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Abstract

Background

Accurate detection of blood protozoa from clinical samples is important for diagnosis, treat-

ment and control of related diseases. In this preliminary study, a novel DNA microarray sys-

tem was assessed for the detection of Plasmodium, Leishmania, Trypanosoma,

Toxoplasma gondii and Babesia in humans, animals, and vectors, in comparison with

microscopy and PCR data. Developing a rapid, simple, and convenient detection method for

protozoan detection is an urgent need.

Methodology/Principal Findings

The microarray assay simultaneously identified 18 species of common blood protozoa

based on the differences in respective target genes. A total of 20 specific primer pairs and

107 microarray probes were selected according to conserved regions which were designed

to identify 18 species in 5 blood protozoan genera. The positive detection rate of the micro-

array assay was 91.78% (402/438). Sensitivity and specificity for blood protozoan detection

ranged from 82.4% (95%CI: 65.9% ~ 98.8%) to 100.0% and 95.1% (95%CI: 93.2% ~

97.0%) to 100.0%, respectively. Positive predictive value (PPV) and negative predictive

value (NPV) ranged from 20.0% (95%CI: 2.5% ~ 37.5%) to 100.0% and 96.8% (95%CI:

95.0% ~ 98.6%) to 100.0%, respectively. Youden index varied from 0.82 to 0.98. The detec-

tion limit of the DNA microarrays ranged from 200 to 500 copies/reaction, similar to PCR

findings. The concordance rate between microarray data and DNA sequencing results was

100%.

Conclusions/Significance

Overall, the newly developed microarray platform provides a convenient, highly accurate,

and reliable clinical assay for the determination of blood protozoan species.
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Author Summary

More than 1 billion people are infected with blood protozoan diseases worldwide. The

most common blood protozoa in humans, animals, and vectors include Plasmodium,

Leishmania, Trypanosoma, Toxoplasma gondii and Babesia. Due to similar morphology

among different blood protozoan species, misdiagnosis always occurs. Most molecular

techniques are only carried out in laboratories, with a small number of samples detected

simultaneously. Meanwhile, common detection methods may not be convenient for field

investigation of large amounts of samples. In order to better manage blood protozoan

infection, proper tools are required for the monitoring of these pathogens. Here, a com-

prehensive and sensitive DNA microarray was developed and tested, which allowed the

parallel detection of 18 blood protozoan species.

Introduction

Blood protozoa are single-cell organisms that often have flagella, cilia or other structures that

help them move [1]. They sometimes form parasitic relationships with humans and cause dis-

eases or infections. The most common blood protozoa in humans, animals, and vectors

include Plasmodium, Leishmania, Trypanosoma, Toxoplasma gondii and Babesia [2–6].

Malaria, caused by one of four Plasmodium species (P. falciparum, P. vivax, P. malariae, and

P. ovale) and spread through anopheles mosquitoes. It is the deadliest protozoan diseases with

nearly 800,000 deaths yearly [2]. Once Plasmodium enters into human body, it matures in the

liver and blood cells. Symptoms include fever with chills and rigor followed by excessive sweat-

ing. If not detected promptly, it can cause cerebral malaria and even death [7]. Hemoflagellates

constitute another important group of blood protozoa, whose family includes two genera,

Leishmania and Trypanosoma, both of which require a blood feeding insect vector for trans-

mission, and can infect humans [8, 9]. Leishmaniasis is caused by one of 20 species of protozoa

of the Leishmania genus. Individuals infected with leishmaniasis often show signs and symp-

toms such as sores and/or ulcers, swollen glands, weight loss, fever and/or an enlarged spleen

[3]. Trypanosomes are distributed in specific areas mainly dictated by vector distribution. Try-
panosoma brucei rhodesiense and T. b. gambiense cause Human African Trypanosomiasis

(HAT), which is transmitted by the tsetse fly. The disease causes fever, headaches, itching,

coordination and balance problems, confusion and/or reduced mental abilities. Sometimes, it

affects the central nervous system; without treatment, it can be fatal [10, 11]. Trypanosoma
cruzi, the causative agent of American trypanosomiasis (Chagas’ disease), is characterized by

cardiomyopathy, which may present with arrhythmias, conduction defects, cardiomegaly,

thromboembolic events, or congestive heart failure [12, 13]. Toxoplasmosis is caused by Toxo-
plasma gondii, which is caused by consumption of contaminated meat [14]. Sometimes, acci-

dental ingestion of cat stool or possibly unwashed vegetables also can infect this disease [14].

Toxoplasmosis is usually asymptomatic and self-limiting but can have serious or fatal effects

on fetuses whose mothers contract the disease during pregnancy or in immuno-compromised

individuals [15]. For instance, it may be fatal in individuals infected with HIV, due to encepha-

litis or necrotizing retinochoroiditis [16, 17]. Babesia causes a hemolytic disease known as

babesiosis, which causes malaria-like symptoms and is often misdiagnosed as malaria. Approx-

imately 100 species of Babesia have been identified, but only a few are documented as humans

pathogens [18, 19]. Babesia microti is the most common strain associated with human infec-

tions [20].
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Blood protozoan infection is usually diagnosed by microscopic examination of blood

smears [1]. Since such detection depends on operator experience, misdiagnosis is common.

