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Context: Variants of uncertain significance (VUSs) lack sufficient evidence, in terms of statistical
power or experimental studies, to allow unequivocal determination of their damaging effect. VUSs are a
major burden in performing genetic analysis. Although in silico prediction tools are widely used, their
specificity is low, thus urgently calling for methods for prioritizing and characterizing variants.

Objective: To assess the frequency of VUSs in genes causing endocrine and metabolic disorders, the
concordance rate of predictions from different in silico methods, and the added value of three-
dimensional protein structure analysis in discerning and prioritizing damaging variants.

Results: A total of 12,266 missense variants reported in 641 genes causing endocrine and metabolic
disorders were analyzed. Among these, 4123 (33.7%) were VUSs, of which 2010 (48.8%) were predicted
to be damaging and 1452 (35.2%) were predicted to be tolerated according to in silico tools. A total of
5383 (87.7%) of 6133 disease-causing variants and 823 (55.8%) of 1474 benign variants were correctly
predicted. In silico predictions were noninformative in 5.7%, 14.4%, and 16% of damaging, benign, and
VUSs, respectively. A damaging effect on 3D protein structure was present in 240 (30.9%) of predicted
damaging and 40 (9.7%) of predicted tolerated VUSs (P , 0.001). An in-depth analysis of nine VUSs
occurring in TSHR, LDLR, CASR, and APOE showed that they greatly affect protein stability and are
therefore strong candidates for disease.

Conclusions: In our dataset, we confirmed the high sensitivity but low specificity of in silico predictions
tools. 3D protein structural analysis is a compelling tool for characterizing and prioritizing VUSs and
should be a part of genetic variant analysis.

This article has been published under the terms of the Creative Commons Attribution License (CC
BY; https://creativecommons.org/licenses/by/4.0/), which permits unrestricteduse, distribution, and
reproduction in any medium, provided the original author and source are credited. Copyright for
this article is retained by the author(s).
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Sequencing projects have yielded thousands of novel genetic variants, and many thousands
more are likely to be discovered in the near future as a result of large genetic projects, such as
the 100,000 Genomes Project, already under way in the United Kingdom, and a major U.S.
initiative aimed at sequencing 1 million individuals. Variants with uncertain significance
(VUSs) are a well-known problem among the research community involved in genetic studies.
VUSs lack sufficient evidence in terms of statistical power or experimental studies to permit
unequivocal determination of their damaging or tolerating effect. VUSs are often identified in
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patients whose clinical phenotype and family history strongly suggest the presence of a
genetic background. However, the lack of clarity on the biological significance of VUSs affects
our ability to stratify patients into diagnostic and therapeutic algorithms and hinders
screening of their relatives, as well as prenatal screening and counseling.

The magnitude of the problem posed by VUSs is exemplified by the fact that one tenth of
variants (24,081 variants of 252,843 unique recordswith assertion criteria) reported inClinVar
(one the largest international repositories of genetic variants, widely used by the medical and
genetics community) [1] are reported as “unclassified” or “conflicting interpretation.”

To understand the functional contribution of genetic variants to the clinical phenotype and
response to therapy and, hence, improve diagnostic and therapeutic clinical algorithms, it is
crucial to combine recent advances in sequencing technology with in silico variant prediction
methods, which can help prioritize variants for further in vitro testing. Several in silico
predictive tools have been developed over the years and are widely used by the scientific
community for predicting the damaging (or tolerated) effect of genetic variants causing amino
acid substitutions. Indeed, genetic variants can affect protein folding and stability, protein
function, protein-protein interaction, and protein subcellular localization.

In silico prediction methods are typically based on evolutionary conservation alone [e.g.,
Sorting Tolerant From Intolerant (SIFT)] [2] or in combination with the physico-chemical
properties of the residue under investigation (e.g., PolyPhen2) [3]. SIFT and PolyPhen2
scores are included in the Ensembl Variant Effect Predictor and are also reported in the
Exome Aggregation Consortium (ExAC) database [4]. However, in silico predictions suffer
from several limitations [5]. In particular, a recent study showed that they tend to over-
estimate variants with a deleterious effect [6]. The human genome contains an excess of rare
variants (those with a frequency ,1%) [4,7]. These variants are potential disease candi-
dates when identified in patients. If one considers that there is enrichment in SIFT- and
PolyPhen2-predicted damaging variants among the rare compared with common variants
[7], it becomes clear that new approaches to prioritize potentially damaging variants are
urgently needed.

