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Abstract: Organic semiconductors hold the promise of simple, large area solution deposition, low
thermal budgets as well as compatibility with flexible substrates, thus emerging as viable alternatives
for cost-effective (opto)-electronic devices. In this study, we report the optimized synthesis and
characterization of a helically shaped polycyclic aromatic compound, namely benzo[i]pentahelicene-
3,6-dione, and explored its use in the fabrication of organic field effect transistors. In addition, we
investigated its thermal, optical absorption, and electrochemical properties. Finally, the single crystal
X-ray characterization is reported.

Keywords: helicenes; organic thin film transistors; Diels-Alder reaction

1. Introduction

The field of organic electronics has been pushed strongly forward over recent decades,
due to the synergy between different disciplines, including materials science, physics,
chemistry, and engineering, as well as the interplay between academic and industrial
actors [1–5].

From a synthetic chemistry point of view, significant efforts have been made to de-
velop organic semiconducting materials, which could offer a viable alternative to their
traditional inorganic counterparts. A wide range of small molecules and polymers have
been successfully designed and synthesized for applications in many different devices (e.g.,
organic thin-film transistors (OTFTs), electrooptic modulators, organic (OPVs) or hybrid
solar cells, organic light-emitting diodes (OLEDs), laser diodes, optical waveguides, and
sensors), including both p-type and n-type semiconductors [6–8]. The structural diversity
in terms of the core type, side chains, substituents, bridging units, conjugation extent, and
shape of organic semiconductors [9–14] enables the fine-tuning of the material’s properties
depending on the specific device requirements.

Among the molecular materials, the possibility to create devices from organic semi-
conductors with a helically shaped conjugated electronic system, namely helicenes, has
been gaining attention recently.

Helicenes [15–18] are inherently dissymmetric structures, made up of ortho-fused
aromatic or heteroaromatic rings, in which the repulsive steric overlap of the (terminal)
aromatic units and, eventually, the presence of functional groups in them determines the
non-planarity of the conjugated structure, imparting a helical twist. Hence, helicenes exist
in both left-handed (M, minus) and right-handed (P, plus) chiral (i.e., enantiomeric) forms.
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This helically chiral, fully conjugated architecture endows these molecules with unique
chiroptical properties, e.g., high optical rotatory power, strong circularly polarized lumi-
nescence, and circular dichroism [19–21].

It has been demonstrated that helicenes may be able to self-assemble into long
corkscrew-shaped columns, which subsequently aggregate to form large crystalline do-
mains in both concentrated solutions and thin films [22–25]. Besides dramatically enhancing
the helicene chiroptical properties, this supramolecular aggregation may provide unique
charge transport properties, as observed for, e.g., DNA [26].

Despite their peculiar properties, however, helicenes still remain rather unexplored
in solid-state (opto-)electronic devices. Racemic mixtures of tetrathia-[7]-helicene [27], naph-
thalene double [6]helicenes [28], pyrene double [4]heterohelicene [29], 5,14-diaryldiindeno[2,
1-f:1′,2′-j]picene [30,31], perylene diimide double-[5]heterohelicene [32,33], and a multiple
helicene containing two [5]helicene and four [4]helicene moieties [34] have been used
in organic thin-film transistors (OTFTs). Some authors exploited the chirality of the he-
licenes by using the enantiomerically pure 1-aza[6]helicene [35] and perylene diimide
double-[7]heterohelicene [36] in circularly polarized detecting OTFTs.

A handful of studies are available for other types of devices, such as organic light
emitting diodes [37–56], organic solar cells [57–59], and hybrid DSSC [60] and perovskite
solar cells [61–72].

In this paper, we report the optical, electrochemical, and structural characteristics of
racemic benzo[i]pentahelicene-3,6-dione as well as its thin film, and OTFTs’ semiconductor
properties.

2. Results and Discussion
2.1. Synthesis

Benzo[i]pentahelicene-3,6-dione (1, Scheme 1) was synthesized by optimizing a previ-
ously published procedure [73]. The simplicity in this design makes this system worthy
of investigation. Indeed, many advanced semiconducting helical structures are extremely
challenging to access and, therefore, small quantities of material are typically available for
study. Basically, the synthesis of compound 1 involves the use of α-tetralone (2) as a starting
material, which is subjected to self-coupling in the presence of a Zn-chlorotrimethylsilane
system to afford 3,3′,4,4′-tetrahydro-l,l′-binaphthalene (3). The synthetic process was
completed by the solvent-free Diels-Alder reaction of the diene 3 with ten-fold excess of 1,4-
benzoquinone (4), followed by the in situ dehydrogenation of the resulting cycloadduct 5.
Notably, 1,4-benzoquinone, under these conditions, behaves simultaneously as a dienophile
in the Diels-Alder reaction and as an oxidizing agent. Though the yield is just acceptable
(~32%, see Materials and Methods), this one-step cycloaddition-dehydrogenation reaction
is simple and may enable the production of the [5]helicenebenzoquinone 1 on a large scale,
starting from readily available and reasonably cheap starting materials.
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Scheme 1. Retrosynthesis of [5]helicenebenzoquinone 1.

