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ABSTRACT: DNA sequencing has become a powerful
method to discover the genetic basis of disease. Standard,
widely used protocols for analysis usually begin by compar-
ing each individual to the human reference genome. When
applied to a set of related individuals, this approach reveals
millions of differences, most of which are shared among
the individuals and unrelated to the disease being inves-
tigated. We have developed a novel algorithm for vari-
ant detection, one that compares DNA sequences directly
to one another, without aligning them to the reference
genome. When used to find de novo mutations in exome
sequences from family trios, or to compare normal and dis-
eased samples from the same individual, the new method,
direct alignment for mutation discovery (DIAMUND),
produces a dramatically smaller list of candidate muta-
tions than previous methods, without losing sensitivity to
detect the true cause of a genetic disease. We demonstrate
our results on several example cases, including two family
trios in which it correctly found the disease-causing vari-
ant while excluding thousands of harmless variants that
standard methods had identified.
Hum Mutat 35:283–288, 2014. Published 2013 Wiley Periodi-
cals, Inc.∗
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Introduction
The use of genome sequencing to discover mutations responsi-

ble for disease, including both inherited diseases and cancer, has
exploded in recent years. Both whole-genome and whole-exome
sequencing have been employed in thousands of individuals in an
effort to detect genetic changes that might be responsible for disease
phenotypes. Many successes have followed the 2009 reports that
used exome sequencing to identify mutations for Miller Syndrome
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[Ng et al., 2010] (which was found after sequencing the exomes
of just four individuals), Bartter syndrome [Choi et al., 2009], and
Freeman–Sheldon syndrome [Ng et al., 2009].

The high-quality, nearly complete human reference genome [The
International Human Genome Sequencing Consortium, 2001], cur-
rently GRC37/hg19, serves a critical role in all of these studies. Stan-
dard protocols for analysis begin by aligning all the sequences from
proband and family members to GRC37 and then using compu-
tational methods to identify high-confidence differences, includ-
ing single-nucleotide polymorphisms (SNPs), small insertions and
deletions (indels), and copy-number variants. However, because of
natural variation in the human population, comparing a random
individual to GRC37 yields on the order of 50,000–100,000 vari-
ants within the exome alone. (Exome sequencing typically captures
50–60 million base pairs, about 2% of the genome.) Sequencing of
the entire genome yields millions of variants; for example, Roach
et al. (2010) found 4.5 million SNPs when they compared a family
quartet to the reference genome. Finding the variant that causes
a Mendelian disease, which is often a single mutation among this
huge set of candidates, becomes analogous to looking for a needle in
a haystack. Recent work has focused on the development of statis-
tical models to reduce these large sets of candidate mutations (e.g.,
Strelka [Saunders et al., 2012] and FamSeq [Peng et al., 2013]), but
the essential problem remains: any method that begins by alignment
to the reference genome will initially identify a very large number
of naturally occurring sequence variants.

Exome analysis algorithms employ a series of filters to narrow
down the set of 50,000 or more variants to a manageable set, which
can then be evaluated individually and validated with follow-up ex-
periments. These filters are ad hoc criteria that sometimes filter out
the true variant of interest. For example, computational methods
sometimes filter out all variants that have been observed in large
SNP databases such as dbSNP, or alternatively variants observed at a
frequency >1% in a large project such as the 1000 Genomes Project.
This can be highly effective as a filter, removing thousands of harm-
less SNPs that represent common population variants. However,
this step implicitly assumes that none of the SNPs in these databases
are disease-causing. This assumption may be false, even when SNPs
are collected only from healthy individuals, due to incomplete pen-
etrance, unrecognized disease in the subjects, and other factors.

Analysis pipelines usually eliminate noncoding variants as well,
which removes large numbers of variants but at the same time dis-
cards mutations in splice sites and regulatory sites that might be
functionally significant. Although these and other filters might un-
intentionally eliminate the true cause of disease, without them the
number of candidate mutations found in an exome sequence may
be overwhelming. The problem is even worse for whole-genome
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Figure 1. Outline of initial steps in the Diamund algorithm, which identifies all k-mers unique to an affected proband and missing from both
unaffected parents. The first step identifies k-mers, after which the proband data are filtered to remove k-mers resulting from sequencing errors.
Intersecting all three sets identifies k-mers that are unique to the proband.

sequencing, where the number of true but clinically irrelevant vari-
ants will be 50 times greater.