Endocrine and metabolic disorders have a high incidence and prevalence in the general
population [8]. We used the set of genes causing these disorders to assess (1) the frequency of
VUSs, (2) the concordance rate of variant predictions from widely used in silicomethods, and
(3) the added value of three-dimensional (3D) protein structure analysis to help discern and
prioritize damaging variants that require further in vitro testing.

1. Materials and Methods

A. Dataset

We extracted 307,135 human, missense, germline variants from the ClinVar database [1].
ClinVar variant classification was adopted. Variants classified as “variant of unknown
significance/suspicious” (those for which there is limited evidence that the variant could be
causative of disease) and variants of “unknown significance” (those for which the reported
evidence in the literature is incomplete and/or contradictory) where included in the VUS set.
An additional 76,520 humanmissense variants were extracted fromUniProt, the databank of
proteins (UniProt Release: 2016_05 ofMay 10, 2016) [9]. InUniProt, variants are classified as
“disease_causing” (29,463 variants with evidence of disease association), “polymorphisms”
(39,756 variants with no evidence of disease association), and “unclassified” (7301 variants
with uncertain implication in disease because evidence against or in favor of a pathogenic role
is limited or literature reports are conflicting). The latter were also included in the VUS
nonredundant dataset. Endocrine and metabolic disorders were identified by using the
International Classification of Diseases, Tenth Revision (ICD-10) and codes obtained from
Chapter IV, “Endocrine, Nutritional and Metabolic Diseases (E00-E90),” and from Chapter
II, “Malignant Neoplasms of Thyroid and Other Endocrine Glands (C73-C75).” The Online
Mendelian Inheritance in Man (OMIM) database [10] was interrogated to identify additional
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protein-coding genes responsible for endocrine-metabolic disorders. ClinVar, UniProt,
OMIM, and ICD-10 entries were cross-referenced to extract all protein-coding genes causing
endocrine and metabolic disorders and their unique variants. Only variants that could be
mapped onto the canonical protein sequences were studied.When the wild-type residue could
not be mapped onto the UniProt protein sequence, cases were excluded from the final
dataset. All variants were mapped onto a 3D protein structure (when this was available), as
described below.

B. Variant Predictions

The tolerated or damaging effect of each variant in the dataset was obtained from the fol-
lowing widely used variant predictors: SIFT [2], PolyPhen2 [3], MutationAssessor [11], and
Condel [12]. SIFT and MutationAssessor assess the effect of a variant based on its sequence
conservation, whereas PolyPhen2 uses sequence conservation and structural features.
Condel integrates predictions from two tools, MutationAssessor and FATHMM [13], to
generate a new consensus score [12]. The default threshold recommended for each program
was used to predict the damaging or tolerated effect of each variant. We applied a binary
definition to each variant: damaging vs tolerated. Because PolyPhen2 andMutationAssessor
provide multiple effect definitions, we considered the PolyPhen2 predictions “probable
deleterious” and “possibly deleterious” and the MutationAssessor predictions “high” and
“medium” impact [11] as “damaging,” whereas the PolyPhen2 score “benign” and the
MutationAssessor predictions “neutral” and “low” impact as “tolerated.”

C. Structural Analysis

Experimental structures [x-ray and nuclear magnetic resonance (NMR) coordinates] were
extracted from the ProteinDataBank (PDB) [14] and variants were mapped onto structures.
In the presence of multiple structures covering the query amino acid position, the best
structure (i.e., the one with the highest resolution) was chosen. Structures covering fewer
than 100 residueswere not used. In the presence of two structureswith similar resolution, the
one covering the longest amino acid sequence was chosen.

To study the effect of amino acid variation, mutant structures were generated by removing
the side chain of the residue under investigation (query residue) and any surrounding residue
with at least one atomwithin a 5Å distance to any atom of the query residue. Themutant side
chain of the query residue and the wild-type side chains of the surrounding residues were
reintroduced by using the SCWRL4 program [15]. Because this procedure could introduce a
bias during the repacking, for each mutant structure we also recreated the wild type-
structure. We assessed the validity of this repacking method by comparing the wild-type
and corresponding repacked wild-type structures on a set of 606 human, high-quality protein
structures (defined as resolution ,2.0Å, MolProbity score , 2.0 [16], #5% of residues with
bond length outliers (.4s), #5% of residues with bond angle outliers (.4s), and #5% of
residues with Cb deviation outliers (.0.25Å) [17] extracted from the independent dataset of
the top 8000 structures (available at http://kinemage.biochem.duke.edu/databases/top8000.
php) in the PDB (Supplemental file 606proteins.xls) [18]. Thirty proteins were in common
with the set of proteins causing endocrine or metabolic disorders. The average distance
between the backbone atoms of the superposed repacked wild-type and mutant structures
measured by the root-mean-square deviation (RMSD) was 0.027 6 0.118 (RMSD mean 6
SD). Furthermore, we used this dataset of 606 human protein-coding genes for which high-
quality protein structures were available to assess the accuracy of structural analysis in
discriminating between deleterious and benign variants.

