nl.
The column was reconditioned with 99% B for 15 min at a flow rate of 500 nl/min and equilibrated with
1% B for 15 min at a flow rate of 350 nl/min. The Orbitrap Fusion (Thermo Scientific) was operated in
positive ion data dependent mode with synchronous precursor selection (SPS)-MS3 analysis for reporter
ion quantitation. The full scan was performed in the range of 380–1500 m/z at nominal resolution of 120
000 at 200 m/z and AGC set to 2 × 105, followed by selection of the most intense ions above an intensity
threshold of 5000 for collision-induced dissociation (CID)-MS2 fragmentation in the linear ion trap with
35% normalized collision energy. The isolation width for the frontal cortex samples was set to 1.5 m/z
with a 0.5 m/z offset. For the anterior cingulate samples, the isolation width was set to 0.7 m/z with no
offset. The top 10 fragment ions for each peptide MS2 was notched out with an isolation width of 2 m/z
and co-fragmented to produce MS3 scans analyzed in the Orbitrap at a nominal resolution of 60 000 after
higher-energy collision dissociation (HCD) fragmentation at a normalized collision energy of 65%. Of
note, one sample (fraction 19) in Batch 1 from the cingulate gyrus was run in technical replicate. All
resulting raw files (n= 211) are provided [Data Citation 2].

Protein identification and quantification
Raw data files from Orbitrap Fusion were processed using Proteome Discover (version 2.1). MS/MS
spectra were searched against the UniProtKB Human proteome database (90 411 total sequences) [Data
Citation 3] as previously reported35. We chose to include both Swiss-Prot and TrEMBL sequences in the
database as the additional depth provided by ERLIC fractionation enables the sequencing of rare protein
isoforms (i.e., proteoforms) that may not be appreciated in human brain. Despite significantly more
protein entries, searching with the entire UniprotKB database only added ~5% more unique protein
groups compared to searches against the Swiss-Prot database alone (42 179 target sequences; downloaded
on 11/18/2017). The respective FASTA database used in this study is deposited in the on the Synapse
(www.synapse.org). SEQUEST parameters were specified as: trypsin enzyme, two missed cleavages
allowed, minimum peptide length of 6, TMT tags on lysine residues and peptide N-termini (+
229.162932 Da) and carbamidomethylation of cysteine residues (+ 57.02146 Da) as fixed modifications,
oxidation of methionine residues (+ 15.99492 Da) and deamidation of asparagine and glutamine (+0.984
Da) as a variable modification, precursor mass tolerance of 20 ppm, and a fragment mass tolerance of 0.6
daltons. Peptide spectral match (PSM) error rates were determined using the target-decoy strategy
coupled to Percolator40 modeling of true and false matches. Reporter ions were quantified from MS3
scans using an integration tolerance of 20 ppm with the most confident centroid setting. An MS2 spectral
assignment false discovery rate (FDR) of less than 1% was achieved by applying the target-decoy strategy.
Following spectral assignment, peptides were assembled into proteins and were further filtered based on
the combined probabilities of their constituent peptides to a final FDR of 1%. In cases of redundancy,
shared peptides were assigned to the protein sequence with the most matching peptides, thus adhering to
principles of parsimony. The search results and TMT quantification are included [Data Citation 4].

Data Records
All files have been deposited on Synapse (www.synapse.org).These include sample metadata (Data
citation 1) all mass spectrometry raw files (n= 211) across both brain regions (Data Citation 2), the
FASTA database (Data Citation 3), and TMT protein quantification results (Data Citation 4).

The mass spectrometry proteomics raw files and data analysis files have also been deposited to the
ProteomeXchange Consortium (http://www.proteomexchange.org/) via the PRIDE partner repository
with the dataset identifier (Data Citation 5).

Technical Validation
Deep coverage of the human brain proteome
To reduce sample complexity and increase proteome depth, we employed off-line ERLIC fractionation
prior to LC-MS/MS analysis (Fig. 1a). We used 10 batches (5 per brain region) of 10-plex TMT labeling
kits, and separated these peptide mixtures into fractions for each batch followed by LC-MS/MS analysis
on an Orbitrap Fusion mass spectrometer. Each batch had an equal number of control, AD, PD and AD/
PD cases (2 per batch). Notably, two TMT channels in each batch were dedicated to global reference
internal standards (GIS), representing an equivalent amount of pooled peptides from all cases analyzed in
each brain region.