The Diels-Alder reaction represents a suitable and atom-efficient method for construct-
ing annulated ring systems containing six-member rings [74], and it consequently offers an
alternative synthetic approach to helicenes [75–84].
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It is noteworthy to mention that, in our strategy, the use of excess 1,4-benzoquinone is
not an issue, as the final optimized protocol also includes its recovery via steam distillation
followed by filtration and reuse to minimize the waste associated with the process.

2.2. Thermal Properties

Thermal stability and transitions for [5]helicenebenzoquinone were investigated by
simultaneous TGA/DSC. Representative TGA/DSC analysis curves are reported in Figure 1.
As shown, the thermal decomposition takes place in two main steps until 650 ◦C. In the
first step, the quinone loses 13.9 wt% between 30 and 341 ◦C. In this temperature range, the
DSC curve shows an endothermic peak at 247 ◦C, which could be assigned to a melting
point, and an exothermic peak at 295 ◦C due to thermal degradation or evaporation process.
In addition, a continual mass loss up to 650 ◦C (~86.5%) associated with a broad exothermic
peak, appears at 631 ◦C in the DSC curve. As shown, the synthetized material featured
remarkable thermal stability. The onset point of the weight loss with 5% weight loss
temperature (decomposition temperature Td) was 268 ◦C, and no weight loss was observed
at lower temperatures.
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Figure 1. TGA (solid line) and DSC (dotted line) thermograms of the [5]helicenebenzoquinone
(exotherm up).

2.3. Optical and Electrochemical Properties

The solution and thin-film photophysical properties of the synthetized quinone were
assessed by optical absorption (ultraviolet-visible (UV-vis)) spectroscopy, and cyclic voltam-
metry (CV) was used to identify its electrochemical behavior.

Cyclic voltammogram and absorbance spectra of the compound are shown in Figure 2,
and electrochemical and optical data are summarized in Table 1.

Table 1. Thermal, electrochemical and spectroscopic characterization of [5]helicenebenzoquinone 1.

m.p (◦C) E1/2-ox (V) E1/2-red (V) λmax-sol (nm) a ε
(Lmol−1cm−1) Egsol (eV) a λmax-film (nm) b Egfilm (eV) b LUMO (eV) c HOMO (eV) d

246 - −1.67 486 8.33 · 103 2.11 490 2.01 −3.14 −5.25

a Optical band gap estimated from the low-energy band edge in the optical spectrum. Concentrations
are 10−4–10−5 M in CHCl3; b Optical bandgap estimated from absorption onset (Eg = 1240/λonset) of spin-
cast film from 5 mg/mL of CHCl3 solution on glass substrates; c ELUMO = [−(Ered − E1/2-ferrocene) + 4.8];
d EHOMO = ELUMO − Eopt.gap.
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Optical absorption and emission maxima were performed in solution and as thin films
on glass substrates (Figure 2a).
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Figure 2. (a) UV-vis normalized absorptions of [5]helicenebenzoquinone in solution (CHCl3) and as
a thin film; (b) cyclic voltammetry; 10−3 M CH2Cl2, 0.1 M NBu4PF6, T = 25 ◦C, scan rate: 100 mVs−1,
reference electrode: Ag/AgCl, working electrode: glassy carbon. Fc/Fc+ was used as internal
reference (E1/2-ferrocene = 0.21 V).

In chloroform (CHCl3), the studied quinone exhibits an absorption maximum (λmax-sol)
located at 486 nm and a molar extinction coefficient (ε) of 8.33 × 103 Lmol−1cm−1.

A thin film of the same compound shows a sizeable broadening and exhibits an
absorption maximum (λmax-film) at 490 nm. The broadening and the small bathochromic
shift (<10 nm), observed going from the solution to the thin film, is clear evidence of solid-
state J-aggregate formation [85,86]. Interestingly, a tail in the [5]helicene film absorption
profile can be observed, spanning from 600 to 800 nm. This might have a component [87]
from spatially proximal interactions between the dipole–dipole interactions of the quinone
fragment, facilitated by the tendency of the helicene molecules to self-assemble, that can
modulate the spectral transition above 600 nm and create a tail in the absorption spectrum.