The structural effect of each VUS was assessed by comparing the properties of the wild-
type to the mutant residue by analyzing the structural changes introduced by the mutant
residue. In particular, the following structural changes were evaluated: (1) change in solvent
accessibility (from buried to exposed or vice-versa), (2) breakage of salt or disulfide bridges, (3)
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disallowed torsion angles, (4) change in the charge of a buried residue, (5) introduction of a
steric clash, (6) replacement of a buried hydrophobic residue with a hydrophilic one, (7)
disruption of secondary structure (i.e., introduction of proline in a secondary structure motif,
such as an a helix), (8) substitution of a buried glycine with any other amino acid, (9)
substitution to proline, (10) substitution from glycine to any other residue in the "sharp turn"
(as defined by the DSSP program, https://swift.cmbi.umcn.nl/gv/dssp/index.html), and (11)
change in cavity volume (cavity filling or cavity expanding).

The following features were considered: (1) salt bridge, defined as at least one pair of atoms
on oppositely charge groups within a 5Å distance; (2) disulfide bridge (S-S bridge), defined as
the side chains of two cysteines at a 3.3Å distance; (3) disallowed torsion angles, as described
in Lovell et al. [17]; (4) "hydrophobic" residues (V, I, L, M, F,W, C, A) and hydrophilic residues
(R, K, E, D, Q, N) [19]; (5) charged residues (D, E, H, K, R) [20]; (6) secondary structure:
helices, strands, and turns were calculated by using DSSP [21; (7) the amino acid percentage
relative surface accessibility area calculated by dividing its total surface area with that in the
extended conformation (f =C = 180°) of the Gly–X–Gly tripeptide. Residues were defined as
solvent accessible if relative surface accessibility area was $9%; otherwise residues were
considered buried [22].

A steric clash score was calculated by using the "clashlistcluster" shell script from the
MolProbity library. A clash was defined as a van der Waals overlap $0.4 Å, and clash score
was defined as the average number of clashes per 1000 atoms [18]. We evaluated only local
clashes that occurred within a 20Å radius from Ca of the mutant residue and considered a
mutation to be "damaging" when amutant model had high clash score ($30) [18] and a$70%
increase in clash score betweenmutant and repackedwild-type structures. The cavity volume
was calculated by KVFinder [23] by using its default setting. Amino acid substitutions, which
affect protein stability, can cause a change in cavity volume that ranges from 5Å3 to 150Å3

[24–26]. In our independent dataset of 606 human structures, a 70Å3 change in cavity volume
maximizes the true-positive vs false-positive ratio and significantly discriminates between
disease-causing and neutral variants (x2 = 23.81; P , 0.001).

2. Results

We analyzed 641 unique protein-coding genes (Supplemental file 641_genes.txt) causing
endocrine and metabolic disorders and harboring 12,266 unique missense variants, of which
4123 (33.7%) were VUSs. These variants occur in genes known to cause endocrine or met-
abolic disorders and are strong disease-causing candidates when identified in patients with
these disorders. Moreover, in our database, 6133 (50%) variants were classified as deleterious
(“pathogenic/likely pathogenic” in ClinVar or "disease-causing" in UniProt), 1474 (12%) as
benign (“benign or likely benign” in ClinVar and “polymorphisms” in UniProt). The
remaining variants were annotated as “risk_factor” (n = 22), “protective” (n = 3), and “in-
volved in drug response” (n = 5). For 495 variants, no clinical significance was reported
in ClinVar.

A. In silico Prediction Tools Overestimate the Damaging Effect of “Neutral” Variants

In silico predictions for variants classified as benign and deleterious were analyzed: 5383 of
6133 (87.7%) deleterious variants were correctly identified as damaging by all ormost in silico
predictors, and 823 of 1474 (55.8%) benign variants were correctly predicted to be tolerated
(Table 1). We thereafter analyzed in silico predictions for 4123 VUSs: 2010 (48.8%) were
predicted to be damaging and 1452 (35.2%) to be tolerated. For the remaining VUSs, in silico
results were noninformative because there were equal numbers of “damaging” and “toler-
ated” predictions for each variant (Table 1).