Following database search, a total of 127 321 unique peptides were identified that mapped to 11 840
protein groups at a 1% FDR on the peptide spectrum match (PSM) level across all samples, which
represented 10 230 coding gene products (Fig. 1b). For each batch, ~8000 protein groups were identified.
Total numbers of identified peptides, proteins and PSMs for both brain regions are listed in Tables 1 and
2.

To evaluate the depth of our data set, we compared the overlap of our proteomic data with available
brain specific (cerebral cortex) RNA-seq data41 downloaded from the Human Protein Atlas website
(Supplementary Table 3 and 4). RNA transcript abundances were calculated as transcripts per million
(TPM) reads, which is measured by multiplying the estimated fraction of transcripts generated by a given
gene. Notably, TPM is considered more comparable between samples of different origins and
composition42,43. If we considered all genes identified by RNA-seq with no TPM cutoff, the 10 230
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translated gene products identified in our proteomics analysis corresponds to ~58% (9828/17068) of all
expressed genes found in the RNA-seq dataset (Fig. 1d). The proteins identified in the frontal cortex and
anterior cingulate covered ~51% (8739/17068) and ~54% (9197/17068) of the expressed coding genes,
respectively. To compare the degree of protein coverage for the highest and lowest expressed brain
transcripts we generated an overlapping histogram. In general, the majority of abundant coding
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Figure 1. Deep coverage of human brain proteome in Alzheimer’s and Parkinson’s Disease. (a) TMT

workflow. There were 40 tissue samples in both frontal cortex and anterior cingulate gyrus brain regions, which

were TMT labeled across 5 individual batches per region. A total of 8 individual samples were labeled in every

batch, 2 AD samples were dedicated to channels 127C and 127 N, 2 control samples were dedicated to channels

128C and 128 N, 2 PD samples were dedicated to channels 129C and 129 N, and 2 AD/PD samples were

dedicated to channels 130C and 130 N. We also dedicated two TMT channels (126 and 131) to pooled global

internal standards (GIS). After labeling, the samples were combined and fractionated by off-line ERLIC (n= 21

total). Each fraction was analyzed and quantified by SPS-MS3 on an Orbitrap Fusion mass spectrometer.

(b) There were 10 100 and 10 795 protein groups identified from frontal cortex and anterior cingulate gyrus,

respectively, with 8,955 overlapping protein groups. Collectively, a total of 11 840 protein groups were

identified across both brain regions. (c) Overlapping histogram comparing the degree of protein coverage for

the highest and lowest expressed brain transcripts according to RNA-seq TPM bins. The open bar represents

the distribution of protein coding gene numbers detected by RNA-seq, and the blue bar indicates the

distribution of protein coding genes sequenced in this proteomic dataset. (d) Overlap between the proteome

and RNA-seq data using identified gene symbols. This proteomic dataset covers ~58% of all detectable genes in

the Human Brain Atlas RNA-seq dataset and 65% of highly expressed transcripts when considering RNA-seq

TPM values above 1.
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transcripts, within the range of 4–5 log2 TPM, were identified in our proteomic dataset. Notably, when
enforcing a RNA-seq TPM filter cutoff of ≥1, which is typically employed to enrich for more reliably
expressed genes41, the percent of translated gene products identified in the proteome increased to ~65%
(9488/14541)44 (Fig. 1c). Surprisingly, we noticed that some highly expressed genes with very high TPM
values were not identified. Upon further examination many of these gene lacked suitable tryptic peptides.
For example, MT-ND4L has a log2 TPM value of 13.7, yet the translated protein (NADH-ubiquinone
oxidoreductase chain 4L) only contains a single arginine available for trypsin cleavage resulting in 2
peptides that are not proteotypic45 (i.e., too long to be sequenced). Alternatively, there were also 402
gene-products identified in the proteome that were not identified by RNA-seq23 (Fig. 1d). Further
analysis revealed that some of these proteins (n= 114) had low coverage and were identified by only 1
PSM (Supplementary Figure 2) while others are related to blood46 and the lympathic system47. Gene
Ontologies (GO) for all proteins that did not overlap with the transcriptome is provided in
Supplementary Table 4.

