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Abstract

Background: Hepatocellular carcinoma (HCC) is characterized by late detection and fast progression, and it is believed that
epigenetic disruption may be the cause of its molecular and clinicopathological heterogeneity. A better understanding of
the global deregulation of methylation states and how they correlate with disease progression will aid in the design of
strategies for earlier detection and better therapeutic decisions.

Methods and Findings: We characterized the changes in promoter methylation in a series of 30 HCC tumors and their
respective surrounding tissue and identified methylation signatures associated with major risk factors and clinical correlates.
A wide panel of cancer-related gene promoters was analyzed using Illumina bead array technology, and CpG sites were
then selected according to their ability to classify clinicopathological parameters. An independent series of HCC tumors and
matched surrounding tissue was used for validation of the signatures. We were able to develop and validate a signature of
methylation in HCC. This signature distinguished HCC from surrounding tissue and from other tumor types, and was
independent of risk factors. However, aberrant methylation of an independent subset of promoters was associated with
tumor progression and etiological risk factors (HBV or HCV infection and alcohol consumption). Interestingly, distinct
methylation of an independent panel of gene promoters was strongly correlated with survival after cancer therapy.

Conclusion: Our study shows that HCC tumors exhibit specific DNA methylation signatures associated with major risk
factors and tumor progression stage, with potential clinical applications in diagnosis and prognosis.
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Introduction

Hepatocellular carcinoma (HCC) represents an endemic

burden worldwide, partially due to delayed diagnosis and

multiple risk factors that contribute to a permanent high

incidence [1,2]. Well-known risk factors include chronic

hepatitis B virus (HBV) and hepatitis C virus (HCV) infection,

toxic, metabolic and immune-related conditions [3]. In all these

conditions, the development of malignancy is the consequence

of a multistep process, including several morphologically

recognizable stages and usually associated with a context of

cirrhosis, a precancerous condition combining increased prolif-

eration and prolonged environmental stress. The sequential

progression to carcinoma has been related with changes at the

genetic and epigenetic level [4]. A number of previous studies

investigated genetic changes in HCC, including mutations and

deletions in candidate cancer-associated genes [4]. Somatic

mutations in several tumor suppressor genes (such as TP53, p16,

and RB), oncogenes (including c-MYC and b-catenin), and

other cancer-associated genes (including E-cadherin and cyclin

D1) have been observed in HCC. These changes have been

detected mainly in late stages of HCC development [4]. In

addition, a frequent identification of loss of heterozygosity

(LOH) in chromosome 8p in HCC cases, suggested that

inactivation of the Deleted in Liver Cancer 1 gene (DLC-1)

may play pivotal roles in HCC development [5]. However,

while genetic events are likely to contribute to the development

of HCC, neither of these genetic alterations has been

consistently identified in HCC, suggesting that epigenetic

changes may play an important role.

Aberrant DNA methylation is a major epigenetic mechanism

of gene silencing and is observed in many human cancers [6,7].

DNA methylation occurs in eukaryote DNA at CpG sites, usually

enriched in the promoters of genes. In several types of tumors,
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including HCC, global hypomethylation and specific promoter

hypermethylation have been linked with genomic instability and

inactivation of tumor suppressor genes (TSG), respectively [8,9].

Indeed, accumulating evidence indicates that HBV-infected

hepatocytes often exhibit altered epigenetic status [10,11]. In

this sense, a deregulated methylation profile can be an early

marker of disease and a useful tool for cancer screening. Several

studies support the potential role of promoter hypermethylation

in HCC-related gene silencing, and this has been shown to

be positively correlated with tumor progression [12]. Relevant

TSGs consistently found hypermethylated in HCC include

RASSF1A or p16INK4a [12,13,14,15,16,17,18]. However, al-

though a growing number of genes undergoing aberrant CpG

island hypermethylation in HCC has been described, most

studies have involved the analysis of hypermethylation in a

limited number of gene promoters or a restricted number of

HCC samples [12,13,14,15,16,17,18]. In addition to improving

our understanding of liver carcinogenesis, large scale DNA

promoter methylation profiles may produce useful associations

with clinical parameters such as recurrence and survival.

We studied a series of human HCC samples for DNA promoter

methylation using Illumina bead array analysis of 1505 CpG sites

in 807 cancer-related gene promoters. Signatures of a distinct

HCC methylation profile were obtained and validated, as well as

their potential application as clinical predictors.

Methods

Patients and Biopsy Specimens
All patients included in the study were referred for treatment to

Edouard Herriot Hospital in Lyon, France between 1997 and

2009. Tissue samples were used only from patients having signed

an informed-consent form; all tumor tissue samples were obtained

through the Tumorothèque des Hospices Civils de Lyon. The

study was approved by the institutional review boards of the

International Agency for Research on Cancer and the local ethics

committee of Edouard Herriot Hospital.