To overcome this drawback, conventional PCR assays in combination with amplicon sequenc-

ing have been used for sensitive and specific detection of several blood protozoan species [21–

25]. Molecular techniques have undergone great improvements in recent years. For example,

DNA microarrays have been proposed, as high-density microscopic arrangement of immobi-

lized nucleic acid samples on a glass slide; hybridization with fluorescent probes permits evalu-

ation of gene expression at the genome level [26, 27]. The DNA microarray technique has

been successfully applied for a range of biological questions, including human cancer[28],

metamorphosis of fruit flies [29], and helminth parasites [30]. Recently, DNA microarrays

have also been developed and applied for the assessment of major protozoa that cause human

and animals’ diseases [31–33].

DNA microarray is an advanced, large-scale, and high output detection technology, which

is able to provide a decent platform to genomics and functional genomics research on blood

parasites. Currently, gene microarray is mainly applied for functional gene screening [34],

exploring the relationships between blood protozoan and their hosts [35], pathogenesis mech-

anisms [36], drug resistance and targets [37], diagnostic antigens [38], and molecular vaccine

screening [39], all of which have yielded excellent results. However, only few of the multitude

of microarray technologies are suitable for clinical application and large-scale epidemiological

investigations of blood protozoan infections. For example, Li et al. (2005) [40] designed a

DNA array for rapid detection and genotyping of pathogenic microbes responsible for epi-

demic hemorrhagic fever, Tsutsugamushi disease, leptospirosis, malaria, schistosomiasis, chol-

era, and hemorrhagic colitis. El-Ashker et al. (2015) [41] reported Babesia, Theileria, and

Anaplasma species in cattle using PCR assays, gene sequence analysis and a novel DNA micro-

array. The above studies only included few species of blood protozoa. Thus, the present study

aimed to assess the potential diagnostic value of a novel DNA microarray chip in comparison

with microscopy and PCR for the diagnosis of common blood protozoan infections.

Materials and Methods

STARD Checklist and flowchart could be found in S1 and S2 Figs, respectively.

Ethical Statement

Ethical clearance for the collection and detection of human samples was obtained from the

Ethics Committee of the National Institute of Parasitic Diseases (NIPD), Chinese Center for

Disease Control and Prevention (China CDC). The objectives, procedures and potential risks

were verbally explained to all participants. Signed written informed consent was obtained

from all study participants. The study approval notice is found in (S3 Fig). Animals were han-

dled in accordance with good animal practice strictly according to the Animal Ethics Proce-

dures and Guidelines of the People’s Republic of China. The protocol for sampling from

animals had been approved by the Animal Welfare& Ethics Committee of the National Insti-

tute of Parasitic Diseases, Chinese Center for Disease Control and Prevention in Shanghai

(Permit No: IPD-2012-5) (S3 Fig).

Samples and blood protozoan specimen

Reference blood protozoan samples were either stored in our laboratory or kindly provided by

different partner laboratories (S1 Table). A total of 438 samples from humans, animals and

vectors (S2 Table) collected from August 2012 to December 2014 were obtained in Myanmar-

Yunnan border, Hainan Province, Xinjiang Uygur Autonomous Region, Gansu Province,
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Guangzhou and Shenzhen in Guangdong Province, and Shanghai (China), as well as 100

blood samples from healthy individuals (S2 Table). B. microti was from patients in Yunnan

and Shanghai, and B. venatorum from tick in Heilongjiang; P. vivax, P. falciparum, P. knowlesi,
P. malariae, P. ovale and mixed species Plasmodium were from patients in Yuannan; L. dono-
vani was from human, sand fly and dog in Xingjiang and Sichuan; L. infantum was from

humans, sand fly and dog in Xingjiang, Sichuan and Gansu; T. gondii was from goat, human,

cougar, cat, deer, and toucan in the USA, France, Canada, Brazil, Costa Rica and China (Qing-

hai, Yunnan and Guangdong). All blood samples were collected according to patient consent

as well as medical ethics norms.

Blood smears were prepared for each clinical blood sample. After drying the slides at ambi-

ent, the blood smears were quickly fixed in methanol (99%) for 5 min, then stained with 10%

Giemsa staining solution (Sigma–Aldrich Chemie GmbH, Taufkirchen, Germany) for 30 min.

The slides were examined under an oil immersion lens at a total magnification of 1000 for

presence of blood protozoa. After examining more than 50 microscopic fields, blood protozoa

were quantified and expressed as a percentage of infected erythrocytes. Blood samples were

stored at -80˚C until further processing.

In order to detect Leishmania infection, smears of marrow and materials from spleen punc-

ture were dried, following fixed in methanol (99%) for 5 min, then stained with 10% Giemsa

staining solution (Sigma–Aldrich Chemie GmbH, Taufkirchen, Germany) for 30 min. The

slides were examined under an oil immersion lens for observing amastigotes [42]. Meanwhile,

the whole blood (suspected infected Leishmania from human and canine) with also have been

tested by the dipstick (recombinant k39 antigen-based immunochromatographic strip) to

detect anti-Leishmania antibody (the Kalazar Detect, batch JL1019; InBios, Seattle, WA) [43].

Tick and sandfly samples were preserved in 75% ethanol for subsequent DNA extracting

and PCR amplification.