In silico predictions tools thus appear to have a high sensitivity and a low specificity, at
least for variants occurring in genes known to cause endocrine and metabolic disorders.
Although our results cannot at present be generalized to the whole proteome, our findings
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confirm what was previously reported on a smaller dataset of variants in genes causing
epilepsy syndromes [27].

B. Structural Predictions for VUSs

We assessed the added value of 3D structural analysis in prioritizing VUSs, based on
their damaging effect on protein structure (Supplemental file VUS_predictions.xls).
First, we tested whether structural analysis was able to differentiate between disease-
causing and benign variants on an independent dataset of 606 human proteins, for
which a high-quality 3D structure (see Materials and Methods) was available. One or
more possibly damaging structural changes were present in 851 of 1990 deleterious
variants, compared with 361 of 2280 benign variants (x2 test, P, 0.001), thus suggesting
that 3D structural analysis is informative in discriminating between damaging and
neutral variants.

We then performed structural analysis on the impact on protein structure of the 4123
VUSs from our dataset of proteins involved in endocrine and metabolic disorders and
compared the results with predictions from widely used in silico tools, namely SIFT,
PolyPhen2,MutationAssessor, and Condel (Table 2). The 4123 VUSs were distributed among
247 proteins. We examined the 365,464 structural files (x-ray and NMR coordinates) de-
posited in the PDB. At least one structural file was available for 118 (47.8%) proteins, and we
were able to map and perform structural analysis for 1389 VUSs (number of PDB files
analyzed: 162). 3D structural analysis could be performed in 776 (38.6%) of 2010 variants that
were predicted to be damaging by all or most in silico predictors and in 410 (28.2%) of 1452
variants that were predicted to be tolerated according to all or most in silico predictors. A

Table 1. In silico Predictions for Genetic Variants Identified in Genes Causing Endocrine and
Metabolic Disorders

Clinical Significance

In silico Predictions, n (%)

Total, nDamaging Tolerated Noninformative

Disease-causing 5383 (87.8) 403 (6.6) 347 (5.7) 6133
Benign 439 (29.8) 823 (55.8) 212 (14.4) 1474
VUS 2011 (48.9) 1452 (35.1) 661 (16) 4124

Predictions were classified as “noninformative” in the presence of an equal number of “damaging” and “tolerated”
responses from different software for the same variant (e.g., variant X predicted to be “damaging” by SIFT andCondel
and “tolerated” by PolyPhen2 and MutationAssessor).

Table 2. Results for VUSs From In Silico Prediction Tools and From 3D Structural Analysis

Prediction
Total VUSs
Analyzed, n

VUSs Mapped Onto
3D Structure, n (%)

Effect on 3D Structure, n (%)

Damaging VUSs Tolerated VUSs

Damaging
By all predictors 1343 536 (39.9) 182 (34) 354 (66)
By most predictors 667 240 (36.0) 58 (24.1) 182 (75.8)
Total 2010 776 (38.6) 240 (30.9) 536 (69.1)

Noninformative
Equal number of “damaging”

and “tolerated” predictions
661 203 (30.7) 27 (13.3) 176 (85.7)

Tolerated
By all predictors 819 227 (27.7) 24 (10.6) 203 (89.4)
By most predictors 633 183 (28.9) 16 (8.7) 167 (91.3)
Total 1452 410 (28.2) 40 (9.7) 370 (90.3)
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damaging effect on protein structure stability was more likely to be observed in VUSs
predicted to be damaging rather than tolerated (240 vs 40; P, 0.001) (Table 2). Interestingly,
variants with a full, rather than partial, concordance on their damaging effect were also more
likely to cause structural damage (182 vs 58 variants; P , 0.01). However, this was not
observed for variants predicted to be tolerated (P = 0.43).

In 661 VUSs (16%), there were equal numbers of damaging and tolerated in silico pre-
dictions for each variant (noninformative predictions). 3D structural analysis could be
performed on 203 variants (30.7%), with a damaging effect on protein structure stability
observed in 27 (13.3%) VUSs.

Overall, there was agreement between 3D structural analysis and in silico predictions, and
our results demonstrated the added value of 3D structure analysis in identifying the VUSs
that are likely to be nontolerated and that may require validation by in vitro experiments or
by genetic confirmation on other affected family members.