Here, we introduce a new method, DIAMUND (direct alignment
for mutation discovery), which takes a different approach to exome
and whole-genome analysis, and as a result produces dramatically
smaller sets of candidate mutations. Rather than aligning all samples
to the reference genome, we align the sequences directly to one
another. This method is designed primarily for two types of analyses:
(1) self-comparisons, where diseased tissue is compared with normal
tissue from the same individual, and (2) family studies, where the
differences among the DNA sequences from the subjects are far
fewer than the differences between any subject and the reference
genome.

Our method does not require that the raw sequencing reads, usu-
ally numbering 100 million or more for a whole exome, be aligned to
the GRC37 reference genome, nor does it require a complex genome
assembly or an all-versus-all alignment of these large data sets. As
we explain in detail below, we use a more efficient algorithm that
allows us to quickly find sequences that are unique to any sample.

We have implemented and tested DIAMUND on exomes repre-
senting two types of analysis problem. First, we considered self-
comparisons, in which DNA from primary cultured fibroblasts de-
rived from diseased tissue in an affected individual was compared
with DNA from nondiseased primary cultured fibroblasts from the
same individual. For the analysis of tumor cells or other somatic
mosaic genetic abnormalities, this direct comparison should yield
a smaller set of variants than an analysis that first compares all se-
quences to the reference genome. Second, we looked at three parent–
child trios in which a de novo mutation in the child was suspected
to be causing disease. The standard algorithm would compare all
three individuals to the reference genome, generating very large lists
of variants, many of which are shared by the child and a parent. By
comparing the child’s DNA directly to both parents, we can quickly
identify all de novo mutations, without losing sensitivity and with-
out detecting family-specific variants that add noise to the process.
For each of these problems, the number of true de novo mutations
is very small, obviating the need for the aggressive filters that exome
and whole-genome pipelines use, which might eliminate the true
variant of interest.

De novo mutations may account for a high proportion of
Mendelian disorders. Yang et al. recently reported [Yang et al., 2013]
on exome sequencing of 250 probands and their families, among
which they identified 33 patients with autosomal dominant and nine

with X-linked diseases. Of these, 83% of the autosomal dominant
and 40% of the X-linked mutations occurred de novo.

In addition to generating fewer false positives, direct comparison
between samples within a family, or between affected and unaf-
fected tissue, allows for detection of mutations in regions that are
entirely missing from the reference genome. It has already been
shown that some human populations have large shared genomic
regions, often spanning many megabases [Li et al., 2010], which are
missing entirely from the human reference genome. These include
novel segmental duplications [Schuster et al., 2010] as well as en-
tirely novel sequences. If a mutation of interest happens to fall in
one of these regions, then conventional methods will be guaran-
teed to miss it. Our direct comparison algorithm, in contrast, in-
cludes these regions and is quite capable of finding mutations within
them.

An important caveat is that DIAMUND is not intended to solve
the more general problem of variant detection in any sample. It is
designed to take advantage of very closely related samples where
direct between-sample comparisons can more effectively identify
mutations present in just one or a subset of the samples.

Methods
DIAMUND begins with two or more sets of DNA sequences, or

“reads,” generated by a sequencing instrument. Here, we describe
the algorithm as applied to three trios consisting of an affected in-
dividual (or proband) and two unaffected parents. Specializing the
algorithm to two samples, where one is normal and the other is dis-
eased (e.g., cancerous) tissue from the same individual, is straight-
forward.

One way of directly comparing two or more genomes is to assem-
ble each data set de novo, using any of several next-generation se-
quence assemblers [Schatz et al., 2010], and then compare the assem-
blies using a whole-genome alignment algorithm such as MUMmer
[Delcher et al., 1999; Kurtz et al., 2004]. However, whole-genome
assembly is computationally costly and can produce erroneous as-
semblies, which in turn might create even larger problems than
aligning all reads to the reference genome. Instead, DIAMUND uses a
direct approach in which we count all sequences of length k in all the
reads, for some fixed value of k, and then compare these k-mers to
one another. Here, we outline the 10 major steps of the algorithm;
the initial steps are illustrated in Figure 1.
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Table 1. Illustration of the Data Reduction at Each Step from Raw Reads to a Final Set of Mutated Loci