DNA extraction from samples

DNA was extracted from whole blood of human and animals using QIAmp DNA Mini kit 250

(QIAGEN) according to the manufacturer’s instructions. Genomic DNA from marrow, mate-

rials from spleen puncture and the vectors (ticks and sandflies) were also extracted by the

above kit, which can be used for DNA extracting from both tissue and blood specimens. Posi-

tive control samples were used as described in S1 Table. The concentration of DNA was mea-

sured on a NanoDrop ND-1000 Spectrophotometer (peQLab Biotechnologie GmbH,

Erlangen, Germany).

Establishment of multiple PCR microarray

Specific primers and microarray probe design. 18S small subunit ribosomal DNA (18S

rDNA), mitochondrial cytochrome c oxidase subunit 1 (pcox1), Internal Transcribed Spacer

(ITS) gene sequences, fumarate hydratase (fh) gene, lysosomal/endosomal membrane protein

p67 gene and hypothetical protein gene (hp), etc. of 18 blood protozoan species were obtained

from GenBank. In Babesia species (B. microti, B. divergens, B. duncani, and B. venatorum), the

18S rDNA conserved region was selected. For Plasmodium, 18S rDNA+ITS were used to

amplify P. vivax and P. falciparum; pcox1 was used for P. knowlesi, P. malariae, and P. ovale. In

Leishmania spp., 18S rDNA was selected for L. donovani, L. gerbilli / L. tropica, L. aethiopica
and L. infantum; fh was for L. gerbilli; mspC was used for L. tropica. 18S rDNA was also used

to identify T. cruzi and T. brucei. Moreover, T. b. rhodesiense and T. b. gambiense were distin-

guished by p67 and hp gene, respectively. T. gondii was amplified by primers designed
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according to the conserved region of pcox1. Then, Primer 5.0 and Array Designer 4.2 was

used to design specific primers and probes for each gene fragment (S3 and S4 Tables).

The microarray target probes were selected according to ⊿G (hybridization thermodynam-

ics) which was calculated by the nearest-neighbor method [44] and BLAST sequence analysis.

For a probe to be considered as “good” candidate for microarrays, ⊿G must be at least -70

kcal/mol for homologous sequences and more than -40 kcal/mol for heterologous ones. A

minimum of 6 non-overlapping probes designed from conserved regions were selected for

each genus, and each species of blood protozoa was recognized by at least two probes. Due to

variability within species, if necessary, two or more source sequences were selected and pro-

cessed as described above.

Specific PCR amplification. The specific primers in S3 Table were used for PCR amplifi-

cation, in a total volume of 25 μL containing 2.5 μL of 10×buffer (Mg2+ free), 2 μL mixed

dNTPs (2.5 mM each) (Takara), 10 pmol of each primer (Sangon Biotech Corporation, Shang-

hai, China) one unit Taq DNA polymerase (Takara), and 3μL of extracted DNA. PCR assays

were performed on a thermocycler (Biometra) at 94˚C for 5 min (pre-denaturation), followed

by 35 cycles of 94˚C for 30 s (denaturation), 55˚C for 30 s (annealing), and 72˚C for 1 min 30 s

(extension), and a final extension of 72˚C for 10 min. Samples without genomic DNA (distilled

water) were included in each PCR run as ‘negative’ controls. An aliquot (5 μL) of each PCR

product was examined by 1% agarose gel electrophoresis; gels were stained with ethidium bro-

mide and photographed on a gel documentation system (UVItec). One amplicon representing

each of the species was sequenced to confirm their identity.

Multiple PCR DNA microarray preparation and detection. 20 pairs of specific primers

(S3 Table) were used in DNA fragment amplification of reference strains of P. falciparum, P.

vivax, P. ovale, P. malariae, P. knowlesi, L. donovani, L. infantum, L. tropica, L. aethiopica, L.

gerbilli, T. cruzi, T. b. rhodesiense, T. b. gambiense, T. gondii, B. microti, B. divergens, B. vena-
torum, and B. duncani. Positive amplicons were sequenced directly on an ABI 377 automated

DNA sequencer (using Big Dye Terminator Chemistry) employing the above PCR primers

(individually).

DNA detection microarray preparation

Oligonucleotide probes were designed in accordance with multiple-sequence alignment analy-

sis of sequences available in GenBank with the Array Designer 4.2 program. Probes were

selected in several species-specific sequence regions of the 18S rDNA, cox1, ITS genes, for dif-

ferentiation among species. An artificial mismatch was introduced into specific oligonucleo-

tide probes to distinguish the similar species and provide better thermal differentiation

between the sequences. The probes were between 40 and 58 nucleotides, with melting temper-

atures (Tm) of 60–65˚C. The 5’ end of each probe was modified by addition of a spacer with 25

consecutive thymine residues and an amino-linker group for covalent immobilization on the

aldehyde-coated glass surface. Oligonucleotide probes were contact printed onto OPAldehyde

Slide aldehyde-activated slides at a concentration of 10μM in DNA spotting solution on a

Smart Arrayer-96 Microarrayer (both from CapitalBio, Beijing, China), and covalently immo-

bilized on the slides via an amino group at their 5’ ends [45–47] to create biochips (Fig 1). All

oligonucleotide primers and probes listed in S3 and S4 Tables were obtained from CapitalBio

Corporation, Beijing, China. In each array, three types of controls (a surface chemistry control:

fluorescent dye HEX-labeled oligonucleotide, a hybridization positive control to monitor the

hybridization process: oligonucleotide complementary to a synthetic template, and the nega-

tive control for background signal corrections: oligonucleotide designed to not hybridize to

any sequence present) were printed.
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Microarray probe in silico analysis

The hybridization thermodynamics of probes have been evaluated in silico with reference

blood protozoan isolates shown in Table 1. The hybridization ⊿G (kcal/mol) between probe

and target was calculated by the nearest-neighbor method. Detection of a target was achieved

at⊿G< -50 kcal/mol [48].