The band gap for the [5]helicene 1 was estimated from the low-energy band edges
(Table 1). The optical band gaps of the compound in solution and solid state are estimated
to be 2.11 and 2.01 eV, respectively.

The CV plot (Figure 2b) show the presence of a reversible reduction process with
half-wave potentials at −1.46 V. No oxidation peaks are observed in the investigated
electrochemical window.

From the reduction potential, LUMO and HOMO energies were estimated knowing
that the SCE energy level is −4.8 eV below the vacuum level and the band gap obtained
by optical absorption data (Egsol) (Table 1), respectively. Using these relations, the LUMO
value was estimated to lie at −3.14 eV, and HOMO was calculated as −5.25 eV.

2.4. Quantum Mechanical Calculations

To gain an insight into the electronic properties of [5]helicenebenzoquinone, quantum-
chemical calculations were also performed. The optimized geometry, molecular orbitals’
contour plots (MO), and energy diagram are shown in Figure 3.
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Figure 3. Computational (DFT) values of HOMO/LUMO/gap energies, MO electron density con-
tours and structure of [5]helicenebenzoquinone.

The molecular orbital (MO) energies and contours were calculated by using the DFT-
optimized structure of the molecule [79]. Since charge is transported through the frontier
molecular orbitals of organic semiconductors, their geometries, energies, and extents of
delocalization directly affect carrier stability and intermolecular hopping rates. Ideally, the
HOMO and LUMO are delocalized over the entire π-core of the semiconductor for p- and
n-channel transport, respectively [86].

Here, the HOMO is delocalized over the ortho-anellated moiety, while the LUMO
is more compact, since it is delocalized only on the benzoquinone subunit. This highly
localized nature of the LUMO limits intermolecular π-overlap and may favor charge
trapping at the quinone site. This may be a contributing factor to the limited mobility
values of [5]helicenebenzoquinone (vide infra). This is not uncommon behavior [88] for
quinone-containing semiconductors. The computed HOMO energy is −5.77 eV, while the
LUMO energy is −3.20 eV.

The DFT-calculated HOMO and LUMO energies are in good agreement with the
experimental values (Figure 3 and Table 1, respectively).

2.5. Crystallographic Characterization

The X-ray analysis was carried out on a recrystallized single crystal obtained from
[5]helicenebenzoquinone solution. The crystal data and structure refinement are reported
in Tables 2 and S1–S6 (Supplementary Information).

Table 2. Summary of crystal data and structure refinement.

Parameter Data

Empirical Formula C26H14O2
Formula weight 358.37
Temperature/◦C −173.16
Crystal system Orthorhombic

Space group Pbca (no. 61)
a /Å, b/Å, c/Å 12.1651 (3), 7.4140 (2), 36.6996 (7)
α/◦, β/◦, γ/◦ 90, 90, 90
Volume /Å3 3310.01 (14)
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Table 2. Cont.

Parameter Data

Z 8
ρcalc/mg mm−3 1.438
µ(MoKα)/mm−1 0.090

F (000) 1488
Crystal size/mm3 0.24 × 0.15 × 0.069

2Θ range for data collection 5.562 to 56.558◦

Index ranges −15 ≤ h ≤ 16, −9 ≤ k ≤ 9, −48 ≤ l ≤ 48
Reflections collected 55,869

Independent reflections 4094 [R(int) = 0.1036]
Data/restraints/parameters 4094/0/253

Goodness-of-fit on F2 1.035
Final R indexes [I > 2σ (I)] R1 = 0.0459, wR2 = 0.1030
Final R indexes [all data] R1 = 0.0698, wR2 = 0.1151

Largest diff. peak/hole/e Å−3 0.301/−0.228

2.6. Thin-Film Transistor Characterization

Top-contact OTFTs (1000 µm channel widths (W) and 50 µm channel lengths (L))
were fabricated by spin coating or drop casting films on 300 nm SiO2 (Bare), poly-4-
vinylphenol (PVP) and PS-brush (PS-OH)-treated SiO2 substrates. The current–voltage
characteristics of the fabricated organic thin film transistor (OTFT) devices were measured
at room temperature and the device performance (mobility, current on/off ratio, and
threshold voltage) data and representative output and transfer curves are reported in
Table 3 and Figure 4, respectively. The field-effect carrier mobility (µ) of the semiconductor
was calculated in the saturation regime using the conventional transistors relationship:
µsat = (2IDSL)/[WCox(Vsg − Vth)2], where Isd is the source-drain saturation current; Cox
is the areal capacitance value of the insulator layer, Vsg is the gate voltage, and Vth is the
threshold voltage. The latter can be estimated as the x intercept of the linear section of the
plot of Vsg vs. (Isd)1/2.