Data remaining at the end of step

Filtering step Disease/normal pair Family trio BH1019 Family trio BH2041 Family trio BH2688

Number of reads from proband/diseased tissue 118,414,556 84,201,820 75,877,750 103,527,644
Number of 27-mers in proband/diseased tissue 911,738,627 795,477,167 517,272,851 1,088,610,020
Number of k-mers with count >10 77,903,885 61,805,320 64,719,150 113,066,951
Remove vector sequence 77,898,848 61,800,798 64,713,995 113,062,417
Eliminate k-mers found in reference GRC37 exome 17,821,359 9,385,347 10,730,208 50,535,681
Eliminate k-mers found in parent exomes/normal tissue 10,568 65,352 20,130 2,006
Identify reads containing k-mers 32,829 reads 148,496 46,454 4,404
Remove reads containing vector 15,260 125,648 38,799 2,760
Number of contigs after assembly 2,147 13,189 3,755 359
Number of contigs with >3 reads after merging contigs 279 contigs 1,437 701 71
Identify variants covered by reads from normal tissue 55 contigs 5 6 2
Keep variants with >5% coverage 42 variants 5 6 2
Find variants in coding regions 14 variants 3 3 1
Remove synonymous SNPs 10 variants 2 3 1

Step 1: We utilize an efficient parallel algorithm, Jellyfish [Marcais
and Kingsford, 2011], for the k-mer counting step. This first
step converts the reads for each exome (or genome) to a set of
k-mers, which should in theory be a much smaller data set: the
number of k-mers in an exome is equivalent to the length of the
exome, 50–60 Mbp using current exome capture kits. However,
the initial set is dramatically larger, due primarily to sequencing
errors, which we address below. We sort each set of k-mers to allow
for efficient intersection operations in subsequent steps. Sorting
N k-mers requires O(N log N) time, after which computing the
intersection with another set of k-mers requires only O(N) time.

Step 2: The second step in the DIAMUND algorithm removes all
k-mers from the proband (but not from the unaffected samples)
that are likely to represent sequencing errors. Note that every
sequencing error introduces k new k-mers. If k is sufficiently large,
then virtually all of these k-mers will be unique, i.e., they will not
occur in the genome or elsewhere in the reads. Combined with the
fact that exome coverage is usually very deep, we can safely assume
that any k-mer that occurs just once represents an error.

After empirical observations of multiple exomes, we observed
that even k-mers occurring more than once are usually errors. Due
to biases in sequencing technology, exome data sets may contain
erroneous k-mers that occur 10 or more times, particularly for
regions that contain very deep coverage (which can exceed 1000-
fold for some exonic targets). For the exomes we have analyzed,
average coverage is approximately 80–100×, which means that a
novel, heterozygous mutation should have 40–50× coverage. Even
in regions with lower coverage, novel mutations should have 20 or
more reads (and k-mers) covering them. Note that in the case of
mosaicism, a much lower proportion than 50% of the reads might
contain the mutation; the software can be adjusted to report such
cases.

Given these observations, at this stage, we discard all k-mers that
occur fewer than 10 times. We tested different values before choosing
10 as the default value, and this can easily be adjusted for data sets
with lower or higher coverage. In our tests, a minimum value of 10
excluded an extremely small number of true k-mers.

Step 3: After removing likely sequencing errors, some
k-mers may remain due to vector contamination. We pre-
compute all k-mers in known vectors, taken from the UniVec
database (www.ncbi.nlm.nih.gov/tools/vecscreen/univec), and re-
move these from the exome representing the proband (or

the diseased tissue, in the case of normal vs. diseased tissue
comparisons).

We also observe that any k-mer that occurs in the reference
genome is probably not the cause of disease. We precompute all
k-mers from the targeted regions of the GRC37 genome, and re-
move these “normal” k-mers from the proband’s data. Note that
this set can easily be expanded to include a larger set of variants
known to be harmless.

Step 4: After computing all k-mers in the reads from the proband
and both parents, the third step computes the intersection between
proband and mother, and separately between proband and father
(Fig. 1). We collect all k-mers unique to the proband but missing
from the mother, and repeat this step for the father. We then
intersect the two resulting files to give us a single file that contains
all k-mers found in the proband but missing from both unaffected
parents. These form our initial set that should contain any de novo
mutations in the affected individual.