Microarray production

Illumina Oligator (Illumina Inc., CA, USA) was used to synthesize probes. Then, oligonucleo-

tides were resuspended to 400 pmol in 3×SSC buffer (0.45 M NaCl, 45 mM sodium citrate, pH

Fig 1. Probe arrangement of the DNA microarray system. Babesia 1–11: Babesia genus probes; B. microti 1 & 2: B. microti species probes; B.

divergens 1–5: B. divergens species probes; B. venatorum 1–4: B. venatorum species probes; B. duncani: B. duncani species probes; Plasmodium 1–10:

Plasmodium genus probes; P. vivax 1 & 2: P. vivax species probes; P. falciparum 1 & 2: P. falciparum species probes; P. knowlesi 1–4: P. knowlesi

species probes; P. malariae 1 & 2: P. malariae species probes; P. ovale 1 & 2: P. ovale species probes; Leishmania 1–8: Leishmania genus probes; L.

gerbilli 1–6: L. gerbilli species probes; L. donovani 1–10: L. donovani species probes; L. infantum 1–4: L. infantum species probes; L. tropica 1–3: L.

tropica species probes; L. aethiopica 1–6: L. aethiopica species probes; Trypanosoma 1–12: Trypanosoma genus probes; T. cruzi 1–3: T. cruzi species

probes; T. b. rhodesiense 1–3: T. b. rhodesiense species probes; T. b. gambiense 1–3: T. b. gambiense species probes; T. gondii 1–4: T. gondii species

probes. QC: quality control; PC: positive control; NC: negative control.

doi:10.1371/journal.pntd.0005160.g001
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7.0), following spotted onto epoxide-coated glass slides in the Microarray Facility of CapitalBio

Corporation. One specific probe was contained in each spot that can detect one blood proto-

zoan species. Slides were stored in a humidity-free chamber until use.

Coupling reactions of sample DNA with Cy3 as well as probes with Cy5 dyes (GE Health-

Care, USA) were carried out as described elsewhere [49]. Fluorophore-labeled DNA was puri-

fied with a Zymo DNA Clean & Concentrator-5 kit, and label incorporation was quantified on

a NanoDrop system.

Slide preparation, hybridization and scanning

Before use, the microarray slides were washed with an ethanolamine washing solution (50 mM

ethanolamine, 0.1% SDS, 0.1 M Tris, pH 9) for 15 min at 50˚C, then washed twice with dis-

tilled water, and dried by centrifugation for 5 min at 500 rpm. The processed slides were

loaded with 30 μL of a combination of Cy3- and Cy5-labeled DNA in 3×SSC buffer, and

hybridization was allowed in a sealed chamber which submerged in a water bath at 65˚C for 8-

12 h. Next step, the slides were washed consecutively in 2×SSC (65˚C), 2×SSC, 1×SSC, and

0.2×SSC after incubation, and dried for 5 min at 500 rpm. Hybridization images were acquired

with an AxonGenePix 4000B scanner (Molecular Devices, USA) and synchronized with the

GenePix Pro 6.0 software for spot intensity assessment.

Data analysis

The intensity of each hybridization spot was first filtered by spot size and shape (denoted as

good/bad/absent), foreground signal saturation percentage on channel 532 (denoted as F532,

<5 was considered to be satisfactory), background signal saturation percentage on channel

Table 1. Reference blood protozoan species used in microarray validation.

Family Genus Species Strain No. of positive genus probes/

total genus

No. of positive species probes/

total species

Babesiidae Babesia Babesia microti ATCC PRA-99TM 3/11 2/2

Babesia divergens Clinical reference 1/11 5/5

Babesia venatorum Clinical reference 3/11 4/4

Babesia duncani Clinical reference 4/11 1/1

Plasmodidae Plasmodium Plasmodium vivax Clinical reference 2/10 2/2

Plasmodium falciparum 3D7 4/10 2/2

Plasmodium knowlesi Clinical reference 1/10 4/4

Plasmodium malariae Clinical reference 2/10 2/2

Plasmodium ovale Clinical reference 2/10 2/2

Trypanosomatidae Leishmania Leishmania gerbilli MRHO/CN/60/

GERBILLI

2/8 6/6

Leishmania donovani MHOM/IN/80/DD8 5/8 10/10

Leishmania infantum MHOM/CN/86/SC6 1/8 4/4

Leishmania tropica MHOM/SU/74/K27 2/8 3/3

Leishmania aethiopica MHOM/ET/72/L100 2/8 6/6

Trypanosomatidae Trypanosoma Trypanosoma cruzi Clinical reference 7/12 2/3

Trypanosoma brucei

rhodesiense

YTAT 1.1 PF 3/12 3/3

Trypanosoma brucei

gambiense

Clinical reference 3/12 3/3

Sarcocystidae Toxoplasma Toxoplasma gondii TgCatBr5 \ 4/4

doi:10.1371/journal.pntd.0005160.t001
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532 (denoted as B532), and the F532 to B532 ratio [(%>B532 + 2 standard deviations), >50%]

to determine hybridization quality. Good quality spots were used to generate microarray level

background values. Normalization of intensity values was performed according to the formula

(F532i/F532m)—(B532i-B532m), where i represents each individual spot, m is the sum of all

spots. Thus, F532i and B532i represented as foreground and background signals of a spot “i,”

respectively, while F532m and B532m are the sums of all foreground or background spots,

respectively.