38 patients with HCC were selected for analysis; in all cases,

cryopreserved samples from the primary tumor were available for

study; in 30 patients, paired cryopreserved samples of adjacent

non malignant tissue were also available (for clinicopathological

features, see Table 1). Samples from two patients with liver

adenoma were used for comparison purposes. An additional series

of 8 matched HCC and surrounding tissues was used for

validation. In addition, three different human HCC cell lines

(PLC/PRF/5, Hep3B, HepG2) and one breast carcinoma cell line

(MCF7) were included in the array.

For all patients, samples were taken from a surgical specimen,

obtained through hepatectomy or liver transplantation, under the

supervision of a pathologist; they were snap frozen less than 30

minutes after the removal of the surgical specimen and stored in

liquid nitrogen until use. Before molecular analysis, the represen-

tativity and the quality of the sample were verified by a pathologist

(Figure S1).

Information about risk factors for HCC was retrieved from

clinical charts; the following information was noted: serological

evidence for HBV or HCV infection, alcohol consumption,

evidence for dysmetabolic syndrome or auto-immune disease,

and other etiologies. Information about the evolution (treatments,

duration of follow-up, duration of survival, status at the date of last

information) was retrieved from clinical charts. The histological

diagnosis and classification of primary liver tumors and the

histological evaluation of the adjacent liver tissue were performed

by an experienced pathologist (JYS).

Bead array analysis of DNA promoter methylation
Tissues were frozen in liquid nitrogen, ground into powder and

then collected into eppendorf tubes. Genomic DNA from HCC

tumors and surrounding tissue was prepared by overnight

proteinase K treatment, phenol-chloroform extraction, and

ethanol precipitation. Sodium bisulfite modification was per-

formed on 500 ng DNA using the EZ DNA Methylation-Gold Kit

(Zymo Research). DNA methylation profiling using bead arrays

for 1505 CpG sites, corresponding to 807 cancer-related genes,

was performed with the Illumina GoldenGate methylation assay

(Illumina) as described previously [19]. Briefly, for each CpG site,

four probes are included: two allele-specific oligos (ASO) and two

locus-specific oligos (LSO). Each ASO–LSO oligo pair corre-

sponds to either the methylated or unmethylated state of the CpG

site. Each methylation data point is represented by two-color

fluorescent signals from the M (methylated) and U (unmethylated)

alleles. Technical replicates of several bisulfite-converted samples

were run. BeadStudio v3.2 software (Illumina) was used for initial

filtering and clustering analysis (see below).

Pyrosequencing
Genomic DNA from HCC tumors and surrounding tissue was

extracted and modified as described above. The eluted DNA was

at a final concentration of 25 ng/ml. To quantify the percentage of

Table 1. Clinicopathological features of HCC patients.

Variable No. of cases

No. of patients 30*

Male 24

Female 6

Age, mean 6 SD 59612.3

Etiology

HBV 9

HCV 5

Alcohol use 8

Unknown risk factor 8

Tumor differentiation

Well 15

Moderately 11

Poorly 4

Tumor size

,5 cm 14

.5 cm 16

TNM Stage

TI 14

TII 6

TIII 10

No. of nodules

Unilocular 14

Multilocular 16

Cirrhosis

Yes 16

No 14

*Only patients with paired samples (tumor and surrounding tissue) are
described here.

doi:10.1371/journal.pone.0009749.t001
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methylated cytosine in individual CpG sites, bisulfite-converted

DNA was sequenced using a pyrosequencing system (PSQTM

96MA, Biotage, Sweden) [20]. This method treats each individual

CpG site as a C/T polymorphism and generates quantitative data

for the relative proportion of the methylated versus the

unmethylated allele. Pyrosequencing assays were established for

the quantitative measurement of DNA methylation levels in the

promoter region of 8 genes (RASSF1, GSTP1, APC, GNMT,

GABRA5, MEST, MGMT, and H19), and LINE-1 using primers

previously described [21]. (Table S1 and Figure S2). Hot-start PCR

was performed with HotStarTaq Master Mix kit (Qiagen), and

pyrosequencing was carried out in accordance with the manufac-

turer’s protocol (Biotage). The target CpGs were evaluated by

converting the resulting pyrograms into numerical values for peak

heights, and calculating the average of all CpG sites analyzed at a

given gene promoter (Figure S2).

Quantitative RT-PCR
Total RNA was isolated using the TRIzol Reagent (Invitrogen)

according to the manufacturer’s instructions. Reverse transcription

reactions were performed using MMLV-RT (Invitrogen) and

random hexamers, according to the manufacturer’s protocol.