Step 5: At this point, DIAMUND usually has reduced the initial set
of k-mers over 10,000-fold, leaving between 2,000 and 65,000
k-mers (Table 1). For the fifth step, we collect the reads containing
these k-mers. This requires us to align the k-mers back to the
original reads, because the Jellyfish k-mer counter does not keep
track of the source of each k-mer. DIAMUND can use either of two
efficient alignment systems for this step: MUMmer [Delcher et al.,
1999; Kurtz et al., 2004], a suffix tree-based algorithm that rapidly
finds exact matches; or Kraken [Wood and Salzberg, 2013], a fast
sequence classifier that we modified to provide the output needed
by our system. Kraken is the default choice because it is significantly
faster. In our experiments, the number of reads identified in this
step ranged from 4,400 to 148,000 (Table 1).

Step 6: Despite every effort to screen reads for contamina-
tion, some small fragments of vector sequences often still re-
main in the reads. If these vectors happen to contaminate
only the proband (or affected) data set, they will appear to
be novel mutations. We eliminate these by comparing the
reads identified in the previous step to the UniVec database
(www.ncbi.nlm.nih.gov/tools/vecscreen/univec) using the vec-
screen program, and removing any reads with vector sequence.
Note that running vecscreen on the original data would be ex-
tremely demanding computationally, but because the number of
reads at this step has been reduced approximately 1,000-fold, it is
relatively fast.
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Step 7: At this point, the read data are small enough to assemble
into small contigs (contiguous sequences), which should contain
the mutations of interest. DIAMUND uses the Minimo assembler
[Treangen et al., 2011] to assemble the reads in this step. This
step typically produces from a few hundred to several thousand
contigs. All the contigs are very short because, by construction,
every read used for a given contig must contain the mutation.
Thus, for 100-bp reads, the contigs can be no longer than 199 bp.

Step 8: Due to slight differences between reads caused by sequenc-
ing errors, the assembly step often produces contigs that overlap
one another but which were not merged together. To address this
redundancy, we next align all the contigs as well as any unassem-
bled reads to the reference genome using Bowtie2 [Langmead and
Salzberg, 2012]. If multiple contigs or reads map to the same lo-
cation, we collapse them into a single contig. We then retain all
contigs containing at least four reads. Note that this is the first step
in the DIAMUND algorithm that uses the reference genome, and
that we do not use the reference to identify mutations, but only to
aid in merging the contigs.

Step 9: Another reason that a sequence may appear to contain a de
novo mutation is that the exome sequencing failed to capture a
region in one of the parents, even though the region was targeted.
For example, if a child has a heterozygous site but only one parent’s
DNA was captured by the exome sequencing protocol, that site
will appear to contain a sequence not found in either parent. To
eliminate these false positives, we next align the reads from both
parents to the contigs assembled in the previous step.

For this step, we use Bowtie2 to align all reads from each parent
to the contigs. For each contig that was mapped to the reference
genome, we extend it by the length of a read (e.g., 100 bp) on
either end, so that we can capture reads that align only partially
to the contig. If the contig does not map to the genome (i.e., it
represents a novel insertion), we use it but do not extend it. After
aligning reads from the parents to these contigs, we align them to the
reference genome to determine whether they have a better alignment
to another location. In those cases, we discard the reads.

We then scan the alignments to determine whether the putative de
novo mutations within the contigs are covered by reads from both
parents. Contigs that are not covered are removed from further
consideration. Any contigs that fail to map to the reference genome
are reported separately; these represent mutations in regions not
found in the reference, and require manual analysis.

Step 10: Finally, using the alignments to the reference genome, we
compute precisely where the de novo mutations occur. We call
variants using the mpileup function in the Samtools package [Li
et al., 2009]. We then analyze these locations to determine whether
they fall in protein coding regions and whether they cause amino
acid changes.

Results
To demonstrate DIAMUND in practice, we describe its step-by-step

results on several sets of exomes from anonymous subjects (Table 1),
all sequenced as part of a large-scale study at the Baylor–Hopkins
Center for Mendelian Genomics, part of an international research
effort (e.g., Hanchard et al. [2013]) to determine the genetic causes
of Mendelian disorders. In one experiment, exome sequences were
generated from cultured dermal fibroblasts derived from normal
tissue and from diseased tissue from the same individual. In three
other experiments, exomes were sequenced from trios comprising
an affected proband and two unaffected parents, and the exomes

were compared to identify de novo mutations found only in the
proband.