In reference samples, statistical significance of probe intensities was assessed by the rank

products algorithm [50], using a minimum of three technical replicates. A “spot rank value”

from negative-controls was used in values analyzed with the versatile R package [51] which

can estimate local and tail area-based false discovery rates (FDR) [52]. Positive blood proto-

zoan species were defined as having at least two probes with P<0.05 and FDR<0.01.

Limit-of-detection assays

The purified corresponding gene fragments (S3 Table) of Plasmodium, Leishmania, Trypano-
soma, T. gondii, and Babesia, among others, were ligated into the pMD-18 T vector, and trans-

formed into Escherichia coli JM109. Positive clones were screened, and the positive plasmid

extracted. The amounts of gene-positive plasmids were detected on a nucleic acid micro-ana-

lyzer (CapitalBio Corporation, Beijing, China); copy number was calculated according to the

following formula: (6.02×1023) × (ng/μL×10−9)/ (length of DNA fragment×660) = copy/μL

[53]. Dilutions of positive plasmids corresponding to 1×106 to 10 particles were analyzed alone

and amplified, labeled, and processed using the DNA microarray protocol described above.

Results

An advantage of the microarray technology is its capacity to assess hundreds and even thou-

sands of targets in a single detection. The main goal of this research was to develop a chip for

the detection of 18 species of blood protozoa including Plasmodium, Leishmania, Trypano-
soma, T. gondii, and Babesia found in humans, animals, and vectors, which should be conve-

nient used in clinical and epidemiological studies in humans and animals.

Screening and verification of specific primers and probes

A set of 20 pairs of specific primers (S3 Table) and 107 microarray probes (S4 Table) were

selected and designed to identify 18 species in 5 genera of blood protozoa associated with

humans, animals and vectors. The electrophoretograms of representative PCR products and

multiple PCR products for the 18 species of blood protozoa are shown in S4 and S5 Figs. The

highest number of probes covered Plasmodium (22 probes), Leishmania (37 probes), Trypano-
soma (21probes), T. gondii (4 probes), and Babesia (23 probes) (S4 Table).

Reference strains for 18 species of blood protozoa were available for probe validation. These

species represent 5 genera, and included 5 human Plasmodium, 4 human Leishmania, 2

human Trypanosoma, 1 human Babesia, 1 sand rat Leishmania, 1 rat Trypanosoma, 1 cat T.

gondii, 1 field mouse Babesia and 2 tick Babesia (S1 Table and Table 1). All reference strains

were detected as expected; the number of positive species and probes in each genus are shown

in Table 1. Microarray showed no hybridization fluorescence signal, indicating a good specific-

ity for this microarray assay (Fig 2).
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Assay sensitivity and specificity

To further assess the value of the developed microarray assay in detecting blood protozoa, 438

blood samples (including 4 samples from cases with combined infection, i.e. 3 combined P.

malariae and P. ovale, and one case with combined infection of P. falciparum and P. ovale), col-

lected from 2012 to 2014 in China, were analyzed (S2 Table) alongside and 100 samples from

healthy adults. Blood protozoan reference isolates were detected by DNA microarray, while

performing parallel evaluation using gold standard methods such as morphology, PCR or

multi-locus enzyme electrophoresis (MLEE). The results are shown in Fig 3. Compared to the

“gold standard methods”, the positive detection rate of the microarray assay was 91.78%

Fig 2. Blood protozoan detection DNA microarray results for 18 blood protozoan species and samples from healthy adults. a-t: Blood protozoan

detection DNA microarray data for B. microti, B. divergens, B. venatorum, B. duncani, P. vivax, P. falciparum, P. knowlesi, P. malariae, P. ovale, L. gerbilli,

L. donovani, L. infantum, L. tropica, L. aethiopica, T. cruzi, T. b. rhodesiense, T. b. gambiense, and T. gondii, healthy adult and negative control.

doi:10.1371/journal.pntd.0005160.g002

DNA Microarray Detection Analysis for Human Blood Protozoa

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0005160 December 2, 2016 9 / 19



(402/438). Detection rates were 100.0% (3/3), 100.0% (4/4), 93.3% (126/135), and 92.7% (152/

164, including 151 cases only infected with P. falciparum; one with the combined infection of

P. falciparum and P. ovale), 87.5% (7/8), 92.9% (26/28, including 23 cases only infected with P.

malariae; 3 cases with the combined infection of P. malariae and P. ovale), 90.0% (36/40,

including 32 cases only infected with P. ovale; 4 with combined infection of P. ovale and P.

malariae or P. falciparum), 82.4% (14/17), 84.0% (21/25), and 94.4% (17/18) in the samples for

B. microti, B. venatorum, P. vivax, P. falciparum, P. knowlesi, P. malariae, P. ovale, L. donovani,
L. infantum, and T. gondii, respectively (Figs 3, 4 and Table 2).