Table 3. Hole mobilities (cm2/V−1s−1), current on/off ratios (Ion/Ioff), and threshold voltages (VT, V)
for films deposited at various substrates, substrate temperatures (TD,

◦C) and annealing temperatures
(TA, ◦C); nw: not working.

Substrate Solvent TD TA µh Ion/Ioff VT

Spin-Coated (SC)

Bare chlorobenzene - - 1.6 × 10−5 1.5 × 103 1.5
Bare dichlorobenzene - 150 nw
Bare Toluene - 150 nw
PVP dichlorobenzene - 150 nw
PVP Toluene - 150 nw

PS brush dichlorobenzene - 150 nw
PS brush Toluene - 150 nw

Drop-casted (DC)

Bare chlorobenzene 100 130 1.5 × 10−7 3.0 × 104 −23
PVP chlorobenzene 100 130 5.3 × 10−5 6.0 × 103 −10

PS brush dichlorobenzene 60 150 6.0 × 10−5 3.0 × 103 −67
PS brush chlorobenzene 70 - 2.5 × 10−6 5.0 × 103 −35
PS brush chlorobenzene 70 150 4.8 × 10−5 2.5 × 104 −23
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[5]Helicenebenzoquinone showed a p-type behavior, with hole mobilities of 10−5–
10−7 cm2/Vs and current on/off ratio of 103–104.

The device response was found to be dependent on both the deposition method (SC
or DC) and the dielectric surface treatment. Both have a critical impact on the π–π stacking
and intermolecular interaction between the semiconductor molecules and influence the
neighbouring molecular orbital overlapping. In the case of SC, although the uniformity
of the thin film is generally excellent, there is a disadvantage of low crystallinity. On the
other hand, DC generally results in highly crystalline thin films, whereas the uniformity is
poor. Overall, devices fabricated by DC deposition performed better than the spin-coated
counterparts. By comparing the performance of the SC and DC devices in Table 3, it
can be implied that the slow, static process of DC facilitates preferable ordering of the
[5]helicenebenzoquinone molecules compared to the SC method. The majority of the non-
working and poor SC devices may be at least in part be attributed to the poor molecular
ordering due to the accelerated solvent evaporation from spin-coating.

Among the devices obtained by the DC method, those on the PS brush demonstrated
the best results. PS brush treatment is a widely used surface modification method which
optimizes the morphology, surface energy, and viscoelastic properties of the resulting
dielectrics [89]. The modification of the semiconductor/dielectric interface is crucial to the
growth of the semiconductor layer, which leads to enhanced OTFT characteristics.

Representative micrographies of the thin films are reported in Figure S1 (Supplemen-
tary Information). It can be observed that in all cases they typically show gaps between
(inhomogeneous) crystallites, which likely contribute to compromising charge transport.
No evident correlation between TD and device performance could be identified.

3. Materials and Methods

All chemicals were purchased from Merck KGaA, Darmstadt, Germany, and used
without further purification unless otherwise noted. Column chromatography was per-
formed on silica gel (230–400 mesh American Society for Testing and Materials, ASTM) as
a stationary phase. 3,3’,4,4’-tetrahydro-l,1’-binaphthalene (2) was prepared according to a
previously reported procedure [73].

