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Purpose: Necroptosis is a mode of programmed cell death that overcomes apoptotic
resistance. We aimed to construct a steady necroptosis-related signature and identify
subtypes for prognostic and immunotherapy sensitivity prediction.

Methods: Necroptosis-related prognostic lncRNAs were selected by co-expression
analysis, and were used to construct a linear stepwise regression model via univariate
and multivariate Cox regression, along with least absolute shrinkage and selection
operator (LASSO). Quantitative reverse transcription polymerase chain reaction (RT-
PCR) was used to measure the gene expression levels of lncRNAs included in the
model. Based on the riskScore calculated, we separated patients into high- and low-risk
groups. Afterwards, we performed CIBERSORT and the single-sample gene set
enrichment analysis (ssGSEA) method to explore immune infi ltration status.
Furthermore, we investigated the relationships between the signature and immune
landscape, genomic integrity, clinical characteristics, drug sensitivity, and
immunotherapy efficacy.

Results: We constructed a robust necroptosis-related 22-lncRNA model, serving as an
independent prognostic factor for breast cancer (BRCA). The low-risk group seemed to
be the immune-activated type. Meanwhile, it showed that the higher the tumor mutation
burden (TMB), the higher the riskScore. PD-L1-CTLA4 combined immunotherapy
seemed to be a promising treatment strategy. Lastly, patients were assigned to 4
clusters to better discern the heterogeneity among patients.

Conclusions: The necroptosis-related lncRNA signature and molecular clusters
indicated superior predictive performance in prognosis and the immune
microenvironment, which may also provide guidance to drug regimens for
immunotherapy and provide novel insights into precision medicine.
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INTRODUCTION

Among the causes of global cancer incidence, breast cancer
(BRCA) ranked the first in 2020 and was the fifth leading
cause of cancer-related mortalities worldwide. According to the
data reported, approximately 2.3 million new cases of BRCA
were recorded in 2020 (1, 2). As a highly complex and
heterogeneous disease with different molecular profiles, the
decision-making of BRCA diagnostic and treatment were
difficult, as well as the prediction of the clinical responses to
therapeutic agents and prognoses (3). Thus, new effective
targeted-therapeutic precision strategies are necessary.

The dynamic change in tumor microenvironment (TME)
heterogeneity is considered to be the most important aspect of
tumor heterogeneity, which depends on the tumor cells themselves
in the microenvironment where the infiltrating immune cells and
matrix together form an antitumor and/or pro-tumor network (4).
The TME, a complex ecosystem composed of stromal cells, cancer
cells, fibroblasts, chemokines, and immune cells (5), serves as a site
of tumor cell growth and metastasis for promoting tumor immune
escape, tumor growth, and metastasis (6–8), further influencing
prognosis and prediction of response to specific treatments (9).

Necroptosis, seen as a novel form of programmed necrotic
cell death, plays an important part in overcoming apoptosis
resistance, triggering and amplifying antitumor immunity in
cancer therapy (10, 11), similar to apoptosis in mechanism and
necrosis in morphology (12).

LncRNAs are involved in regulating gene expression and
transcription and post-transcription processes through chromatin
modification (13) and then play an important role in dysregulation
of gene expression and signaling pathways that are closely related to
tumorigenesis, progression, and distant metastasis (14). According
to recent research results, by participating in immune gene
expression (TIM) and regulating inflammation, lncRNAs could
influence themalignantphenotypeof cancerbychanging the tumor
immune microenvironment (15–17).

Nevertheless, the prognostic value of necroptosis-related
lncRNAs in BRCA has not been systematically demonstrated
yet, and we still lack direct evidence about the predictive power of
necroptosis-related genes (NRGs) in the prognosis and
immunotherapy of BRCA. In this study, we identified a novel
22-prognostic-NRlncRNA signature and four NRLClusters to
characterize the molecular features of BRCA using The Cancer
Genome Atlas (TCGA) database. Subsequently, we further
validated that the signature could serve as a robust
independent predictor of prognosis and immuno-
sensitivity response.
Abbreviations: TCGA, The Cancer Genome Atlas; Lasso, least absolute shrinkage
and selection operator; TME, tumor microenvironment; UCSC, University of
California, Santa Cruz; TCIA, The Cancer Immunome Atlas; IC50, half-maximum
inhibitory concentration; ROC, receiver operating characteristic; NRG,
necroptosis-related gene; NRlncRNA, necroptosis-related lncRNA; NRCluster,
necroptosis-related cluster; NRLScore, necroptosis-related lncRNA score; CNV,
copy number variation; GSVA, the gene set variation analysis; ssGSEA, single-
sample gene set enrichment analysis; TMB, tumor mutation burden; PCA,
principal component analysis; ICI, immune checkpoint inhibitor; TIC, tumor-
infiltrating immune cell; IPS, immunophenoscore.