In data-dependent or ‘shotgun’ proteomics approaches, confidence of identification is directly related
to the number of peptides and PSMs matched to a protein after database searching. In our dataset, more
than 80% of proteins were identified by 2 or more unique peptides (Figs 2a and c) and more than 90%
proteins were identified with at least 2 PSMs in both frontal cortex and cingulate gyrus (Figs 2b and d),
which highlights the high identification confidence of this dataset. Collectively, these results show that
prefractionation by ERLIC followed by LC-MS/MS on an Orbitrap Fusion can generate deep proteomes
that cover the majority of expressed transcripts in human brain.

Proteome wide quantitation utilizing two global reference internal standards
A major advantage of the TMT method is the ability to quantify proteins from multiple samples
simultaneously. Each channel can be used to label different samples, which enabled the multiplexing of 10
individual samples in one LC-MS/MS analysis28. Typically, when analyzing more than 10 samples, a
single TMT channel is dedicated as internal standard and included in each batch, which can be later used
to normalize protein measurements within and across all samples48. Similarly, in this study, we pooled
equivalent amounts of peptides from all individual cases (specific to brain region) to generate a GIS.
However, we decided to dedicate two TMT channels (126 and 131) to the GIS (Fig. 1a) and required that
both GIS TMT channels be readily quantified for protein quantification across the batch. This filtering
criterion decreased the number of protein groups from 11 840 to 11 611 across both brain regions, the
latter of which we considered quantifiable protein groups. The lack of consistent GIS measurements
within the batch could indicate low signal abundance or the ubiquitous nature of product ion selection49.
The GIS also allowed us to assess the intra-batch variability as these channels should show the same exact
abundance after technical normalization. Indeed, TMT channel 126 and 131 reporter ion signals
for identified proteins were very consistent and displayed an excellent linear relationship across batches
(Fig. 3). However, there are some proteins that exhibited large variation in measurements, especially those
with low abundance (Fig. 3). To enhance quantitative accuracy, we decided to implement filtering criteria
based on the population wide standard deviation (SD) of the two GIS measurements. Based on the central

Batch Number Total Protein Groups Total Unique Peptides Total PSM

1 7,647 60 347 123 567

2 7,471 56 508 120 175

3 7,353 53 402 114 437

4 8,010 67 981 139 217

5 6,964 50 345 115 336

Frontal cortex total 10 100 95 796 612 732

Table 1. Protein identification from frontal cortex.

Batch Number Total Protein Groups Total Unique Peptides Total PSM

1 8,234 78 021 198 586

2 8,390 78 378 183 496

3 8,549 80 072 186 347

4 8,079 72 849 184 850

5 8,262 74 593 180 673

Anterior Cingulate total 10 695 113 616 933 952

Table 2. Protein identification from anterior cingulate gyrus.
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limit theorem, the log2 ratio for the two GIS channels (log2 TMT channels 126/131) for all proteins
measured should fit a standard Gaussian distribution with the mean at or near zero and SD representing
the technical variation in protein measurement50,51. Thus, the SD allows one to evaluate the accuracy of
all protein measurements within each batch. Since the SD differed based on protein intensity, we
subdivided all GIS normalized abundances into 5 sections (per order of magnitude). For example, when
assessing Batch 1 from the frontal cortex (Fig. 4a), proteins with the highest normalized abundance
(>log10 of 1) displayed high correlation (R2 close to 1) and the smallest SD. However, proteins with lower
normalized abundance of less than 10 (o log10 of 1) had higher variance in measurement (R2= 0.1372)
and a larger SD. Consistent with these observations, the SD across the 5 sections decreased with
increasing normalized abundance (Fig. 4b). Correlation and SD values for each section from all 10
batches are listed in Supplementary Table 5. Since each protein in this dataset has its own GIS
measurement, we considered them outliers if their GIS measurement was 4 SD away from mean value in
any given subsection. However, this is a user defined criterion and can be differ based on the biological or
research question at hand. Following filtering based on our criteria, the resulting protein number in all 10
batches are shown in Supplementary Table 6.

To assess quantitative consistency across batches, the distribution of proteins according to the average
of two normalized GIS signal abundances was also investigated. For the anterior cingulate, the
distribution was very similar across all 5 batches, with more than half of proteins generating signal
abundances >100 (log10 of 2). However, in the frontal cortex dataset, the protein distribution between
batches differed. Protein abundances in batch 1 and batch 4 showed a similar distribution to all batches
derived from the cingulate cortex. In contrast, batches 2, 3 and 5, had a larger proportion of proteins with
a reduced normalized abundance (Fig. 4c); more than 90% of proteins had higher average normalized GIS
abundance in batches 1 and 4 compared to batches 2, 3, and 5. Since we prepared all the samples together,
used all the same buffers and loaded same amount of peptides, we presume that the differences may come
from platform variations (e.g. LC and/or mass spectrometer). The Emory Integrated Proteomics Core has
two Orbitrap Fusion mass spectrometers that were used to analyze different batches of the frontal cortex
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(a) The frequency of unique peptides for all proteins identified from frontal cortex. More than 80% proteins
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the anterior cingulate gyrus. About 90% proteins identified with more than 2 unique peptides. (d) The