Primers and probes were designed using Universal Probe Library

Assay Design Center (Roche). Quantitative real-time PCR (qRT-

PCR) was performed in triplicates of each condition, using

FastStart TaqMan Probe Master (Roche) and a MXP3000 real-

time PCR system (Stratagene).

Statistical Analysis
Filtering and unsupervised clustering. BeadStudio version

3.2 (Illumina) was used for obtaining the signal values (AVG-Beta)

corresponding to the ratio of the fluorescent signal from the

methylated allele (Cy5) to the sum of the fluorescents signals of

both methylated (Cy5) and unmethylated alleles (Cy3), 0

corresponding to completely unmethylated sites and 1 to completely

methylated sites. In order to avoid the gender effect, all probes in

chromosome X (n = 84) were discarded. In addition, all probes with a

P value above 0.01 in more than 10% of the samples were excluded

from the analysis. BRBArrayTools software (version 3.8 beta2) was

used for further analysis, using the AVG-Beta values. CpG sites

showing minimal variation across the set of arrays were excluded

from the analysis. Gene ontology and molecular interactions were

analyzed with GenMAPP version 2.1 (http://GenMAPP.org/), and

the KEGG Pathways Database (http://www.genome.jp/kegg/).

Unsupervised hierarchical clustering, class comparison, class

prediction, KEGG pathway enrichment, and survival prediction

were performed with the BRBArrayTools software.

Class Comparison. CpG sites were considered differentially

methylated when their P value was less than 0.001. In addition, we

identified CpG sites that were differentially methylated between

tumor and adjacent tissue by using a multivariate permutation test

[22] providing 90% confidence that the false discovery rate was

less than 10%. The false discovery rate is the proportion of the list

of CpG sites claimed to be differentially methylated that are false

positives. The test statistics used are random variance t-statistics

for each CpG site [23]. Although t-statistics were used, the

multivariate permutation test is non-parametric and does not

require the assumption of Gaussian distributions. A global test of

whether the methylation profiles differed between the classes was

also performed by permuting the labels of which CpG methylation

states corresponded to which classes. For each permutation, the P

values were re-computed, and the number of CpG sites significant

at the 0.001 level was noted. The proportion of the permutations

that gave at least as many significant CpG sites as with the actual

data was the significance level of the global test (P,0.05 for the

global test).

In addition, we performed an alternative analysis consider-

ing the frequency of methylation in tumors respective to

surrounding tissue. To this end, we defined a threshold for

frequently unmethylated and frequently methylated genes

based on the 25 and 75 percentiles in the surrounding tissues,

respectively. This is, a given CpG site was considered as

frequently hypermethylated in tumors if more than 75% of the

tumor samples lied above the 75 percentile in surrounding

tissues. Similarly, if more than 75% of the tumor samples lied

below the 25% of methylation in surrounding samples, this

CpG site was considered as frequently hypomethylated in

tumors (Figure S3).

Class Prediction. We used different models to predict the

class of future samples using CpG methylation profile based on

the Compound Covariate Predictor [24], Diagonal Linear

Discriminant Analysis [25], Nearest Neighbor Classification

[25], and Support Vector Machines with linear kernel [26].

The models incorporated CpG sites that were differentially

methylated at the 0.001 significance level as assessed by the

random variance t-test [23]. We estimated the prediction error of

each model using leave-one-out cross-validation (LOOCV) [27].

For each LOOCV training set, the entire model building process

was repeated, including the gene selection process. We also

evaluated whether the cross-validated error rate estimate for a

model was significantly less than one would expect from random

prediction. The class labels were randomly permuted and the

entire LOOCV process was repeated. The significance level is the

proportion of the random permutations that gave a cross-

validated error rate no greater than the cross-validated error rate

obtained with the real data. 1000 random permutations were

used.

In addition, the Prediction Analysis for Microarrays (PAM)

Tool was used as another method of class prediction. The

method uses the shrunken centroid algorithm [28], whereby the

centroids of each group are shrunken toward each other by

shrinking the class means of each CpG site toward an overall

mean. The amount of shrinking is determined by a ‘‘tuning

parameter’’ called delta. As the shrinking occurs, some CpG

sites will have the same value of shrunken class mean for the

different classes, and hence they will have no effect in

distinguishing the classes. For larger values of delta, fewer

CpG sites will have different shrunken means among the classes,

and so the classifier will be based on fewer CpG sites. With this

approach, the number of CpG sites included in the classifier is

determined by the value of delta. The algorithm provides a k-

fold cross-validated estimate of prediction error for all values of

delta where k is the minimum class size. The tool indicates the

delta corresponding to the smallest cross-validated prediction

error and gives the list of CpG sites that are included in the

classifier for that value of delta.