Frontiers in Oncology | www.frontiersin.org 2
METHODS

Data Acquisition and Processing
Primary expression data, corresponding clinical characteristics,
and mutation data for 1,078 BRCA samples were extracted from
the TCGA database. A total of 1,078 patients were assigned to
train and test cohorts randomly with the ratio of 1:1 using the
“createDataPartition” function in the “caret” package. Copy
number variation (CNV) data were collected from the
University of California, Santa Cruz (UCSC) website, and the
immunology treatment response data were from The Cancer
Immunome Atlas (TCIA) (18–20). Based on the expression files
of 67 genes associated with necroptosis sorted out from the
previous literature, 1,520 necroptosis-related lncRNAs were
acquired by correlation analysis using the “cor” function in the
“limma” R package (21).

Construction and Validation of the
Necroptosis-Related LncRNA Signature
Univariate Cox regression analysis was performed to screen out
prognostic necroptosis-related lncRNAs in the train cohort using
the “coxph” function in the “survival” R package. Then, the least
absolute shrinkage and selection operator (LASSO) was used
for the dimension reduction and K-fold cross-validation using
the “cv.glmnet” function, which was multiplied by ten, and the
optimal parameter was the l value that corresponded to the
lowest deviation. Subsequently, the riskScore of each patient was
calculated based on each selected gene expression value
multiplied by their coefficients, which were derived from the
coefficient of multivariate Cox regression in the train cohort. The
LASSO regression model was as follows:

the riskScore formula  =  coefficients  ∗ expressing  values of  A

IncRNA + coefficients  ∗  expressing  values of B IncRNA

We divided patients into a high-risk and low-risk group with the
median value of riskScore in the train cohort, and applied the
value in the test and the entire cohort. The time-dependent
receiver operating characteristic (ROC) curve using the
“timeROC” R package and Kaplan–Meier (K-M) survival
curves using the “survival” package were used to assess the
signature’s predictive accuracy in the train, test, and entire
cohort. Based on the value of riskScore, the K-M method was
used to plot survival curves with log-rank p-value < 0.05
considered statistically significant. Moreover, we paid attention
to the association between clinicopathological parameters
and riskScore.

Cell Culture
We purchased the normal breast epithelial cell line MCF-10A,
and the epithelial BRCA cell lines MCF-7, T47D, MDA-MB-231,
MDA-MB-468, and BT-549 from the American Type and
Culture Collection (ATCC; Manassas, VA, USA). MDA-MB-
231 and BT-549 cells were cultured in Dulbecco’s Modified
Eagle’s Medium (DMEM) (ATCC; Manassas, VA, USA)
supplemented with 10% fetal bovine serum (HyClone; Logan,
UT, USA) and 1% antibiotic (100 IU/ml of penicillin and 100 μg/
May 2022 | Volume 12 | Article 887318

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Xu et al. Necroptosis-Related LncRNAs for Predicting Prognosis
ml of streptomycin; HyClone; Logan, UT, USA). MCF-10A cells
were cultured in DMEM/F12 medium supplemented with 20 ng/
ml EGF, insulin, hydrocortisone, NEAA, 5% HS, and 1% P/S
Solution (Procell; Wuhan, China). MCF-7 and MDA-MB-468
were cultured in Minimum Essential Medium (MEM) (Gibco
BRL, USA) supplemented with 10% fetal bovine serum
(HyClone; Logan, UT, USA) and 1% antibiotic (100 IU/ml of
penicillin and 100 μg/ml of streptomycin; HyClone; Logan, UT,
USA). T-47D cells were cultured in RPMI 1640 (HyClone,
Logan, UT, USA) with 10% fetal bovine serum (HyClone;
Logan, UT, USA). All the cell lines were incubated at 37°C,
with a humidified atmosphere of 5% CO2.

RNA Isolation and Real-Time PCR of
LncRNAs in the Signature
Total RNAs were isolated from cells using the Trizol reagent
(Invitrogen). The PrimeScript™ RT reagent Kit (Takara, Japan)
was employed to perform reverse transcription to synthesize
cDNA following the manufacturer’s protocol. Then, SYBR Green
PCRMaster Mix (Applied TaKaRa, Otsu, Shiga, Japan) was used
to conduct real-time PCR on Applied Biosystems 7500 Fast Real-
Time RCR System (Applied Biosystems, Foster City, CA, USA).
The primers of NRlncRNAs for qRT-PCR used in this research
are shown as follows, which could also be seen in Table 1.

Construction and Validation of a
Prognostic Nomogram
To improve the accuracy of predicting the prognosis of BRCA
patients, we further built a prognostic nomogram based on the
NRL signature and other clinicopathologic features FOR forecast
the 1-, 2-, and 3-year OS using the “rms” R package (22, 23), with
corresponding calibration plots reflecting the predictive accuracy
of the nomogram via the “calibrate” function (24).