3. Description of Cases

Manual in-depth analysis of VUSs that had several damaging structural features
suggesting a deleterious effect was performed (Supplemental Table S1).

A. Thyroid-Stimulating Hormone Receptor

Thyroid-stimulating hormone receptor (TSHR) is a G protein–coupled receptor that plays a
crucial role in thyroid hormone metabolism. Mutations in this gene have been identified in
several widely spread thyroid conditions, such as autonomous toxic thyroid adenomas,
Graves disease, and autoimmune hypothyroidism [28].

p.Gly132Arg (rs760874290) is reported in ClinVar under “conflicting interpretations
of pathogenicity” because it has been deposited by three different submitters as “benign,”
“likely pathogenic,” and of “uncertain significance.” A literature search showed that
p.Gly132Arg has been identified in compound heterozygosity with p.Arg450His in two pa-
tients with congenital hypothyroidism: a 14-year-old Japanese patient [pretreatment thyroid-
stimulating hormone (TSH) level, 18 mU/L (normal range, 0.5 to 5.0 mU/L); free T4, 1.6 ng/dL
(normal range, not available); mild thyroid hypoplasia] and a 16-year-old Korean girl (pre-
treatment TSH levels, 16.0mU/L; normal thyroid on ultrasonography; 99mTc uptake, 0%) [29].
p.Gly132Arg was also identified in single heterozygosity in an 11-year-old Korean girl [pre-
treatment TSH level, 41.5 mU/liter; normal thyroid on ultrasonography; reduced 99mTc up-
take at 1.7% (normal uptake, 2.5% to 7%)] [30]. In silico predictions for p.Gly132Arg were as
follows: SIFT score, tolerated;MutationAssessor score, neutral; Condel score, neutral; PolyPhen2
score, probably damaging.

Structural analysis was performed by using the crystal structure of the extracellular
domain of the human TSHR (PDB ID: 2XWT, 1.9 Å). Gly132 is located in the extracellular
leucine-rich repeat (LRR) domain of the TSHR. The large concave surface of the TSHR LRR
represents the site of interaction between TSHR and TSH, as well as TSHR and its au-
toantibodies [31]. Glycine 132 is located on the b strand of the fifth LRR repeat, between
residues Phe130 and Phe134, which interact with Lys91 and Tyr88, respectively, in the
TSH–TSHR model complex (and with Pro97 in the thyroid-stimulating autoantibody
M22–TSHR complex) [32]. Our structural analysis shows that replacement of the small and
neutral Gly132 with the large and charged side chain of arginine is likely to induce an
important conformational change, which could displace Phe130, thus altering the ability
of TSHR to bind TSH, as well as TSHR autoantibodies. An extensive literature search
revealed that the TSHR-Gly132Argmutant generated in vitro has normal expression levels.
Competitive TSH-binding studies showed absent binding activity and a cAMP response of
26% compared with wild-type; these findings support the results of our analysis, which
suggest that the Gly-to-Arg substitution results in functional TSHR impairment rather
protein misfolding [29].
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B. Apolipoprotein E

Liver-derived apolipoprotein E (APOE) is a main ligand for low-density lipoprotein (LDL)
receptor (LDLR) and has a crucial role in removing from circulation triglyceride-rich lipo-
proteins, which are a major risk factor for ischemic heart disease. APOE has also a major role
in brain lipid metabolism, and the APOE «4 isoform is a well-established risk factor for
Alzheimer’s disease [33].

p.Leu46Pro (rs769452) is reported in ClinVar under “uncertain significance.” This variant
was first reported in a 6-year-old girl with an LDL cholesterol level of 1.97 g/L, a high-density
lipoprotein cholesterol level of 0.70 g/L, a triglyceride level of 0.85 g/L, and a strong history of
familial hypercholesterolemia (the lipid profile of the patient’s affected mother, who was a
carrier of this mutation, is not available) [34]. Of note, this variant has also been associated
with an increased risk for late-onset Alzheimer disease [35]. In silico predictions are as follows:
SIFT, tolerated; MutationAssessor, medium effect; PolyPhen2, possibly damaging; Condel,
damaging. Structural analysis was performed using the NMR solution structure of the human
APOE receptor–binding domain (PDB ID: 2KC3, 1.9 Å). Leu46 is located in an a helix, and
substitution to proline is likely to induce a bend in the helix, which can greatly destabilize the
APOE structure and lead to protein misfolding. A literature search revealed that the effect of
this variant on the structure of APOE isoform 4 (APOE «4, Leu28Pro) was studied in vitro. The
mutant protein was thermodynamically unstable and resulted in early degradation [36].