Table 1 shows how each major step of the algorithm reduces
the initial set of reads to a smaller set of reads, k-mers, or contigs
containing candidate mutations. Beginning with the reads, we com-
puted all k-mers of length 27 (a value that can easily be changed) in
the proband and both parents (for the trios) or in the diseased and
normal patient-derived fibroblasts.

In every case, as shown in Table 1, the number of unique
k-mers is initially enormous, over 1 billion for some exome samples.
Because the exome regions targeted in these experiments contain
only 65 million k-mers, most of these k-mers must be the result of
sequencing errors. The first major filter reduces this number by a
factor of more than 10, leaving 62–113 million k-mers. Removing
k-mers found in the exome of the reference genome reduces this set
even more, leaving 9–51 million k-mers.

The most dramatic reduction comes when we remove all k-mers
that are found in either of the parental exomes (for normal vs. dis-
eased samples, we remove k-mers found in the normal tissue). This
removes all variants common to the family, including many that
would initially show up as SNPs in an alignment to the reference
genome. In the four experiments shown in Table 1, the number of
k-mers left after this step ranged from 2,006 to 65,352. These repre-
sent a reduction in the number of candidates by a factor ranging from
140-fold to 25,000-fold. In all cases, the number is small enough to
quickly assemble the reads containing those k-mers into a set of
small contigs.

Assembly of the reads generated between 359 and 13,189 contigs.
After merging contigs further and eliminating those supported by
only two to three reads, these sets were reduced to 71–1,437 contigs.

At this stage, many of the variants may still be artifacts caused by
lack of coverage in one of the parental exomes (see Step 7 above).
DIAMUND only retains contigs if the candidate mutations within
them are covered by both parents (or in the case of normal versus
disease pairs, covered by the normal exome). This step uniformly
reduced the list of variants to a set that was small enough to review
manually, ranging from two to 10 variants for the family trios, and
55 for the disease-normal exome pair.

At the very end of the pipeline, we align the contigs to the refer-
ence genome to identify variants that occur within protein coding
regions, and to determine which cause changes in the amino acid
sequence. For the family trios, this step left us only one to two
variants in each case. The disease-normal pair yielded 10 variants
with nonsynonymous changes. Note that contigs that fail to align
to the reference are still reported by the algorithm, and the variants
within them can be explored for variants of functional significance.
By definition, though, these contigs will not have close similarity
to known protein coding regions and they will have to be analyzed
using ad hoc methods.

The exomes shown in Table 1 were also analyzed using the variant
detection system GATK, including its base quality score recalibra-
tion, indel realignment, and variant discovery methods [DePristo
et al., 2011]. The numbers of variants reported by GATK are com-
pared with DIAMUND in Table 2. (Note that GATK is a general pur-
pose variant detection method with many capabilities beyond family
trio analysis, and that DIAMUND does not replace these other capa-
bilities.) For this comparison, we used DIAMUND’s results prior to
the final steps in which it looks at coding versus noncoding variants,
which corresponds more closely to the output of GATK.

The initial comparison of a proband’s exome to the reference
genome produced between 60,000 and 85,000 variants for these
samples. After filtering to remove variants found in either parent
(or the healthy tissue), these sets were reduced substantially, leaving

286 HUMAN MUTATION, Vol. 35, No. 3, 283–288, 2014



Table 2. Comparison of the Number of De Novo Mutations Found
by DIAMUND and GATK when Comparing Exomes from Family Trios
and Exomes from Diseased and Normal Cultured Fibroblasts from
the Same Individual

Method
Disease/

normal pair
Family

BH1019
Family

BH2041
Family

BH2688

DIAMUND 42 5 6 2
GATK: variants found in affected

individual (or diseased tissue)
62,962 60,173 67,034 85,226

GATK: variants in affected
individual/diseased tissue but
not in unaffected

1,644 7,726 5,621 953

between 953 and 7,726 variants identified as unique to the affected
individual. By comparison, Diamund found two to 42 variants.
Using the Atlas-SNP variant detection algorithm [Shen et al., 2010],
a recent exome sequencing study of 250 probands [Yang et al., 2013]
reported finding approximately 400 to 700 variants per sample.
This illustrates that even with exomes from both parents available,
an alignment protocol that first aligns reads to the reference genome
yields a far larger set of candidate mutations than DIAMUND’s direct
alignment algorithm.