Prediction of Chemotherapy and Target
Agent Response
Via the “pRRophetic” package, we calculated the half-maximum
inhibitory concentration (IC50) to evaluate the difference in drug
response between different groups in the Genomics of Drug
Sensitivity in Cancer (GDSC) database (25, 26) using Ridge’s
regression, along with 10-fold cross-validation for the purpose of
improving the accuracy of the prediction (27, 28).
Frontiers in Oncology | www.frontiersin.org 3
Assessment of Immune Cell Infiltration,
Immune Checkpoint, and Immunotherapy
We calculated immune cell infiltration in each sample using the
single-sample gene set enrichment analysis (ssGSEA) algorithm
and found out the significantly differential pathways between the
two groups with gene set variation analysis, using the “GSEABase”
and “GSVA” packages. Furthermore, we further performed
CIBERSORT algorithm, which used expression data to assess the
stromal and immune cells using the “e1071”, “parallel”, and
“preprocessCore” packages, and Spearman rank correlation
analysis for analyzing the correlation between the riskScore and
the relative expression level of the 22 tumor-infiltrating leukocytes
using the “limma” package. We also probed into the expression
levels of known immune checkpoint genes in high- and low-risk
groups. Furthermore, we discussed the relationship between the
NRLscore and clinical PD-L1 and CTLA-4 subtypes in the TCIA
database using Student’s t-test.

Tumor Mutation Burden Analyses
Using mutation data of BRCA patients, the waterfall plot was
generated with Maftools R-package to compare the differences in
gene mutation frequency between high- and low-risk BRCA
patients. We analyzed the correlation between TMB and riskScore
using Student’s t-test and Spearman rank correlation analysis.

Profiles of Necroptosis-Related LncRNAs
Identified Four Distinct Molecular
Phenotypes of BRCA
By using hierarchical agglomerative clustering on the basis of
Euclidean distance and Ward’s linkage (29), BRCAs with
qualitatively varying necroptosis-related lncRNA expressions were
clustered. The K-means method was applied to classify patients for
further study using the “ConsensusClusterPlus” package (30).

Statistical Analysis
All statistical data analyses were performed in GraphPad Prism
(version 7) and R software (version 4.1.1). Wilcoxon test (for
comparison between two groups) and Kruskal–Wallis test (for
comparison among more than two groups) were applied to
discuss the statistically significant differences. Log-rank test
was used to determine the differences in overall survival
between different risk groups and molecular clusters. The
correlations between the two were evaluated via Spearman’s
correlation analysis. p < 0.05 was considered to be the
threshold for statistical significance, and all the p-values
mentioned in the paper were two-tailed.
RESULTS

Genetic Variation Landscape of
Necroptosis-Related Genes in BRCA
According to the previous literature, we confirmed 67 NRGs
(22). Genomic mutations were common in these genes, with
genetic changes occurring in 145 (14.75%) of 983 patients, in
which ATRX (2%) had the most genetic alteration, and a
TABLE 1 | The primers of NRlncRNAs for qRT-PCR used in this research.

Primer name Primer sequence (5’ to 3’)

LINC00377 Forward 5′-GGAAAAGTGCATTTGCTTCGG-3′
LINC00377 Reverse 5′-TGACCTTGATGGCTTTTGATCC-3′
MEF2C-AS1 Forward 5′-ACTTGTTGCCTACTATCATACCTG-3′
MEF2C-AS1 Reverse 5′-ATAGCCATACAATAAGTTGCTCT-3′
LMNTD2-AS1 Forward 5′-AGTGACAGGCACTCACCTAC-3′
LMNTD2-AS1 Reverse 5′-TCTCCTGGAGCAGAGGGAATA-3′
LINC02446 Forward 5′-ATAGAGGCAAAGCAAGCCACT-3′
LINC02446 Reverse 5′-GTCACATCGTAGGAGGTGCTG-3′
GAPDH Forward 5′-CTGGGCTACACTGAGCACC-3′
GAPDH Reverse 5′-AAGTGGTCGTTGAGGGCAATG-3′
May 2022 | Volume 12 | Article 887318

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Xu et al. Necroptosis-Related LncRNAs for Predicting Prognosis
mutation frequency of 1% was observed in CASP8, GATA3,
BACH2, EGFR, STAT3, TLR3, DNMT1, BRAF, RIPK1, TSC1,
AXL, HSPA4, FLT3, ALK, RNF31, and IDH1 (Figure 1A). The
location of the 67 NRGs in human chromosomes can be seen in
Figure 1B. Meanwhile, we found that most genetic variations
had CNV amplification (Figure 1C). In order to discover the
interaction of the 67 NRGs directly, we constructed a network to
show the connection between each other (Figure 1D). The
differential analysis in normal breast tissue and tumor tissue
revealed that, except for RIPK1, RIPK3, TNF, MAP3K7, and
STAT3, all the other genes showed significantly differential
expression in BRCA (Figure 1E). PLK1, CDKN2A, TERT,
LEF1, MYCN, GATA3, ZBP1, TRIM11, IDH2, FLT3, TRAF2,
and FADD were seen as upregulated genes in BRCA, with the
value of log FC of TERT being the highest (log FC = 2.627). ALK,
Frontiers in Oncology | www.frontiersin.org 4
ID1, BACH2, EGFR, and KLF9 were seen as downregulated
genes in BRCA, with the value of log FC of KLF9 being the
highest (log FC = −1.601) (Figure 1F). The alteration and genetic
variation of NRGs acted as an important part in regulating the
happening, aggravation, and prognosis of BRCA.