C. Calcium-Sensing Receptor

Calcium-sensing receptor (CASR) is a family C G protein–coupled receptor expressed on the
cell surface of tissues involved in calcium homeostasis. It senses perturbations in extra-
cellular calcium levels and modulates parathyroid hormone secretion and renal Ca2+ ex-
cretion accordingly [37]. CASR-inactivating mutations result in familial hypocalciuric
hypercalcemia when in heterozygosity, and severe neonatal hyperparathyroidism when in
homozygosity [38, 39].

p.Gly36Arg (rs193922420) is reported in ClinVar under “conflicting interpretation of
pathogenicity.” The condition associated with this variant was familial hypocalciuric hy-
percalcemia, although no clinical data were available. This variant is predicted to be
damaging by all in silico predictors. Our structural analysis (PDB ID: 5FBK, 2.1 Å) showed
that Gly36 is part of a b strand in the extracellular domain (ECD) domain, close to a CA2+

binding site. Substitution of glycine to the large, charged arginine is predicted to cause a
steric clash and disrupt CASR’s protein structure.

p.Gly143Arg (rs769256610) was identified in heterozygosity in a 65-year-old woman with
familial hypocalciuric hypercalcemia. Her laboratory data were as follows: total calcium,
10.7 mg/dL (normal range, 8.5 to 10.5 mg/dL); ionized calcium, 5.68 mg/dL (normal range,
4.48 to 5.28 mg/dL); phosphate, 3.0 mg/dL (normal range, 2.2 to 4.1 mg/dL); parathyroid
hormone, 40 ng/L (normal range, 10 to 65 ng/L); 25-hydroxyvitamin D, 38 ng/mL (normal
range, 9.0 to 52.0 ng/mL); 24-hour urine calcium, 40mg (normal range, 50 to 250mg). Spine T
score was 22.3 SD, indicating low bone mineral density. Her brother also had mild hy-
percalcemia (values not reported). His CASR genotype was not reported. This variant is
reported in ClinVar under “uncertain significance” and is predicted to be damaging by all in
silico predictors. Structural analysis was performed by using the experimental crystal
structure of the extracellular homodimer domain of CASR (PDB ID: 5K5T, 3.1 Å). Gly143 is in
the short loop connecting a b sheet with an a helix of the LB1 domain of CASR. Moreover,
Gly143 is close to one of the four Ca2+ binding sites. Substitution of the glycine with arginine
is likely to cause a steric clash, thus destabilizing the CASR structure (Fig. 1). Interestingly,
substitution of Gly143 with glutamic acid has been demonstrated to lead to a reduction in the
amount of mature glycosylated CASR, with little or no response to Ca2+ [40]. We postulate
that substitution of Gly143 with arginine will have a similar effect on CASR structure
and function.
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p.Cys568Gly (rs1060502851) is reported in ClinVar under “uncertain significance.” The
conditions associated with this variant are familial hypocalciuric hypercalcemia and
autosomal-dominant hypocalcemia. No clinical data on the clinical phenotype were available.
In silico predictions for this variant are as follows: PolyPhen2, benign; SIFT, damaging;
Condel, damaging; MutationAssessor, not available. Structural analysis was performed by
using the crystal structure of the human CASR extracellular domain (PDB ID: 5K5T, 3.1 Å)
and showed that Cys568 forms a disulfide bridge with Cys582. Substitution of Cys568 with
any other amino acid disrupts this crucial structural element, thus causing structural
damage to CASR (Fig. 1). No in vitro functional studies are available on the effect of this
variant. However, other amino acid substitutions of Cys582 (p.Cys582Tyr and p.Cys582Phe),
which are likely to disrupt the same disulfide bridge, have been shown to cause famil-
ial hypocalciuric hypercalcemia, neonatal severe hyperparathyroidism, and autosomal-
dominant hypocalcemia.