frequency of PSMs for all the proteins identified in anterior cingulate gyrus. More than 85% proteins identified

with more than 6 PSM. Both unique and shared peptide PSMs were considered in the analysis.

www.nature.com/sdata/

SCIENTIFIC DATA | 5:180036 | DOI: 10.1038/sdata.2018.36 7



dataset. Both instruments were equipped with the same exact Dionex LC and nano-column setup and
had identical LC and MS parameter settings. Batches 1 and 4 were run on Platform 1 (Orbitrap Fusion1),
whereas the other 3 batches were run on Platform 2 (Orbitrap Fusion2). Although the source of reduced
signal intensities in Platform 2 is unclear, this difference informed our decision to analyze all TMT
batches generated from the anterior cingulate on Platform 1, which resulted in higher signals and more
identified proteins (Fig. 4d and Tables 1 and 2). Thus, by including the 2 GIS reference standards in each
batch we could not only assess intra-batch variance in protein measurement, but also inter-batch variance
due to platform differences. Furthermore, the two reference standards essentially serve as a null-
experiment which allows investigators to filter outlier proteins measurements that don’t meet criteria for
accuracy and precision as described above.

Usage Notes
Ultimately, this comprehensive human brain proteomic dataset serves as a valuable resource for variety
research endeavors including, but not limited to, the following applications:

Use case 1: Protein expression
This dataset provides a quick and accurate reference for protein expression values, especially if an
investigator wants to determine whether their protein of interest is abundantly expressed in human brain
(Data Citation 4).

Use case 2: Disease specific differential protein expression
The inclusion of control as well as AD, PD and AD/PD groups allows for the differential comparison of
proteins across disease outgroups. Investigators can focus on comparisons that are specific to either AD
or PD or those that are altered in both neurodegenerative diseases. These types of analyses could serve
investigators working with cellular and/or other model organisms at AD and PD, who would be
interested in whether a protein or pathway exhibits expression preservation in relevant human brain
tissue (Data Citation 4).

Use case 3: Protein Co-expression network analysis
More recently development in systems analysis approaches combined with deeper more comprehensive
datasets such as this one, have enabled researchers the ability to look beyond standard differential
expression analyses. Programs like WeiGhted Co-expression Network Analysis (WGCNA) and related
alogrithms52, give investigators a system wide view of protein expression patterns that highlight groups of
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proteins (i.e., modules) which correlate to molecular and biological functionalities as well as cellular
localization and cellular origin23. These programs can also readily correlate protein modules to case traits
(clinical status and pathological burden) providing yet another level of analysis that can shed light on to
the connection between protein co-expression and clinical diagnosis.

Use Case 4: Identification and quantification of post-translational modifications (PTMs)
The phosphorylation of tau and α-syn are common pathological features in both AD and PD and are
thought to have important roles in disease progression and pathogenesis53,54. Other PTMs have also been
described for these proteins55–57. Thus, the deep coverage and quantitative accuracy in this dataset may
make it possible to detect highly abundant disease-specific PTMs on key substrates in both AD and PD.
Although enrichment strategies would provide a more complete PTM profile51,58, each type of
modification requires a separate enrichment strategy that can be time consuming. This dataset provides a
good starting point to identify the types of modifications that are most abundant for prioritization in
future biological assays.

Use case 5: Identification of novel brain-specific splice variants and coding changes
The raw data in this study could be used to search for alternative transcripts (e.g., splice junction
peptides), alternative start sites and even single nucleotide variants (SNVs)35.These may show up in
RNA-seq analysis of human brain and could be confirmed to be expressed at the protein level utilizing
this current dataset.
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Use case 6: Selected reaction monitoring (SRM) or parallel reaction monitoring (PRM)
We have also supplied the peptide information (Data Citation 2), which includes more than 127 321
unique peptides, which can serve as a resource for PRM and SRM peptide candidate selection. This will
complement currently available repositories such as the SRMAtlas59.
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