Identification of Prognostic Necroptosis-
Related LncRNAs
The clinical data and transcriptome data were retrieved from the
TCGA database, including 1,096 BRCA specimens and 112
normal specimens. We performed Spearman correlation
analysis between the lncRNAs and NRGs, and 1,520
necroptosis-related lncRNAs (NRlncRNAs) were sorted out
with the filter criteria of correlation coefficients >0.4 and p <
0.001 (21, 22, 31, 32) (Table S1 and Figure 2A). Forty-six
A B

D

E F

C

FIGURE 1 | Profile of the 67 necroptosis-related genes in BRCA. (A) In all, 145 of 983 (14.75%) BC patients experienced 67 necroptosis-related gene alterations.
(B) The location of the 67 necroptosis-related genes in chromosomes. Blue points represented that the gene mainly had CNV deletion, red points represented that
the gene mainly had CNV amplification. (C) CNV mutation frequency of the 67 necroptosis-related genes. This column represents the frequency of change. Deletion
frequency is represented by green dots, while amplification frequency is represented by pink dots. (D) Expression interaction of the 67 necroptosis-related genes in
BRCA. The lines connecting the necroptosis-related genes show how they are correlated with each other, with positive associations in red and negative associations
in green. (E) Expression of the necroptosis-related genes in normal tissues and BRCA tissues. Genes with red color represented the differentially expressed genes.
(F). The value of logFC of the genes. *P<0.05; **P<0.01; ***P<0.001.
May 2022 | Volume 12 | Article 887318

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Xu et al. Necroptosis-Related LncRNAs for Predicting Prognosis
prognostic NRlncRNAs in BRCA were extracted by univariate
analysis, of which the significant filtering condition was p < 0.05
(Table S2 and Figures 2B, C).

Establishment and Validation of Prognostic
Signature for NRlncRNAs in BRCA
LASSO‐penalized Cox regression was used to establish the
following equation based on the expression of 22 NRlncRNAs
in the train cohort (Figures 2D, E):

riskScore = ½(0:0314*AC125807:2 ) + (0:3155*ZBTB40 − IT1) 
+( − 0:0010*AC124319:2)   + ( − 0:0086*LMNTD2AS1) + (0:0394*

AC079298:3)  + (0:0044*AP001505:1)  + ( − 0:2655*NDUFA6 −DT)
+( − 0:9949*AL450322:1) + (0:0230*AC009237:14) +  ( − 0:0061*

LINC02446)  + (0:3555*AC007608:3) + (0:0979*MIR600HG) +

(0:1248*LINC00900)  + ( − 0:0385*LINC01871)  + (0:6195*MFF − DT)
+ (0:0054*AL078581:2)  +  ( − 0:7159*LINC00377) + (−

0:0019*AL133467:1) + ( − 0:6298*MEF2C − AS1) + ( − 0:1186*

AP001107:9) + ( − 0:0838*AC010201:2) + ( − 0:1161*AL451085:3)

Compared with the normal breast tissue, the expression levels
of LMNTD2-AS1, AC007608.3, and LINC02446 were
significantly higher in the BRCA group, while the expression
levels of LINC00377, AL450322.1, MEF2C-AS1, and
AC079298.3 were lower with the filter criteria of p < 0.05 and
Frontiers in Oncology | www.frontiersin.org 5
|log FC| > 1 (Figures 2F–H). qRT-PCR analyses verified the
results of bioinformatics analysis, revealing that expression levels
of LncRNA LINC00377 MEF2C-AS1 were significantly
downregulated in BRCA cell lines compared with the normal
breast cell line (p < 0.05, Figures 2I–L).

Combining the coefficients and expression of the above
NRlncRNAs, we computed the riskScore for each BRCA
patient. The entire cohort included 1,078 samples, which were
randomly divided into a train cohort (540 samples) (Table S3,
Sheet train) and a test cohort (538 samples) (Table S3, Sheet test)
according to the ratio of 1:1. Based on the value of the median
riskScore in the train cohort, we divided patients into high- and
low-risk groups in the train and test cohort, respectively. A total
of 270 patients were categorized into the high-risk group, and
270 patients were categorized into the low-risk group in the train
cohort while 258 patients were categorized into the high-risk
group and 280 patients were categorized into the low-risk group
in the test cohort (Figures 3A, G, M).

We performed principal component analyses (PCAs), and the
result indicated good discriminative performance of the
NRlncRNA model in the train, test, and entire cohort
(Figures 3B, H, N). The K-M survival curve displayed that
compared with the high-risk group, the OS of patients in the low-
risk group was significantly longerp < 0.001 in three cohorts)
(Figures 3E, K, Q). The area under curve (AUC) values for the 1-
year (0.812), 2-year (0.801), and 3-year (0.776) survival rates in
A B D