Sensitivity and specificity of the blood protozoa detection were 82.4% (95%CI 65.9% ~

98.8%) to 100.0% and 95.1%CI (95% CI 93.2%~97.0%) to 100.0%, respectively. Positive predic-

tive value (PPV) and negative predictive value (NPV) were 20.0% (95% CI 2.5% ~ 37.5%) to

100.0% and 96.8% (95% CI: 95.0% ~ 98.6%) to 100.0%, respectively. Youden index values were

from 0.82 to 0.97 (Figs 4, 5 and Table 2).

Detection limit

To determine the detection limit of the PCR and DNA microarray assay, the concentrations of

specific gene-positive plasmids of Plasmodium, Leishmania, Trypanosoma, T. gondii, and Babe-
sia were assessed. The detection limit of the DNA microarray was between 200 to 500 copies/

reaction, similar to PCR data (Table 3).

Repeatability of the DNA microarray assay

A total of 5 microarrays from each batch (20150925, 20151026, 20151125, 20151224, and

20160125) were selected randomly for the detection of reference blood protozoa in the same

conditions as described above. Detection results of the reference isolates were positive (S6 and

S7 Figs), indicating that the DNA microarray assay developed had good repeatability.

Fig 3. Microarray detection of blood protozoa isolates or clinical samples from infected blood protozoan diseases. a. Microarray

detection for 438 blood protozoan samples from infected blood from cases with protozoa and 100 healthy adults; b. A parallel detection by

morphology, PCR sequencing and multi-locus enzyme electrophoresis was achieved.

doi:10.1371/journal.pntd.0005160.g003
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Discussion

The current routine blood protozoa testing method is morphology. Due to similar morphology

among different species of blood protozoa (for example Plasmodium and Babesia) and the

technical variations for detection operators, misdiagnosis is common [1]. Recently, the num-

ber of blood protozoa identified has increased considerably for applying the genomic technol-

ogies, e.g. next-generation sequencing technologies with the principle of Sequencing by

Synthesis, including the platform of Roche/454FLX, Illumina/Solexa Genome Analyzer, and

Applied Biosystems SOLID system in studies of genetic, fatal or rare cases of diseases affecting

humans and animals [41, 54]. Most molecular technologies are only carried out in laboratories,

with only a few samples detected simultaneously. Therefore, common detection methods may

not be convenient in field investigation for large amounts of samples [1]. To better assess infec-

tions by blood protozoa, proper detection methods are required for pathogenic monitoring.

Here, a sensitive and comprehensive DNA microarray assay was developed with the purpose

of the parallel detection of 18 blood protozoan species.

A PCR microarray is a solid carrier with several primers of known genes, and used to assess

gene expression by the PCR technique. The PCR microarray technology is a high-throughput

method with accuracy and sensitivity, and different from the microarray technology based on

hybridization. The advantages of PCR microarray over conventional PCR are: (a). Integrity.

The operating system of PCR microarrays applies multi-gene amplification with the integra-

tion of result analysis and easy operation. However, traditional PCR employs single gene

amplification and data analysis, and its operation is complicated. (b). Time. Time of PCR

microarray detection is greatly reduced. (c). Regents. Higher amounts of reagents are required

Fig 4. Sensitivity and specificity of DNA microarray for detecting blood protozoa.

doi:10.1371/journal.pntd.0005160.g004

DNA Microarray Detection Analysis for Human Blood Protozoa

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0005160 December 2, 2016 11 / 19



T
a
b

le
2
.

S
e
n

s
it

iv
it

y
,
s
p

e
c
if

ic
it

y
,
p

o
s
it

iv
e

p
re

d
ic

ti
v
e

v
a
lu

e
(P

P
V

),
n

e
g

a
ti

v
e

p
re

d
ic

ti
v
e

v
a
lu

e
(N

P
V

)
a
n

d
Y

o
u

d
e
n

in
d

e
x

o
f
b

lo
o

d
p

ro
to

z
o

a
n

d
e
te

c
ti

o
n

D
N

A
m

ic
ro

a
rr

a
y
s
.

B
.

m
ic

ro
ti

B
.

d
iv

e
rg

e
n

s

B
.

v
e
n

a
to

ru
m

B
.

d
u

n
c
a
n

i

P
.

v
iv

a
x

P
.

fa
lc

ip
a
ru

m

P
.

k
n

o
w

le
s
i

P
.

m
a
la

ri
a
e

P
.

o
v
a
le

L
.

g
e
rb

il
li

L
.

d
o

n
o

v
a
n

i

L
.

in
fa

n
tu

m

L
.

tr
o

p
ic

a

L
.

a
e
th

io
p

ic
a

T
.
c
ru

z
i

T
.
b

.

rh
o

d
e
s
ie

n
s
e

T
.
b

.

g
a
m

b
ie

n
s
e

T
.