Computational Speed
DIAMUND has been designed to use the most efficient algorithms

available for each step in its algorithm. These include Jellyfish
[Marcais and Kingsford, 2011] for k-mer counting, Bowtie2
[Langmead and Salzberg, 2012] for alignment, and Kraken [Wood
and Salzberg, 2013] for mapping k-mers back to reads. For the three
family trios analyzed here, running the entire pipeline takes 5–7.5 hr
per trio using eight threads for those steps that permit parallel exe-
cution. (Software was run on a 48-core Dell PowerEdge R815 with
2.1 GHz AMD Opteron processors and 256 GB of RAM.) By com-
parison, on the same hardware, GATK takes approximately 24 hr
for each exome, using a similar number of parallel threads, plus
approximately 2–3 hr more, depending on the number of reads, to
align the raw reads to the genome. Thus, the total time required
by DIAMUND is far less than GATK, and is approximately the same
as that required solely by the initial alignment step: aligning three
exomes to the GRC37 reference genome takes approximately 6 hr,
using the fastest available software and 10 parallel threads.

Discussion
Because DIAMUND reports very few candidate mutations, all of

them can realistically be investigated as possible disease-causing
mutations. These include noncoding variants, some of which might
affect splicing or transcription, but which are usually ignored in an
effort to pare down the list of candidates. It also allows investigators
to focus their validation efforts on a small set of likely candidate
mutations, in contrast to methods that yield many more candidates.

For example, in family trio BH1019 (Table 1), DIAMUND found just
five de novo mutations in the proband, two of which were nonsyn-
onymous. One of these caused an amino acid change, and the other
introduced a premature stop codon (c.716C>G [p.Ser239Ter]) in
the NFIX gene (MIM #164005, NM 002501.2). Notably, NFIX hap-
loinsufficiency has been shown to cause Sotos syndrome 2 [Malan
et al., 2010; Yoneda et al., 2012]. The NFIX gene had not been in-
terrogated prior to this study, although the proband had previously
had negative NSD1 (MIM #606681) sequencing to rule out Sotos

syndrome 1 [Tatton-Brown et al., 2005]. Based on this analysis, So-
tos syndrome-2 (MIM #614753) is the most likely diagnosis for this
individual.

In family trio BH2041 (Tabel 1), DIAMUND found six de novo
mutations, three nonsynonymous. The proband had a phenotype
similar to Say–Barber–Biesecker–Young–Simpson syndrome (MIM
#603736), which is sometimes associated with mutations in KAT6B
(MIM #605880, NM 01166419.1), but no mutations in that gene
were identified. Nevertheless, one of the three de novo nonsynony-
mous mutations (c.356C>T [p.Thr119Met]) identified by DIAMUND

was in HDAC8 (MIM #300269), one of the genes known to cause
Cornelia de Lange syndrome 5 (MIM #300882). Reevaluation of the
proband’s phenotype suggested that Cornelia de Lange syndrome is
the most likely diagnosis for this individual.

In family trio BH2688, DIAMUND identified one de novo
mutation (c.1192C>T [p.His398Tyr]) in TMTC4 (NM 032813.2)
in the proband, who carries a possible diagnosis of congenital
sulprabulbar paresis (MIM #185480). Although TMTC4 has not
previously been associated with any genetic disorder, we are now
evaluating it as the possible cause of this condition. The three vari-
ants described here have been submitted to the Clinvar database,
http://www.ncbi.nih.gov/clinvar.

Finally, we applied the analysis to DNA isolated from primary cul-
tured dermal fibroblasts derived from diseased versus normal tissue
from the same individual affected with a novel connective tissue dis-
order, which is presumed to involve somatic mosaicism. DIAMUND