E F G

I

H

J K L

C

FIGURE 2 | (A) The network between necroptosis-related genes and lncRNAs (correlation coeffcients >0.4 and p < 0.001). (B) The prognostic necroptosis-related
lncRNAs extracted by univariate Cox regression analysis. (C). The heatmap that showed the expression profiles of 46 prognostic lncRNAs, which showed significant
difference between normal and cancer tissues. (D) The 10-fold cross-validation for variable selection in the LASSO model. (E) The LASSO coeffcient profile of 22
necroptosis-related lncRNAs. (F) Correlation analysis between risk groups and clinical features. (G) Expression of the 22 NRlncRNAs in the model between normal
tissues and BRCA tissues. (H) The value of logFC of the 22 NRlncRNAs. (I–L) qRT-PCR results showing the expression of lncRNAs in the normal breast and five
breast cancer cell lines. *P<0.05; **P<0.01; ***P<0.001.
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the train cohort, 1-year (0.720), 2-year (0.696), and 3-year
(0.682) survival rates in the test cohort, and 1-year (0.765), 2-
year (0.745), and 3-year (0.732) survival rates in the entire cohort
showed favorable specificity and sensitivity of the signature in
predicting OS (Figures 3F, L, R). Lastly, we performed
univariate and multivariate Cox regression analyses internally
and externally, implying that age and riskScore, which served as
high-risk factors, were significantly correlated with OS (p < 0.05,
HR > 1) (Figures 3C, D, I, J, O, P). These results revealed that
the NRlncRNA signature could efficiently and independently
identify the risk of BRCA prognosis.

Stratified Prognostic Analysis and
Association of NRlncRNA Signature With
Clinical Logical Features
To further demonstrate the predictive power of the prognostic
model, we performed the K-M analysis by log-rank test for the
purpose of assessing the prediction capacity of multiple clinical
characteristics on BRCA patients after stratifying the patients
into subgroups of age (≥55 and <55), AJCC stage (I + II and III +
IV), T stage (T1-2 and T3-4), N stage (N0-1 and N2-3), and M
stage (M0 and M1). The results revealed that the NRlncRNA
signature had good prognostic ability in each clinical subgroup
(Figures 4A–J).

We also focused our attention to the association of
NRlncRNA signature with age, T stage, M stage, N stage, and
Frontiers in Oncology | www.frontiersin.org 6
AJCC stage in BRCA patients. The riskScore was significantly
higher in the T4, M1, and stage IV groups compared with the
other corresponding groups (Figures 4K–O). However, we also
observed that HER-2-positive BRCA indicated a higher
r iskScore , whi le Luminal BRCA indicated a lower
riskScore (Figure 4P).

Development of the Nomogram for
Prognostic Prediction
To further enhance the prognostic prediction power, we
developed a nomogram that integrated age, TNM stage, and
riskScore (Figure 4P). Then, we built calibration curves, of which
the y- and x-axis represent the actual and predicted survival rate
from the nomogram to assess the predictive accuracy and clinical
practicability of this nomogram. The calibration plot for OS
probability at 1, 2, and 3 years suggested satisfactory consistency
between the actual and predicted survival probabilities
(Figures 4Q–T).

Prediction of Chemotherapy or Target
Agent Response
The IC50 values of several chemotherapeutic agents were used to
evaluate chemotherapeutic response to BRCA patients. We
observed that low-risk patients had dramatically reduced IC50

values of bleomycin, bortezomib, cisplatin, dasatinib, doxorubicin,
gefitinib, and paclitaxel compared to those with high risk, suggesting
A B

D

E F

G IH

J

K L

M N

C

O

P

Q R

FIGURE 3 | (A, G, M) Risk curve; scatter plot of vital status by risk score; heatmap of the 22 lncRNAs’ expression in the train, test, and entire cohort. (B, H, N) Principal
component analysis (PCA) of BRCAs based on the riskScore in the train, test, and entire cohort. (C, D, I, J, O, P) Univariate and multivariate Cox regression analyses in the
train, test, and entire cohort. (E, K, Q) Kaplan–Meier curves of the high- and low-risk patients in the train, test, and entire cohort. (F, L, R) Time-dependent ROC curves for
predicting 1-, 2-, and 3-year OS in the train, test, and entire cohort.
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A B D E

F G IH J

K L M N

C

O

P Q R S T

FIGURE 4 | (A–J) Kaplan–Meier survival analysis for BRCA patients with diverse clinical characteristics of (A, B) age, (C, D) T-Stage, (E, F) N-stage, (G, H) M-
stage, and (I, J) AJCC stage. (K–P) Correlation between signature and clinical characteristics. (Q) The nomogram plot integrating NRlncRNA riskScore, age, T-, N-,
and M-classification. (R–T) The calibration plot for the probability of 1-, 2-, and 3-year OS. NA, P>0.05.
A B D

E F G H

C

FIGURE 5 | Correlation between NRlncRNA signature and drug sensitivity. Box plots for the estimated IC50 of drugs between high- and low-risk BRCA patients.
Bleomycin (A), Bortezomib (B), Cisplatin (C), Dasatinib (D), Doxorubicin (E), Gefitinib (F), Lapatinib (G), Paclitaxel (H).
Frontiers in Oncology | www.frontiersin.org May 2022 | Volume 12 | Article 8873187

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Xu et al. Necroptosis-Related LncRNAs for Predicting Prognosis
that low risk was indicative of increased sensitivity to the above
drugs (Figures 5A–H). Therefore, the NRlncRNA signature could
act as a potential chemotherapy predictor.