Gene Ontology Analysis. The evaluation of which Gene

Ontology (GO) classes are differentially methylated between

tumor and surrounding samples was performed using a

functional class scoring analysis as previously described [29]. For

each gene in a GO class, the P value for comparing tumor and

surrounding samples was computed. The set of P values for a class

was summarized by two summary statistics: (i) The LS summary is

the average log P values for the genes in that class and (ii) the KS

summary is the Kolmogorov-Smirnov statistic computed on the P

values for the genes in that class. Functional class scoring is a more

powerful method of identifying differentially methylated gene

classes than the more common over-representation analysis or
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annotation of gene lists based on individually analyzed genes. The

functional class scoring analysis for GO classes was performed

using BRB-ArrayTools.

Survival Analysis. CpG sites whose methylation was

significantly related to overall survival after treatment were

selected with BRB-ArrayTools survival analysis. A statistical

significant level was computed for each gene based on univariate

proportional hazards models. These P values were then used in a

multivariate permutation test in which the survival times and

censoring indicators were randomly permuted among arrays

[27,30]. The multivariate permutation test was used to provide

90% confidence that the false discovery rate was less than 10%.

For other comparisons, means and differences of the means

with 95% confidence intervals were obtained using GraphPad

Prism (GraphPad Software Inc.). The Mann-Whitney test and

the Wilcoxon matched pairs test were used for unpaired and

paired analysis comparing average methylation between classes,

respectively. P values,0.05 were considered statistically

significant.

Results

DNA promoter methylation in HCC samples
To investigate whether HCC could harbor specific methylation

profiles, DNA methylation of 1505 CpG sites was analyzed using

Illumina bead arrays. A total of 38 HCC samples were suitable

for analysis, including 30 pairs of HCC tumors/surrounding

tissues. In addition, 4 liver adenoma tumors/surrounding samples

and 4 cancer cell lines were included for comparison. 1219

Probes were used in the analysis, after excluding those with a P

value higher than 0.01 in more than 10% of the samples, and

those in chromosome X (to avoid the gender effect). An initial

unsupervised hierarchical clustering analysis was able to distin-

guish HCC samples from other types of tumors (breast and

esophageal cancer), blood and cell lines (data not shown).

Unsupervised clustering within HCC samples was also able to

distinguish 2 clusters enriched in tumors and surrounding tissue

samples (Figure 1A). Together with the proper clustering of the

replicates in the unsupervised analysis, the scatter plots analysis

confirmed the quality and reproducibility of the methylation

profiling (Figure 1B).

Overall, tumor samples displayed a small but significant increase

in average promoter CpG methylation (median methylation of 0.16

and 0.23 for surrounding and tumor tissue, respectively, P,0.05)

(Figure 1C). This contrasts with the global DNA methylation as

assessed with the LINE-1 element [21], which shows a significant

hypomethylation in tumors compared to surrounding tissue

(P,0.005, Figure S2C). An unsupervised analysis of samples

grouped by risk factors (HBV, HCV, alcohol consumption, or

unknown risk) showed that surrounding tissues were clustered

together, while tumor tissues were in a separate group among

which HCV-associated HCC were the most divergent subset

(Figure 1D). When analyzing the average promoter methylation for

these groups, an increased methylation was consistently found in

tumor samples relative to surrounding tissue, with the exception of

adenoma samples (Figure 1E). This increase in average promoter

methylation was statistically significant for HBV and HCV samples

(P,0.0001 for both paired analysis). Although promoter methyl-

ation was also increased in alcohol-related and unknown-risk HCC

samples, the difference did not reach statistical significance.

Therefore, a distinct promoter methylation profile is common to

all HCC tumors, with global non-promoter hypomethylation and

increased promoter methylation.

Signature and prediction of HCC by DNA promoter
methylation profiling

To distinguish those genes differentially methylated between

tumors and surrounding tissue, a class comparison tool (BRBAr-

rayTools v3.8) was used, as described in Methods. After filtering

for a P value,0.001 and correcting for a False Discovery Rate

(FDR) ,0.1, 124 CpG sites were shown to be differentially

methylated. Several CpG sites corresponded to the same gene

promoter, and consequently a total of 94 genes were considered as

differentially methylated. Approximately one third of the signif-

icant promoters were significantly represented by more than one

CpG site, arguing in favor of the quality of this data. Relative to

surrounding tissues, tumors showed increased methylation in 34

(27%) of these CpG sites (corresponding to 27 gene promoters,

including RASSF1, APC, and CDKN2A), and reduced methylation

in 90 (73%) (corresponding to 66 gene promoters, including

GABRA5, NOTCH4, and PGR) (Figure 2A and Table S2). To

analyze the frequency of methylated or unmethylated CpG sites in

tumors relative to surrounding tissue we used the upper and

lower quartile of surrounding tissue to set a threshold (see

Methods). This analysis yielded a similar result, with 7 and 35 CpG

sites respectively hyper- and hypomethylated in tumors (Figure S3).