g
o

n
d

ii

N
o
.
o
f
tr

u
e

p
o
s
it
iv

e
s

4
0

3
0

1
2
6

1
5
2

7
2
6

3
6

0
1
4

2
1

0
0

0
0

0
1
7

N
o
.
o
f
fa

ls
e

p
o
s
it
iv

e
s

1
6

1
1

1
1

1
2

9
1
1

1
9

2
5

1
9

7
4

3
5

4
3

2
3

0

N
o
.
o
f
tr

u
e

n
e
g
a
ti
v
e
s

5
1
8

5
2
7

5
2
4

5
2
6

3
9
4

3
6
3

5
1
1

4
8
5

4
7
9

5
3
1

5
1
7

5
1
0

5
3
3

5
3
4

5
3
5

5
3
6

5
3
5

5
2
0

N
o
.
o
f
fa

ls
e

n
e
g
a
ti
v
e
s

0
0

0
0

9
1
2

1
2

4
0

3
4

0
0

0
0

0
1

S
e
n
s
it
iv

it
y

(%
)
[9

5
%

C
I*

]

1
0
0
.0

\*
*

1
0
0
.0

\
9
3
.3

[8
9
.1

–

9
7
.5

]

9
2
.7

[8
8
.8

–

9
6
.5

]

8
7
.5

[6
6
.1

–

1
0
0
.0

]

9
2
.9

[8
3
.7

–

1
0
0
.0

]

9
0
.0

[8
1
.2

–

9
8
.8

]

\
8
2
.4

[6
5
.9

–

9
8
.8

]

8
4
.0

[7
0
.8

–

9
7
.2

]

\
\

\
\

\
9
4
.4

[8
4
.2

–

1
0
0
.0

]

S
p
e
c
ifi

c
it
y

(%
)
[9

5
%

C
I]

9
7
.0

[9
5
.6

–

9
8
.4

]

9
8
.0

[9
6
.8

–

9
9
.2

]

9
7
.9

[9
6
.7

–

9
9
.1

]

9
7
.8

[9
6
.5

–

9
9
.0

]

9
7
.8

[9
6
.3

–

9
9
.2

]

9
7
.1

[9
5
.3

–

9
8
.8

]

9
6
.4

[9
4
.8

–

9
8
.0

]

9
5
.1

[9
3
.2

–

9
7
.0

]

9
6
.2

[9
4
.5

–

9
7
.9

]

9
8
.7

[9
7
.7

–

9
9
.7

]

9
9
.2

[9
8
.5

–

1
0
0
.0

]

9
9
.4

[9
8
.8

–

1
0
0
.0

]

9
9
.1

[9
8
.3

–

9
9
.9

]

9
9
.3

[9
8
.5

–

1
0
0
.0

]

9
9
.4

[9
8
.8

–

1
0
0
.0

]

9
9
.6

[9
9
.1

–

1
0
0
.0

]

9
9
.4

[9
8
.8

–

1
0
0
.0

]

1
0
0
.0

P
P

V
(%

)

[9
5
%

C
I]

2
0
.0

[2
.5

–

3
7
.5

]

\
2
1
.4

[0
–

4
2
.9

]

\
9
3
.3

[8
9
.1

–

9
7
.5

]

9
3
.3

[8
9
.4

–

9
7
.1

]

2
6
.9

[9
.9

–

4
4
.0

]

5
1
.0

[3
7
.3

–

6
4
.7

]

6
5
.5

[5
2
.9

–

7
8
.0

]

\
7
7
.8

[5
8
.6

–

9
7
.0

]

8
7
.5

[7
4
.3

–

1
0
0
.0

]

\
\

\
\

\
1
0
0
.0

N
P

V
(%

)

[9
5
%

C
I]

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

9
7
.8

[9
6
.3

–

9
9
.2

]

9
6
.8

[9
5
.0

–

9
8
.6

]

9
9
.8

[9
9
.4

–

1
0
0
.0

]

9
9
.6

[9
9
.0

–

1
0
0
.0

]

9
9
.2

[9
8
.4

–

1
0
0
.0

]

1
0
0
.0

9
9
.4

[9
8
.8

–

1
0
0
.0

]

9
9
.2

[9
8
.5

–

1
0
0
.0

]

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

9
9
.8

[9
9
.4

–

1
0
0
.0

]

Y
o
u
d
e
n
’s

in
d
e
x

0
.9

7
\

0
.9

8
\

0
.9

1
0
.9

0
0
.8

4
0
.8

8
0
.8

6
\

0
.8

2
0
.8

3
\

\
\

\
\

0
.9

4

*
C

I:
c
o
n
fi
d
e
n
c
e

in
te

rv
a
l

**
\:

N
o

a
n
a
ly

s
is

d
o
i:
1
0
.1

3
7
1
/jo

u
rn

al
.p

n
td

.0
0
0
5
1
6
0
.t
0
0
2

DNA Microarray Detection Analysis for Human Blood Protozoa

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0005160 December 2, 2016 12 / 19



in conventional PCR, and it is difficult to obtain the desired amplification under 15 μl reaction

volume. Meanwhile, PCR microarrays can amplify 10 μL sample or less. This could reduce the

amounts of reagents, e.g. Taq polymerase, saving experimental cost and reducing waste pollu-

tion[55, 56]. Overall, the PCR microarray technology has the advantages of small size, fast

response, simple operation, low cost, sample saving, no pollution, and easy integration[57, 58].