Mutation Analysis and Tumor Mutation
Burden Calculation
We observed a broader TMB in the high-risk group with 365
(76.2%) of 479 patients compared to the low-risk group.
PIK3CA, TP53, and TTN had the most genetic alteration, of
which mutation frequency was all over 10%. The results revealed
a potential interaction between individual somatic mutations and
riskScore (Figures 6A, B). The K-M curves showed a
significantly better OS in the low-TMB group compared with
the high-TMB group (Figure 6C). Moreover, we noticed that the
tumor mutation load (TMB) was closely related to the riskScore
with R = 0.18, p < 4e-08 (Figure 6F); the higher the riskScore, the
higher the TMB (Figure 6E). Then, the two factors were taken
into account together; the patients with a low riskScore and low
TMB had the best prognosis; meanwhile, the patients with a high
riskScore and high TMB had the worst prognosis (Figure 6D).

Gene Set Enrichment Analysis and Gene
Set Variation Analysis Between the High-
and Low-Risk Groups
After GSEA was performed, we observed that several pathways
with enrichment in the high-risk group were related to immunity
with the filter criteria of FDR q-value<0.05 (Table S4), including
“ECM_RECEPTOR_INTERACTION”, “FOCAL_ADHESION”,
and “GAP_JUNCTION” (Figure 7A). Based on the calculated
Frontiers in Oncology | www.frontiersin.org 8
enrichment score of each sample, we identified enriched-
pathway variation between the low-risk and high-risk group
using the GSVA method (FDR < 0.05). We observed that from
the low-risk to the high-risk group, the enrichment score was
obviously increased in “HALLMARK_PROTEIN_SECRETI
ON”, “MTORC1_SIGNALING”, “MYC_TARGETS_V1”, “OXI
DATIVE_PHOSPHORYLATION”, “UNFOLDED_PROTEI
N_RESPONSE”,”G2M_CHECKPOINT”, and “E2F_TARGET
S”. The above results indicating the NRlncRNAs may affect
immune-related mechanisms (Figure 7B).

Potential Application of Necroptosis
LncRNA Signature for Predicting Tumor
Immune Microenvironment and
Immunotherapy Responses
Subsequently, we used the “CIBERSORT” algorithm to
investigate the correlation between riskScore and tumor-
infiltrating immune cell (TIC) infiltration (Table S5). The
relative proportion of immune cells in the BRCA samples by
the “CIBERSORT” algorithm can be seen in Figure S1. The
scatter plots showed the association between riskScore and the
proportion of related TIC species (p < 0.05) in BRCA samples.
We observed that the value of riskScore was positively correlated
with the infiltrating levels of M2 macrophages and M0
macrophages, while the value of riskScore was negatively
associated with the infiltrating levels of naive B cell, resting
dendritic cells, activated NK cells, plasma cells, CD4+ T cells,
CD8+ T cells, CD4+ memory T cells, follicular helper CD4 T
cells, and regulatory T cells (Figures 7D–M).
A B

D E F

C

FIGURE 6 | (A, B). Tumor somatic mutation waterfall chart established from patients with high and low riskScores: (A) High-riskScore group and (B) low-riskScore
group. (C) Kaplan–Meier survival analyses of TMB in BRCA patients on overall survival. (D) Kaplan–Meier survival analyses of TMB and riskScore on overall survival.
(E) The relationship between TMB and riskScore groups. (F) Correlation analysis of the riskScore and tumor mutation load.
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We furthermore aimed to explore the relationship between the
risk groups and immune cell infiltration by calculating the number
of immune cells in BRCA using ssGSEA (Table S6 and Figure 7C).
The results demonstrated that the contents of CD56+NK cells, gd-T
cells, immature dendritic cells, neutrophils, and type 17 T-helper
cells did not show a significant difference among the 28 types of
immune cells between two groups. The other 22 types of immune
cells were decreased in the high-risk group (Figure 7C). Thus, it was
concluded that low risk is a type of immune activation, while high
risk is a type of immune failure. The above results were validated
based on XCELL, CIBERSORT-ABS, TIMER, QUANTISEQ,
MCPCOUNTER, EPIC, and CIBERSORT-ABS algorithms
(Figure 7P). According to the conclusion, we speculated that the
Frontiers in Oncology | www.frontiersin.org 9
riskScore may be significantly correlated with regulating immunity
and then affecting the prognosis of BRCA patients.

Synthesizing the results of ssGSEA andCIBERSORT, we came to
a conclusion: the riskScore was negatively correlated with the
infiltrating levels of naive B cells, resting dendritic cells, activated
NK cells, plasma cells, CD4+memoryT cells, CD8+T cells, follicular
helperTcells, andregulatoryTcells, indicating that the riskScoremay
affect tumor-infiltrating immune cell (TIC) infiltration.