NMR spectra were recorded on a Varian Associates (Palo Alto, CA, USA) VXR-400
multinuclear spectrometer using deuterated chloroform (CDCl3) as the solvent (internal
Me4Si). Elemental microanalyses were performed using a Fisons’(Ipswich, London, UK)
EA1106 CHN analyzer using atropine (C17H23NO3), 2,5-bis-2-(5-tertbutylbenzoxazol-yl)-
thiophene (C26H26N2O2S; BBOT) and phenanthrene (C14H10) as a reference standard, with
an accuracy of ≈ 2 µmol g−1. The melting point was measured on a Büchi 510 instrument
(Büchi Labortechnik AG, Flawil, CH) and was not corrected. Thermogravimetric (TGA)
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and differential scanning calorimetric (DSC) analyses were performed on a TGA/DSC
simultaneous apparatus (SDT Q600, TA Instruments, New Calstle, Delaware, UK) under
a nitrogen flow rate of 100 mL min−1. Samples in an open platinum cell were heated
from 30 up to 1000 ◦C with a rate of 10 ◦C min−1. Absorption spectra of the compound
in chloroform (CHCl3) were recorded using a Varian Cary 100 UV-vis spectrophotometer
(using a glass cuvette of 1 cm path length) over the spectral range of 350–800 nm. Elec-
trochemical properties were determined using a Bass potentiostat, with a conventional
three-electrode configuration (platinum-wire counter electrode, glassy carbon working elec-
trode, and silver/silver chloride (Ag/AgCl) reference electrode). Cyclic voltammetry was
performed in an electrolyte solution of 0.1 M tetrabutylammonium hexafluorophosphate
(C16H36F6NP; TBAPF6) in dichloromethane (CH2Cl2; DCM) with scan rates between 50
and 100 mVs−1. The solutions were purged with nitrogen steam for about 15 min before
every experiment. The glassy carbon working electrode was polished with a slurry of
alumina and ultrapure water on a Buehler felt pad and rinsed thoroughly with ultrapure
water. A ferrocene/ferrocenium redox (Fc/Fc+) couple was used as an internal standard.
The HOMO and LUMO energy levels were calculated from the oxidation (Eox) and reduc-
tion (Ered) potentials data using the empirical relation ELUMO = [−(Ered − E1/2-ferrocene)
+ 4.8] eV or EHOMO = [−(Eox − E1/2-ferrocene) + 4.8] eV. Density functional theory (DFT)
computations were carried out using the Spartan ’08 software package (Wavefunction, Inc.,
Irvine, CA, USA) at the B3LYP/6-31G* level. Single crystals of helicene were recrystallized
by layering chloroform (CHCl3) solution of the synthetized material with hexane (C6H14).
Suitable crystals were mounted in inert oil and transferred to the cold gas stream of a
Bruker (Billerica, MA, USA) Kappa APEX CCD area detector equipped with a MoKα sealed
tube with graphite. The crystal was kept at −173.16 ◦C during data collection. SADABS-
2012/1 (Bruker) was used for absorption correction. Using Olex2 [90], the structure was
solved with the XT structure solution program using direct methods and refined with the
ShelXL [91] refinement package using least squares minimization.

3.1. Diels-Alder Reaction of 3,3’,4,4’-Tetrahydro-1,1’-binaphthalene (3) with 1,4-Benzoquinone (4)

The diene 3 (5.2 g, 19.9 mmol) and 1,4-benzoquinone (4) (22 g, 0.2 mol) were heated to-
gether at 150–170 ◦C for 18 h in a degassed flask. The excess benzoquinone was removed by
steam distillation from the crude reaction mixture, and the residue was purified by column
chromatography (silica gel, hexane/ethylacetate 3:1) to afford benzo[i]pentahelicene-3,6-
dione (1). Yield: 32%; m.p. 246–247 ◦C. The spectra matched those in the literature.
1H-NMR (CDCl3) δ 6.97 (s, 1H), 7.21 (dd, 1H, J = 8.6, 7.0 Hz), 7.54 (dd, 1H, J = 8.1, 7.0 Hz),
7.92 (d, 1H, J = 8.1 Hz), 8.04 (d, 1H, J = 9.2 Hz), 8.13 (d, 1H, J = 8.6 Hz), 9.24 (d, 1H,
J = 9.2 Hz). An. Calcd. for C26H14O2: C%, 87.13; H%, 3.94. Found: C%, 87.30; H%, 3.96.