Design and implementation of a DNA microarrayto detect and identify blood protozoa is

not an easy task. Probe design and experimental conditions are two important parameters in

careful consideration. Resequencing microarrays, which permit the identification of muta-

tions, require numerous probes for a single gene, increasing the overall cost [59]. In this

research, gene sequences of 18 blood protozoan species in the GenBank were analyzed. A total

of 20 pairs of specific primers and 107 probes of blood protozoa were successfully designed

according to the specific gene fragments. Conventional PCR verification was carried out by

amplifying the target genes of reference blood protozoan isolates, with results similar to micro-

array findings.

Some DNA microarrays have been previously reported in the identification of main blood

protozoa [31–33]. However, the latter targeted mostly the identification of one or two species.

The microarray method described in this work was validated with 18 species of reference

blood protozoa. Importantly, 438 samples corresponding to the infected areas were detected.

The microarray assay can readily accommodate numerous probes and could easily increase

the information to resolve more protozoa species. Considering the prevalence of blood proto-

zoan species found in Chinese patients, the present DNA microarray technique could easily

meet the requirements for clinical detection. However, with further development, additional

probes could be included to detect more species to further the scope of CDC epidemiological

investiagtions.

Fig 5. Youden index of DNA microarray for the detection of blood protozoa.

doi:10.1371/journal.pntd.0005160.g005
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Moreover, the microarray system presented in this research has many major advantages

that could be used in clinical practice greatly, particularly the ample quality controls (three

control types as discussed in Materials and Methods), global signal uniformity which can

emerges higher quality hybridization results, and semi-automation and total solution-based

procedures, which also meet the requirement of high-throughput from busy clinics.

One of the important parameters in blood protozoan detection is assay sensitivity, which

can be affected by several factors. In the case of microarrays, nucleic acids in samples are pro-

cessed by random-primed amplification before hybridization to ensure amplification of vari-

ous blood protozoa [60]. The specificyt of random PCR is lower than that of specific PCR,

decreasing assay sensitivity, as all as genetic materials are amplified, and diluted the positive

signals [60]. However, the limit of detection of the current blood protozoan detection method

was 200 to 500 copies/reaction, indicating a good sensitivity.

In this research, a group of clinical samples collected from patients with fever, as well as ani-

mals and vectors were subsequently analyzed. Firstly, the clinical samples were tested by mor-

phology, which led to the identification of Plasmodium and Babesia; the microarray technique

could distinguish them. it suggested that the latter platform owns a higher specificity than tra-

ditional methods.

Parallel detection of blood protozoan species should increase understanding of their etiolo-

gies, as it can increase the detection rate of positive cases. Furthermore, it may close the diag-

nostic gap that represents an important factor. Additional data from case-control studies and

parameters from other hosts, such as serological data, would help provide evidence for blood

protozoan pathogenicity. Moreover, more epidemiological studies in animals and vectors

should be considered.

In addition to high specificity, accuracy, sensitivity, and increased information, we believe

that the present microarray system will have several other critical advantages. Automatic chip

washing procedures as well as biochip scanner and data software were introduced with the aim

to reduce operators’ manual work burden and ease implementation of the technique into

Table 3. Detection limits of DNA microarray and PCR.

Species DNA microarray(copies/reaction) PCR(copies/ reaction)

Babesia microti 200 200

Babesia divergens 500 500

Babesia venatorum 500 500

Babesia duncani 500 500

Plasmodium vivax 200 200

Plasmodium falciparum 200 200

Plasmodium knowlesi 500 500

Plasmodium malariae 500 500

Plasmodium ovale 200 200

Leishmania gerbilli 200 200

Leishmania donovani 500 500

Leishmania infantum 500 500

Leishmania tropica 500 500

Leishmania aethiopica 200 200

Trypanosoma cruzi 500 500

Trypanosoma brucei rhodesiense 500 500

Trypanosoma brucei gambiense 500 500

Toxoplasma gondii 200 200

doi:10.1371/journal.pntd.0005160.t003
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routine workflow. The amplified target DNA fragments were detected in the newly developed

assay after fluorescently labeled. Furthermore, there was only a single washing step needed

after hybridization by automatic chip cleanup instrument. At last, For the data acquisition

from biochip was analyzed by a dedicated software, with results printed automatically.

Although the newly designed microarray platform has a number of overt advantages, It was

also recognized that there is room for further improvement and development. We will pay

attention to the more discriminatory loci assessed to ensure that individual species are

unequivocally identified. Further development of the workstation is required to fully automa-

tize the procedure; this would also have direct benefits to workflows, particularly in larger test

institutes. In conclusion, the microarray platform can provide a convenient, accurate and reli-

able diagnostic tool for the identification of 18 most common blood protozoan species. The

system should be widely used in future detection assay and management of blood protozoan

infections in busy hospitals and research institutes, and would help in disease control and pre-

vention plans.
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S6 Fig. Repeatability of DNA microarray of Babesia microti. 1–5: 5 times repeatability of

DNA microarray of B. microti with the array of 20150925 batche; 6–10: 5 times repeatability of

DNA microarray of B. microti with the array of 20151026 batche; 11–15: 5 times repeatability

of DNA microarray of B. microti with the array of 20151125 batche; 16–20: 5 times repeatabil-
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