Immune Checkpoint and Immunotherapy
Immune checkpoint inhibitors (ICIs) were a rising and valid
treatment strategy targeting numerous species of cancers;
filtrating patients sensitive to ICIs will be beneficial to precise and
A B

D E F G

I

H

J K L M

N
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Q R S

FIGURE 7 | (A) Different pathways between the high-risk and low-risk groups. (B) Enrichment analyses of biological functions and pathways in the high- and low-
risk group. (C) Single-sample gene set enrichment analysis of immune status between low- and high-risk subgroups. (D–M) Correlation between the distribution of
tumor immune cells and value of NRlncRNA riskScore. (N, O) Comparisons of the expression levels of immune checkpoints between two groups. (P) The immune
cell bubble of risk groups. (Q–S). Treatment effects of CTLA-4 or PD-1 and combined CTLA-4 and PD-1 were evaluated in patients with high and low riskScores.
(Q) CTLA-4 treatment group, (R) PD-1 treatment group, and (S) CTLA-4 and PD-1 combined treatment group. *P<0.05; **P<0.01; ***P<0.001. ns, P>0.05.
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effective medicine. As previous results showed that riskScore was a
dependable prognostic factor, and was associated with TMB and
tumor infiltration,we thenaimedtoverify the ability of riskScores in
predicting immunotherapeutic benefits. We observed that a lower
riskScore indicated a higher expression level of the other immune
checkpoints except for TNFSF4 (Figures 7N, O).

In TCIA, the IPS (immunophenoscore), which was based on
immunogenicity, could achieve a high accuracy on predicting the
immunotherapy response of patients. Therefore, we analyzed the
relationship of IPS between high- and low-riskScore groups. We
perceived that in theCTLA-4 and PD-1 groups, patients in the low-
riskScore group both showedbetter treatment effects (CTLA-4: 5.9e
−09; PD-1: 1.4e-14) (Figures 7Q, R). In the CTLA-4 and PD-1
combined treatment group, patients in the high-m6A score group
still indicated better treatment effects (p = 3.6e−14) (Figure 7S),
which meant that patients accepting the treatment of both PD-L1
and CTLA4 showed superior reactivity of immune response. The
result provided us advice in clinical practice on whether to use and
what to use for immunotherapy. Overall, the riskScore established
by us had great potential in predicting prognosis and
immunotherapeutic benefits, which may provide sally ports for us
to provide individualized and precise treatment.

Identification of Necroptosis-Related
Molecular Phenotypes
Based on the expression profiles of the 22 NRlncRNAs in the
signature, we performed consensus clustering. k = 4 was identified
with optimal clustering stability from k = 2 to 9, which showed the
greatest correlation within the group and a low correlation among
groups (Figure 8B), suggesting the practicability of dividing the
Frontiers in Oncology | www.frontiersin.org 10
patients into four clusters based on 22 NRlncRNAs. A consensus
cumulative distribution function (CDF)diagramshowed thatwhen
k = 4, CDF reached an approximate maximum (Figure 8C), and
classification was robust (Figures 8A, D). The K-M curve revealed
that patients in NRLCluster 4 had the best OS, while those in
NRLCluster 3 had the worst OS (Figure 8E).

Development of NRLScore to Quantify
Individual Necroptosis Pattern
In view of the individual heterogeneity and complexity of BRCA
patients, we calculated NRLScore based on the PCA on the 22
NRlncRNAs in the model. We defined NRLScore = PC1+PC2 to
quantify the individual necroptosis pattern of BRCA patients and
further to facilitate precise treatment. As indicated from the K-M
curve, patients with a higher NRLScore had a better OS (Figure 8F).
We also observed that NRLScores of patients in ferrCluster 4 were
significantly higher than NRLClusters 1, 2, and 3 (Figure 8G). The
Sankey diagram shows the attribute changes in riskScore,
NRLCluster, NRLScore, and survival status, indicating that the
higher the riskScore and the lower the NRLScore, the higher the
risk of death (Figure 8H). The above results enriched treatment
strategies for BRCA patients not only in targeted therapy and
chemotherapy but also in immunotherapy.
DISCUSSION

Immunotherapy is a rapidly evolving concept that has been given
the tag “fifth pillar” of cancer therapy (33), which has shown
clinical efficacy in a variety of cancers (34), and has become an
A B D

E F G H

C

FIGURE 8 | Consensus clustering of 22 NRlncRNAs identified four clusters of patients. (A) The tracking plot for k = 2 to k = 9. (B) The heatmap for k = 4.
(C) Consensus clustering CDF with k = 2 to k = 9. (D) Relative change in area under the CDF curve for k = 2–9. (E) KM curve of the survival difference among
clusters 1–4. (F) KM curve of the survival difference between high- and low-risk groups. (G) Correlation between NRLCusters and NRLScore. (H) Sankey diagram
showing the co-expression of riskScores, NRLClusters, and NRLScores.
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established form of cancer treatment (35). Historically, BRCA
has been considered to be an immunogenic “cold” tumor.
However, the appearance of ICIs resulted in immunotherapy
becoming an emerging new treatment modality for BRCA (36).
BRCA subtypes are both genetically and phenotypically distinct,
and response rates to immunotherapy in BRCA vary among the
different clinical subtypes of BRCA, which may not be the
optimal classification to assess immunotherapy sensitivity (37).