Validation of a subset of 8 gene promoters by pyrosequencing

was consistent with the bead arrays results (Figure S4A). The

correlation between pyrosequencing and bead array analysis was

statistically significant (P value,0.0001, Figure S4B). In addition,

hypermethylation of RASSF1A and of APC promoters was

associated with a significantly lower expression in HCC tumors,

as assessed by qRT-PCR (Figure S5).

The ontological analysis of the differentially methylated genes

showed enrichment for ontology terms related to development,

including the Wnt-b2catenin, TGF-b, Hedgehog and Notch

signaling pathways (data not shown). Methylation of some of these

genes has been previously described in HCC (i.e. APC, RASSF1A,

and p16/CDKN2A), validating the sensitivity of this assay

[14,31,32]. However, many gene promoters that were not

previously linked to HCC showed differential methylation,

including those involved in apoptosis (IRAK3, MYOD1), immune

response (HLA-DQA2, GSTM2, IFNG), growth factor signaling

(EGF, FGF6, IGF1R, NGFR), cell cycle regulation (CCND2), and

metastasis (CDH17, MMP1, MMP3, MMP9) (Table S2). Interest-

ingly, promoters in the HCC signature included a number of

imprinted genes that were consistently hypomethylated in HCC

relative to surrounding tissue (GABRA5, GABRG3, HBII-52,

MEST, MKRN3, TRPM5, and ZIM3). For most of them there

were at least 2 CpG sites differentially methylated, suggesting that

this observation is biologically significant.

Figure 1. Unsupervised analysis of CpG methylation bead arrays in HCC. A. Clustering analysis of 76 HCC samples included in the bead
array assay (HCC tumor and surrounding tissue). For the upper part of the cluster, names are given manually according to the enrichment of specific
clusters. 1505 CpG sites are included. Yellow indicates hypomethylated, and red hypermethylated CpG sites. B. Representative logarithmic plot of
two replicates included in the array, showing proper consistency of methylation (r2 value is included on the plot). C. Average promoter methylation
of all 1505 CpG sites, in HCCs and surrounding tissues. D. Clustering analysis after grouping the samples by ethological factors. E. Average
methylation for all 1505 CpG sites from the same ethological groups shown in (d). Significant differences (P,0.05) between tumor and surrounding
tissue are represented with an asterisk (*).
doi:10.1371/journal.pone.0009749.g001
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The ability to discriminate tumor from surrounding tissue may

have clinical impact, especially when small sets of genes are able to

produce robust predictions. The significant differences between

surrounding and HCC tissues after class comparison suggested the

possibility of building a multivariate predictor from this gene set.

Therefore, we next used a subset of CpG sites to predict the class

of an independent series of HCC tumors and matching

surrounding tissues. The models incorporated genes that were

differentially methylated between tumor and surrounding tissue at

the 0.001 significance level, as assessed by the random variance t-

test. The prediction error of each model was assessed using leave-

one-out cross-validation (LOOCV) [27]. Interestingly, the 124

CpG sites included in the HCC signature were able to

discriminate tumor and surrounding tissue in all the samples

included in the second series (data not shown).

We next tried to design a predictor with a minimum number of

CpG sites using the Prediction Analysis of Microarrays tool (PAM)

[28]. As shown in Figure 2B, a minimum of 20 CpG sites is

required to minimize the number of misclassification errors. This

20 CpG site predictor (corresponding to 16 gene promoters) was

able to correctly classify 14 out of 16 of the new samples

(sensitivity = 0.75, specificity = 0.97 for tumor prediction), and was

included in the 124 CpG sites signature of HCC. An unsupervised

clustering for the new series of HCC samples using this 20 CpG

sites-signature highlights its ability to discriminate both types of

samples (Figure 2C). Interestingly, the CpG sites with strongest

ability to discriminate tumor from surrounding tissue were found

in the promoter of genes hypermethylated in HCC samples (e.g.

APC, RASSF1A, CDKN2A, and FZD7).