3.2. OTFTs Fabrication and Characterization

Bottom-gate/top-contact organic thin-film transistors (OTFTs) were fabricated on
heavily n-doped (100) silicon substrate (resistivity < 0.005 Ωcm) with a thermally grown sil-
icon dioxide (300 nm SiO2) as the dielectric layer. Prior to deposition, the Si/SiO2 substrate
were cleaned in an ultrasonic bath using acetone (C3H6O) for 15 min, dried using a nitrogen
gun, and cleaned with air plasma for 5 min (Harrick Plasma, Ithaca, NY, USA18 W). In order
to reduce charge trapping and thus enhance mobility, the SiO2 substrate was modified with
poly-4-vinylphenol ((C8H8O)n; PVP) or PS-brush ((CH2CH(C6H5))nOH; PS-OH). Semicon-
ducting layers were deposited via two different solution-processing methods: spin-coating
(SC) and drop-casting (DC). For the SC process, the pentahelicenebenzoquinone was dis-
solved in chlorobenzene (C6H5Cl), dichlorobenzene (C6H4Cl2), or toluene (C7H8), and
the solutions (15 mg/mL) were spin-coated at 3000 rpm for 30 s onto the substrates. The
substrates were annealed at 150 ◦C under vacuum overnight. For the DC process, a 0.2 wt%
solution of semiconductor in chlorobenzene (C6H5Cl) was deposited onto the substrates
heated at 100 and 60–70 ◦C for bare, PS-brush- and PVP-treated substrates, respectively.
The substrates were then annealed at 130–150 ◦C for 5 h under vacuum. Top contacts were



Molecules 2022, 27, 863 9 of 13

fabricated by vapor deposition of gold electrodes (~10−6 Torr, 0.2 Ås−1, ~40 nm thick) onto
the semiconductor thin films through a shadow mask to obtain devices with a channel
width (W) and length (L) of 1000 and 50 µm, respectively. The capacitance of the 300 nm
SiO2 gate insulator was 11.4 nFcm−2. Characterization of the devices was performed at
room temperature in ambient atmosphere using a Keithley 4200 SCS (Keithley Instruments,
Cleveland, OH, USA).

4. Conclusions

A helicene quinone, namely benzo[i]pentahelicene-3,6-dione, was prepared in one-pot
reaction conditions via Diels–Alder cycloaddition-dehydrogenation steps. Its thermal,
optical, and electrochemical behavior, along with its single-crystal structure and electronic
structure, were also reported. [5]Helicenebenzoquinone exhibited excellent thermal stabil-
ity, and near UV-vis electronic absorption.

An OTFT that incorporated the helical compound as a semiconductor with the
configuration of bottom-gate/top-contact attained hole mobilities in the range of 10−5–
10−7 cm2/Vs and current on/off ratio of 103–104 was formulated. The carrier mobilities
were found to depend on the thin-film deposition method, and surface treatments.

This study contributes to gaining insights into the structure–properties–device re-
sponse relationship in the class of helically shaped semiconducting materials. The strongly
localized LUMO may be at least partially responsible for the limited mobility values of
[5]helicenebenzoquinone. The tendency to form J-aggregates (i.e., less orbital overlap)
and the presence of significant gaps between (heterogeneous) crystallites in thin-films also
possibly compromise charge transport.

On the other hand, the LUMO localization and the J-aggregation, along with the
excellent thermal stability, suggest the use of [5]helicenequinone in OLED devices with
thermally activated delayed fluorescence (TADF) emitters [92].

Hence, future developments will be focused on expanding the range of device applica-
tions, including organic–inorganic hybrids. This is also worth pursuing in view of the fact
that the optimized synthetic method enables us to prepare the [5]helicenebenzoquinone on
a large scale, which is a key requirement for studying organics’ applications as materials
for electronics. In addition, its structural simplicity, compared with other advanced double
or multiple helicenes, is a design principle that can be applied in the development of
semiconductors, to make the leap beyond the laboratory scale.

New helical architectures will be realized by introducing, e.g., substituents at the
terminal aromatic rings, to tune the helical twisting of the structure, which can ultimately
result in unique stacking structures.

Their optical resolution into enantiomerically pure forms will be also pursued.

Supplementary Materials: The following supporting information can be downloaded online,
Figure S1: Microscopic view of thin films obtained by (a) SC from chlorobenzene onto bare SiO2 (not
annealed); (b) SC from dichlorobenzene onto bare SiO2 (annealed at 150 ◦C); (c) SC from dichloroben-
zene onto bare PVP (annealed at 150 ◦C); (d) DC from chlorobenzene onto bare SiO2 (annealed
at 130 ◦C; TD = 100 ◦C) and (e) onto PS brush (annealed at 150 ◦C; TD = 70 ◦C); Table S1: Frac-
tional Atomic Coordinates (×104) and Equivalent Isotropic Displacement Parameters (Å2 × 103)
for compound 1.; Table S2: Anisotropic Displacement Parameters (Å2 × 103) for compound 1.;
Table S3: Bond Lengths for compound 1.; Table S4: Bond Angles for compound 1.; Table S5: Torsion
Angles for compound 1; Table S6: Hydrogen Atom Coordinates (Å× 104) and Isotropic Displacement
Parameters (Å2 × 103) for compound 1.
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