Necroptosis plays an integral part in the induction and
amplification of cancer immunity (10). RIPK3 is required to
regulate cytokine expression in DCs, which is a key sentinel in
regulating immune homeostasis (38). As is reported, necroptosis
occurs during the late stage of T-cell proliferation and necroptotic
signaling is markedly intensified in T cells absent in FADD,
suggesting that FADD may negatively regulate necroptosis
mediated by T-cell receptors (39). Furthermore, necroptosis
initiates adaptive immune responses by releasing DAMPs into the
tissue microenvironment (40). The TME status is the leading cause
of the differential responses and outcomes in cancer patients
receiving the same treatment, especially for multiple
immunotherapies (41, 42). Therefore, explaining the diversity and
complexity of TME is an indispensable step to enhance the
predictive power and clinical guidance of immunotherapy.

Extensive interest in cancer immunotherapy is reported
according to the clinical importance of CTLA-4 and PD-1/PD-L1
[programmeddeath (PD) and programmed death-ligand (PD-L1)]
in immune checkpoint therapies (43). The main immune
checkpoints for BRCA include cytotoxic T-lymphocyte-associated
protein-4 (CTLA-4), programmed death receptor 1/programmed
cell death ligand 1 (PD-1/L1), lymphocyte activation gene 3 (LAG-
3), T-cell immunoglobulindomainandmucin3 (TIM-3), andother
molecules (44). Clinical trials like SOLTI-1503 PROMETEO
TRIAL (45), KEYNOTE-086 (46), NIMBUS (47), KEYNOTE-
173 (48), KEYNOTE-522 (49), and KEYNOTE-355 (50) showed
that ICIs havemade significant progress in BRCA immunotherapy,
which is expected to become a new treatment for BRCA.

In this study, 46 NRlncRNAs were obtained by using the
univariate Cox regression analysis. To prevent model overfitting,
we performed LASSO regression analysis to identify 22 key
NRlncRNAs, and multivariate Cox regression analysis was
applied to calculate coefficients and construct the risk model. The
K-M curves showed that patients in the low-risk group had longer
survival than those in the high-risk group. Afterwards, we
established forest plots and ROC plots including age, sex, T-stage,
N-stage, M-stage, AJCC stage, and risk scores. By plotting a risk
heatmap, a risk curve, anROCcurve, anda survival curve,wedrewa
conclusion that the risk model indeed had a good predictive effect.
Meanwhile, we obtained similar results in the test cohort.
According to the results of GSEA and GSVA, it was concluded
that these two groups were associated with immunity. Then,
ssGSEA and CIBERSORT algorithms were used to assess the
status of the immune cell infiltration of each patient, and we
found out that the low-risk group could be described as the
immune-activated type, while the high-risk group could be
described as the immune failure type. Meanwhile, the riskScore
has a positive correlation with TMB; the higher the TMB, the worse
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the prognosis. The PD-L1 combined CTLA4 immunotherapy
seemed suitable for patients who had a lower riskScore. Finally,
we identified three necroptosis-related molecular patterns using
consensus clustering analysis.

Compared with existing signature makers, Xu et al. provided an
RNA binding protein-related lncRNA prognostic signature for
prognosis (51), Yan et al. built a signature for CRISPR-Cas9-
Based Cancer Dependency Map Genes (52), and Zou et al.
identified glycolysis-related lncRNAs (53); the NRlncRNA
signature showed higher values of AUCs and performed better
prediction of prognosis in stratified risk analysis of survival.
However, we also noticed TNBC patients with a lower riskScore,
which seemed not so rational. We thought that based on our small
sample size (we chose the BRCApatients whose clinicopathological
parameterswere complete), a certaindegreeofdeviationrather than
the NRlncRNAs signature itself might contribute to this strange
phenomenon. Nonetheless, there are certain limitations to our
study. First, our conclusions were only based on the datasets from
TCGA. In other words, only retrospective datasets were used to
identify our conclusion. Thus, a large, prospective, andmulticenter
clinical cohort is needed to confirmand improve the accuracy of the
model. Moreover, the range of studies included all subtypes of
BRCA. However, anti-PD-1/PD-L1 or anti-CTLA4 was mainly
used in triple-negative breast cancer (TNBC) (54–56); thus, we
would choose TNBCpatients in further studies. Finally, the specific
mechanism of necroptosis-related lncRNAs in BRCA and their
interconnectionwith immunity are not yet fully understood;wewill
verify the expression levelsofLINC00377,MEF2C-AS1,LMNTD2-
AS1, and LINC02446 in patients in Zhejiang Provincial People’s
Hospital rather than only in BRCA cells, and more experimental
studies are needed to reveal the detailed molecular mechanisms in
BRCA of the NRlncRNAs in the signature.
CONCLUSIONS

Our research constructed a novel NRlncRNA signature that is
useful for predicting the survival outcome of patients with BRCA
to evaluate the TME immune cell infiltration characteristics of a
single patient with BRCA. Furthermore, it also showed superior
predictive power in clinical response to immunotherapy. In
short, our results provide insights to improve personalized
cancer immunotherapy and to distinguish the drug response of
patients with BRCA well.
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