Methylation profile is associated with HCC risk factor and
tumor progression

In order to find CpG sites potentially associated with tumor

progression, we performed a class comparison analysis to classify the

methylation profile according to tumor stage (as assigned by the

TNM classification) and grade of differentiation (histologically

classified as 1 = well differentiated, 2 = intermediate, and 3 =

poorly differentiated). Tumor stage will be referred to as T, as all

samples except one [T3N1M0] sample were negative for lymph

node invasion (N0) and metastasis (M0). Globally, tumors of the first

2 stages (T1 and T2) displayed a similar methylome profile, while 24

CpG sites were differentially methylated in advanced tumors (T3)

(Figure 3A). All CpG sites were significantly hypermethylated in

advanced tumors, and most of them show a trend to be progressively

hypermethylated from T1 through T3 (Figure 3A). The set of 24

CpG sites hypermethylated in advanced HCC tumors are located in

genes involved in immune response and adhesion (IL18BP, IPF1,

HLA-DOB, CSPG2, GJB2 and PMP22), and the cell cycle (CCND2

and NTKR3). Similarly, the grade of differentiation was associated

with changes in methylation only in the least differentiated tumors

(grade 3) (data not shown). Three CpG sites were significantly

hypomethylated in grade 3 tumors (e.g. HOXB2, DDR2, and

TIMP3), while 19 CpG sites were hypermethylated (including CDK2,

EF3, FANCF, LIF, RASGRF1, DNMT1, and ERCC1).

The HCC samples analyzed in this study were obtained from

patients exposed to different risk factors, including HBV infection,

HCV infection, and ethanol consumption. In order to identify risk

factor-specific profiles of methylation we performed a class

comparison analysis including these groups, and a group of

HCC samples with unknown risk factors (negative for HBV or

HCV infection, and no history of alcohol consumption). After class

comparison analysis, a reduced set of genes was significantly

hypermethylated in each group relative to the other 3 groups

(Figure 3B). By comparing among these groups it was possible to

select CpG sites specifically modulated in alcohol-related (DIO3

and STAT5A), HBV-related (NAT2, CSPG2, DCC, NTKR3,

TNFSF10, TNFRSF10C, and RASGRF1), and HCV-related HCCs

(RIK and CHGA). Samples from unknown risk factor patients

displayed a mixed profile, with hypermethylation of several of

these promoters, probably reflecting their heterogeneous origin

(Figure 3 and Table S3).

The heterogeneity of HCC origin is also reflected in the

conservation of the normal architecture of the liver. In this sense,

our series of HCC surrounding tissues can be classified into those

samples exhibiting cirrhotic (n = 16) or non-cirrhotic (n = 14)

histology. Comparison between these two classes using stringent

conditions of analysis (P value,0.001) shows that cirrhotic tissues

are significantly hypermethylated in 2 gene promoters, corre-

sponding to UGT1A7 and PLG.

HCC methylation profile and prediction of survival
Survival signatures were developed with BRB-ArrayTools using

fitted Cox proportional hazards model, considering the time of

biopsy as the starting point. At the time of analysis there were 13

deaths among 38 patients with available data, with a mean follow-

up time of 194 weeks for all patients. With these data it was

possible to classify the patients into two groups with significantly

different survival curves (Figure 4A, P,0.001). The first 10 CpG

sites with highest ability to differentiate between these two groups

are shown in Figure 4B. Interestingly, this survival signature was

significantly enriched in the promoters of genes involved in IGF-1

signaling and immune response (Figure 4C). In addition, the

differences found in DNA promoter methylation were reflected in

different expression profiles for some of the genes ranking highest

in the survival prediction analysis (Figure 4D). This suggests that

control of immune and growth factor response genes by

methylation may represent a potential mechanism directly

affecting the survival of HCC patients.

Discussion

This report describes the CpG methylation profile of HCC in a

wide panel of cancer-related promoters. A differential analysis

identified a signature of the genes specifically methylated in HCC

with respect to surrounding tissue. Although a number of known

promoters were found to be differentially methylated in HCC, we

identified new candidate promoters that are potentially involved in

the development and progression of liver cancer. By correlating

the methylation data with clinical outcomes it was possible to

Figure 2. Signature and predictor of HCC by methylation profiling. A. Differential methylation analysis was performed with the class
comparison tool of BRBArrayTools software, as described in Materials and Methods. The heat map represents those CpG sites distinguishing HCC
from surrounding tissue (n = 87) with a P value,0.001. The full list of CpG sites is presented as Table S2. Yellow indicates hypomethylated, and red
hypermethylated CpG sites. B. Representation of the misclassification error as a function of the number of genes, as assessed with the PAM
prediction analysis. The upper panel shows the correlation for the grouped samples; the lower panel shows the independent correlation for tumor
and surrounding samples. Sensitivity and specificity of the predictor is included in the Figure. C. A heat map with the 20 CpG sites included in the
HCC predictor was obtained for an independent series of HCC samples and HCC surrounding tissues, after unsupervised hierarchical clustering
analysis.
doi:10.1371/journal.pone.0009749.g002
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Figure 3. Methylation profile according to risk factor and tumor progression. Class comparison analyses were performed, as described in
Figure 2. A. The heat map represents 27 CpG sites distinguishing the different HCC samples according to their TNM classification, with a P
value,0.05. B. The heat map represents 17 CpG sites distinguishing the different HCC samples according to their ethological exposure, with a P
value,0.01. HBV or HCV infection, EtOH = ethanol consumption, and Unknown = unknown risk factor.
doi:10.1371/journal.pone.0009749.g003
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establish a DNA methylation predictor of patient survival and

clinical parameters such as stage and grade. The strength and low

complexity of these signatures, based on a reduced number of gene

promoters, makes them a potential novel strategy for early

detection and clinical prediction in HCC.