D. Low-Density Lipoprotein Receptor

The LDLR is an important contributor to the removal of LDL cholesterol from the circulation.
Deleterious genetic variants in this gene are responsible for familial hypercholesterolemia
(FH). Heterozygous FH, which has a prevalence of approximately 1:200 in some European
populations, is an important risk factor for premature cardiovascular disease [41]. More than
1000 genetic variations have been detected in this gene so far. There is great interest in
understanding which LDLR variants affect LDLR because this can aid in the identification of
individuals at increased risk for premature cardiovascular disease.

p.Cys284Ser (rs879254693) is reported under “uncertain significance” in ClinVar. It was
described in patients from the Norway FH cohort [42] and is predicted to be damaging by
SIFT and Condel and tolerated by PolyPhen2. Structural analysis was performed by using
the crystal structure of the human LDLR/proprotein convertase subtilisin/kexin type 9
complex (PDB ID: 3P5C, 4.2 Å). Cys284 forms a cysteine bond with Cys302. Substitution with
serine disrupts this bond because it is likely to cause structural damage to the LDLR protein
structure (Fig. 1).

p.Cys329Tyr (rs761954844) is located in the epidermal growth factor–like 1 domain of
LDLR. It is classified as of “conflicting interpretation of pathogenicity” in ClinVar because it
has been annotated as “likely benign” as well as “likely pathogenic” and “pathogenic.” This
variant was first reported in two unrelated Chinese patients with a lipid profile and family
history suggesting FH. Moreover, it was shown to cosegregate with the FH phenotype in
affected relatives of both patients [43]. This variant has since been reported in several
patients with possible heterozygous FH from different ethnic background [44–46]. In silico
predictions suggest a deleterious effect of this variant (PolyPhen2, Condel, and SIFT; no
prediction available fromMutationAssessor). Structural analysis was performed by using the

Figure 1. Structural analysis of VUSs occurring in LDLR and CASR. (Left) p.Cys284Ser
abolishes a cysteine bond in the LDLR protein. (Middle) p.Gly143Arg may disrupt Ca+

(presented as a sphere) binding site in CASR protein. (Right) p.Cys568Gly is likely to disrupt
a disulfide bridge in the CASR protein.
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crystal structure of the extracellular domain of the LDLR (PDB ID: 1N7D, 3.7 Å). Cys329
forms a cysteine bond with Cys318, thus helping to stabilize the LDLR structure. Sub-
stitution with tyrosine disrupts such a bridge, thus causing structural instability. Indeed,
previous in vitro studies have shown a marked reduction in the mutant LDLR expression on
the cell surface and its ability to bind and internalize LDL [47].

p.Ser499Pro (rs879254921) is reported under “conflicting interpretation of pathogenicity”
in ClinVar because it was reported as “likely benign,” as well as “likely pathogenic.” Ser499
occurs in the ligand-binding region (epidermal growth factor precursor homology domains) of
LDLR. In silico predictions are as follows: PolyPhen2, benign; MutationAssessor, medium
effect; SIFT, damaging; Condel, damaging. Structural analysis was performed by using the
crystal structure of the human LDLR (PDB ID: 1IJQ, 1.5 Å) and revealed that Ser499 is
located within an a helix. Its substitution with proline is likely to cause a bend in the a helix,
thus causing major disruption to the LDLR structure.

p.Cys698Trp (rs879255137) is reported in ClinVar under “conflicting interpretation of
pathogenicity” because it has been reported as both “likely pathogenic“ and of “uncertain sig-
nificance” in patientswith FH (no clinical data available). In silico predictors suggest a damaging
effect. Structural analysis was performed by using the crystal structure of the human LDLR
(PDB ID: 1IJQ, 1.5 Å) and revealed thatCys698 forms a disulfide bondwithCys711. Substitution
of Cys698 with any other residue disrupts this structurally important bond.

4. Discussion

In this study, we quantified the burden of VUSs in genes causing endocrine and metabolic
disorders and showed that they represent a third of known variants in these genes. Per-
sonalized medicine relies on the ability to identify actionable genetic variants (i.e., variants
that influence a patient’s response to treatment or prognosis) [48]. For example, patients with
heterozygous FH have a higher cardiovascular risk than the general population, and such a
genetic diagnosis dictates a more aggressive treatment of hypercholesterolemia compared
with patients with simple dyslipidemia [49].

The first step toward the goal of implementing actionable genetic variations into clinical
practice is the identification of variations, which affect phenotype. Missense variants (i.e.,
those leading to an amino acid change) are compelling candidates because they can directly
modify protein structure and/or function. A large proportion of human genetic variations
are missense variants, and identification of those of clinical significance remains a major
challenge in modern genetics. Several variant effect predictors trained on large datasets of
neutral and damaging variations occurring across the whole proteome have been developed
over the years. However, their specificity remains low [50,51]. In our dataset, 88% of known
damaging variants and almost half of known benign variants were predicted to be damaging
by some of the most widely used in silico predictions tools.