Although early detection of HCC has improved, diagnosis is

established at only advanced stages. Therefore, there is an urgent

need to predict recurrence and response to therapy, especially

because patients prone to recurrence may receive alternative

treatment. The strength of the presented signatures is underscored

by their validation in an independent series of HCC samples.

Importantly, despite preliminary studies on clinical prediction

based on gene expression profiling [33], the stability of DNA

relative to RNA makes methylation profiling a tool better suited to

clinical settings. In addition, the availability of signatures with a

reduced number of CpG sites would enable their use for clinical

prediction in, for example, paraffin-embedded samples or plasma

DNA. A small set multivariate predictor may have important

applications in the early detection of neoplastic transformation in

populations at high risk for HCC, such as hereditary haemochro-

matosis patients [18]. Similarly, the prediction of survival may be

useful in improving and individualizing therapeutic decisions.

However, these multivariate signatures should be prospectively

validated in larger cohorts before considering clinical applications.

The importance of the role of DNA methylation has been

previously described in HCC. Epigenetic changes on RASSF1A,

p16, and p15 tumor suppressor genes in serum DNA have been

shown to be potential biomarkers for early detection in

populations at high risk for HCC [18]. The tumor suppressor

APC also seems to be a common marker for HCC detection and is

found consistently hypermethylated in HCC [12], whereas SYK

and CRABP1 hypermethylation has been considered as a useful

prognostic marker in HCC [34]. A previous screening of 105

promoters identified that the epigenetic activation of Ras and

downstream Ras effectors was common in HCC, and was

associated with poor prognosis [8]. In another study, increased

methylation was shown in the p16 and GSTP1 genes in HCC

compared to matching non-malignant cirrhotic liver [12,35,36]. In

this sense, our bead array analysis supports and extends the

previous findings on DNA methylation, and provides a novel and

more comprehensive signature of HCC methylation.

A previous study analyzed a limited panel of cancer-associated

genes in HCC tumors and found that environmental factors may

influence the degree and pattern of methylation in tumors [37].

Our study identified significant associations between methylation

patterns and specific etiologic agents (i.e., HBV, HCV, and

ethanol), tumor progression (stage and grade of differentiation),

and tumor background (cirrhotic vs. non-cirrhotic surrounding

tissue) for specific subsets of genes. Interestingly, those promoters

differentially methylated in virus-related HCC samples correspond

to genes involved in immune response and induction of apoptosis.

Specifically, polymorphisms of the N-acetyltransferase encoded by

the NAT2 gene have been linked to susceptibility to HBV-related

HCC [38,39]. Moreover, promoter methylation of DNMT1 was

associated with poor differentiation.. Remarkably, hypermethyla-

tion of the gene encoding DNA-methyltransferase 1 (DNMT1) can

be associated with a lower expression and consequent global

hypomethylation as observed with the LINE-1 pyrosequencing

analysis.

Another interesting observation is that the tumor background

(cirrhotic vs. non-cirrhotic) determined a specific pattern of

methylation for several promoters. UGT1A7 encodes a UDP-

glucuronosyltransferase involved in multiple metabolic pathways,

including the metabolism of hormones and the metabolism of

xenobiotics by cytochrome P450. In addition, UGT1A7 polymor-

phisms have been correlated with cirrhosis, and with increased risk

of HCC in HBV- and HCV-infected patients [40,41,42]. Similarly

plasminogen, encoded by PLG, is a circulating zymogen that is

converted to the active enzyme plasmin and whose main function

is to dissolve fibrin clots. It is noteworthy that PLG transcript

expression has been reported to be reduced in HCC [43].

Therefore, aberrant promoter methylation of these two genes may

be related with a disturbed detoxification of carcinogens, and the

process of hepatic fibrogenesis that results in cirrhosis [44]. Further

analysis of these genes may shed new light into the process of liver

carcinogenesis in specific risk groups. However, the global

similarity among HCC groups substantiates the notion that

aberrant methylation is a ubiquitous phenomenon in liver

carcinogenesis [8].

In summary, this study describes the methylation profile of

hepatocellular carcinoma and the specific signatures that can be

used as markers for detection and survival after therapy. Our

results, based on bead arrays and quantitative analysis with

pyrosequencing, give a reliable view of HCC promoter methyl-

ation in a wide panel of genes, and can be used as a reference tool

for the potential development of clinical applications.

Supporting Information

Figure S1 Representative histology of HCC tumors and

surrounding tissues used for methylation profiling. H&E-stained

HCC samples with surrounding non-tumor liver parenchyma.

Examples of HCC samples with adjacent non-cirrhotic and

cirrhotic tissues are shown in A and B, respectively. NC indicates

non-cirrhotic surrounding liver tissue, C indicates cirrhotic

surrounding liver tissue, and H indicates HCC tissue.

Found at: doi:10.1371/journal.pone.0009749.s001 (7.59 MB TIF)

Figure S2 Pyrosequencing design for imprinted genes. A.

Diagram showing chromosomal localization and GC percentage

for GABRA5 promoter, as an example of the design used for

validation. The regions studied by bead arrays and pyrosequen-

cing are represented under the chromosomal localization. B.

Representative pyrograms of GABRA5 obtained from the analysis

of bisulfite-modified DNA from HCC tumor and surrounding

tissue. Primers used for pyrosequencing are included as Supple-

mentary Table 1. C. Global methylation was studied using primers

against LINE-1 elements [21]. A significant hypomethylation in

tumors, relative to surrounding tissue, is shown by a (*) (,0.05).

Found at: doi:10.1371/journal.pone.0009749.s002 (1.54 MB TIF)

Figure S3 Analysis of frequency of methylation. AVG-Beta

values in the surrounding tissues were used to define the

percentiles 25 and 75 for each CpG site (see Methods). These

Figure 4. Survival risk predictor in HCC. A. Survival analysis using BRB-ArrayTools. A survival signature was developed using fitted Cox
proportional-hazards model and leave-one-out crossvalidation, considering the time of biopsy as the starting point. Survival curves show a significant
difference between two groups of HCC patients. B. A 58 CpG sites predictor (selected from the analysis shown in A.) was correlated with survival
after treatment. Only the first 10 CpG sites (with the lowest P value) are shown. C. Pathway analysis for the 58 CpG sites included in the survival
predictor showing the 5 significantly enriched pathways. D. Quantitative RT-PCR was performed for some of the genes with the highest ability to
predict survival in HCC (MYLK, FLT1, CDKN1C and TAp73, in a subset of samples with high (H) and low (L) risk.
doi:10.1371/journal.pone.0009749.g004
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percentiles were used as a reference to define the frequency of

methylation in tumors. A. Box plots representing the 3 CpG sites

with highest frequency of methylation in tumors (upper panel) and

highest frequency of unmethylation in tumors (lower panel)

calculated in this way. S = surrounding, T = tumor. (*) P value

, 0.001. B. Table showing the CpG sites frequently methylated in

more than 75% of the tumors relative to surrounding tissues. C.

Table showing the CpG sites frequently unmethylated in more

than 75% of the tumors relative to surrounding tissues.

Found at: doi:10.1371/journal.pone.0009749.s003 (2.56 MB

TIF)

Figure S4 Validation of bead arrays by pyrosequencing A.

Pyrosequencing assays were designed for the validation of 8 gene

promoters differentially methylated between tumor and surround-

ing HCC samples (upper dot plot). The level of methylation is

shown in a percentage scale. Primers were designed as described in

Materials and Methods. A dot plot representing the corresponding

levels of methylation (in a 0 to 1 scale) for the same genes in the

bead arrays assay is shown in the lower panel. B. Correlation

analysis from the data presented in (A).

Found at: doi:10.1371/journal.pone.0009749.s004 (1.45 MB TIF)

Figure S5 Validation of bead arrays by qRT-PCR Quantitative

RT-PCR was performed for APC and RASSF1A in a subset of

samples. The bars show a lower expression in the tumors relative

to surrounding tissue in 3 out of 4 samples analyzed. In addition,

inverse correlation with methylation is shown in each plot. Each

line represents the AVG-Beta value obtained with bead arrays for

2 independent probes in the same promoter. Higher initial

methylation is observed for the last sample, in which expression in

tumors is higher than the matched surrounding tissue.

Found at: doi:10.1371/journal.pone.0009749.s005 (2.17 MB TIF)

Table S1 Primers used for pyrosequencing.

Found at: doi:10.1371/journal.pone.0009749.s006 (0.06 MB

DOC)

Table S2 CpG sites differentially methylated in HCC tumor vs.

surrounding tissue.

Found at: doi:10.1371/journal.pone.0009749.s007 (0.25 MB

DOC)

Table S3 CpG sites differentially methylated in HCC according

to risk factor exposure.

Found at: doi:10.1371/journal.pone.0009749.s008 (0.07 MB

DOC)
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