Other authors have reported a high sensitivity but low specificity for in silico tools used to
assess the effect of variants in disease-causing genes involved in the pathogenesis of epileptic
encephalopathies [27]. Recently, in vitro testing of variants identified in the cancer geneTP53
and predicted to be damaging by in silico tools revealed that only half of the variants affected
TP53 activity [6]. Overprediction of potentially damaging variants generates a high number
of genetic variations that require further in vitro testing, an expensive and time-consuming
process. Therefore, approaches to filtering genetic variants are urgently needed.

In this study, we used 3D structural analysis to assess the impact of VUSs on protein
function and structure stability. We first assessed the utility of this method on an in-
dependent dataset of proteins and demonstrated that it accurately identifies enrichment of
damaging structural effects among known deleterious variants, compared with benign
variants. We then applied this approach to filter VUSs. Although structural analysis was
possible for only one third of VUSs in our dataset, there was concordance between in silico
predictions and structural analysis. Furthermore, we were able to identify a subset of
predicted damaging VUSs, which are potentially disease-causing. The relatively low number
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of VUSs that could be structurally analyzed reflects the still limited number of proteins for
which a good-quality experimental 3D structure is available.

A major international effort is ongoing to solve the experimental structure of clinically
important proteins, as demonstrated by the steadily growing availability of structures in
PDB, from 23,000 in 2003 to the current.133,000. Although an experimental 3D structure is
available only for less than a third (6064) of human proteins (and in most cases, it covers only
part of the protein), the structural coverage of the human proteome can be greatly enhanced
by using homology modeling. Although the use of homology modeling to understand the
impact of variants on protein structure is successfully used [52,53], it requires in-depth
manual curation and cannot be performed by an automated process. For this reason, in this
study, we chose to perform a structural analysis only in cases for which a 3D structure was
available, thus limiting the number of VUSs that could be analyzed.

Our case studies demonstrate the value of structural analysis in helping us understand the
molecular mechanisms by which a variant can affect phenotype and cause disease, for ex-
ample, by disrupting structurally important bonds and destabilizing protein structure. Such
information cannot be obtained by prediction tools, such as PolyPhen2, SIFT, or CADD,
which return only a binary response: damaging or tolerated. Understanding how a genetic
variant affects phenotype is essential in guiding in vitro experiments [54], especially in the
presence of VUSs.

Our case studies also highlight the importance of building gene and disease-specific da-
tabases, with curated detailed information on genetic variants. Many of our case studies were
variants, which have been deposited in ClinVar or other publicly repositories as both benign
and pathogenic. Through extensive literature search, we were able to obtain additional
information on these variants and, in some cases, retrieved experimental data that validated
our structural predictions. This is an enormously time-consuming process that requires
manual curation. Curated databases that allow automatic retrieval of variant and patient
information will become invaluable when initiatives, such as the 100,000 Genome Project,
release a vast amount of novel genetic data that require interpretation.

A limitation of this study is that we chose to perform structural analysis only on VUSs and
not on the entire set of benign and damaging variants in genes causing endocrine and
metabolic disorders. Instead, we chose to test our structural approach on a dataset of benign
and damaging variants in a different dataset of proteins (not linked to endocrine or metabolic
disorders), to avoid potential bias. Another limitation is that we performed structural
analysis on monomeric proteins and did not assess the impact of amino acid substitutions on
protein-protein interactions. Protein interaction sites are a hot spot for damaging variants
[55]. Identification of VUSs that affect protein interaction and potentially disrupt biological
pathways is part of future work, as it can also assist in guiding in vitro studies [54]. Our
ability to understand which biological pathway is affected by a variant is important, espe-
cially because several proteins causing endocrine and metabolic disorders are pleiotropic and
can thus cause different disorders according to where in the protein they occur [56].

In conclusion, VUSs are an important burden in our understanding of the genetic basis of
endocrine and metabolic disorders and in the identification of actionable variants. Although
the use of multiple in silico variant predictors may be helpful in prioritizing potentially
damaging variants for further in vitro testing, in-depth understanding of the molecular
mechanisms of the disease under investigation and the structure, function, and biological
network of the proteins involved in its pathogenesis remains crucial. Protein structural
analysis is a compelling tool for prioritizing genetic variants and should be used more ex-
tensively, especially for assessing VUSs.
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