identified just 42 variants present exclusively in the affected tissue,
compared with 1,644 variants previously identified using a more tra-
ditional analysis of the affected cells compared with the normal cells
(Table 2). After removing synonymous variants and those outside
of protein coding regions, DIAMUND reported 10 variants, whereas
our traditional analysis yielded 177, although this latter number was
reduced threefold by removing commonly seen variants. Only five
of the 10 variants identified by DIAMUND were also identified by our
standard analysis, though many additional false positive variants
were also identified by the latter. Four of the five variants identified
by DIAMUND were validated by Sanger sequencing as being present in
the diseased but not in the normal fibroblast DNA. In other words,
of the six true positive variants present exclusively in the diseased
cells, two were identified by both approaches, two were identified
by DIAMUND only, and two were identified by traditional analysis
only. Notably, four out of seven (57%) of the 10 total variants iden-
tified using DIAMUND were validated by Sanger sequencing and thus
were confirmed as being present in diseased cells but not in the
normal cells. This was a much better validation rate, as compared
with just four of 28 (14%) of variants identified using a more tra-
ditional method, suggesting that DIAMUND has a higher specificity
when compared with our traditional analysis, which is based on
initial alignments to the reference genome. An important caveat is
that due to the possible presence of mosaicism, the failure to vali-
date by Sanger sequencing does not always imply that the variant in
question was a false positive.

As these results demonstrate, direct alignment of DNA sequences
from related individuals is faster and more sensitive, with fewer
false positives, than the standard approach of aligning everything to
the reference genome. Our method automatically excludes common
variants in an individual or a family, allowing researchers to focus
on a much smaller set of variants that are truly novel within the
tissue or sample under investigation. The speed advantage of the
DIAMUND algorithm will be even more substantial when applied in
a whole-genome context.

One limitation of DIAMUND is that, as currently implemented, it
can only find de novo mutations, that is, mutations that are present
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in one sample and missing in another. This has immediate applica-
bility in studies of cancer versus normal tissue, and in analyses of
family trios. However, the algorithm can in principal be extended to
detect other types of mutations, such as compound heterozygotes,
in which a child inherits different abnormal alleles in the mater-
nally and paternally transmitted copies of the same gene, one from
each parent, and future development will address this and related
questions.

Software availability: The DIAMUND software is open source and
freely available at http://ccb.jhu.edu/software/diamund.

Acknowledgments

We thank Julie Hoover-Fong, Ana Beatriz A. Perez, and Salmo Raskin for
discussions on the diagnosis of the probands, and Corina Antonescu for
website design.

References

Choi M, Scholl UI, Ji W, Liu T, Tikhonova IR, Zumbo P, Nayir A, Bakkaloglu A, Ozen
S, Sanjad S, Nelson-Williams C, Farhi A, et al. 2009. Genetic diagnosis by whole
exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci USA
106:19096–19101.

Delcher AL, Kasif S, Fleischmann RD, Peterson J, White O, Salzberg SL. 1999. Alignment
of whole genomes. Nucleic Acids Res 27:2369–2376.

DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA,
del Angel G, Rivas MA, Hanna M, McKenna A, Fennell TJ, et al. 2011. A framework
for variation discovery and genotyping using next-generation DNA sequencing
data. Nat Genet 43:491–498.

Hanchard NA, Murdock DR, Magoulas PL, Bainbridge M, Muzny D, Wu YQ, Wang
M, McGuire AL, Lupski JR, Gibbs RA, Brown CW. 2013. Exploring the utility
of whole-exome sequencing as a diagnostic tool in a child with atypical episodic
muscle weakness. Clin Genet 83:457–461.

Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL.
2004. Versatile and open software for comparing large genomes. Genome Biol
5:R12.

Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat Meth-
ods 9:357–359.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G,
Durbin R. 2009. The sequence alignment/map format and SAMtools. Bioinfor-
matics 25:2078–2079.

Li R, Li Y, Zheng H, Luo R, Zhu H, Li Q, Qian W, Ren Y, Tian G, Li J, Zhou G, Zhu X,
et al. 2010. Building the sequence map of the human pan-genome. Nat Biotechnol
28:57–63.

Malan V, Rajan D, Thomas S, Shaw AC, Louis Dit Picard H, Layet V, Till M, van
Haeringen A, Mortier G, Nampoothiri S, Puseljic S, Legeai-Mallet L, et al. 2010.
Distinct effects of allelic NFIX mutations on nonsense-mediated mRNA decay
engender either a Sotos-like or a Marshall-Smith syndrome. Am J Hum Genet
87:189–198.

Marcais G, Kingsford C. 2011. A fast, lock-free approach for efficient parallel counting
of occurrences of k-mers. Bioinformatics 27:764–770.

Ng SB, Buckingham KJ, Lee C, Bigham AW, Tabor HK, Dent KM, Huff CD, Shannon
PT, Jabs EW, Nickerson DA, Shendure J, Bamshad MJ. 2010. Exome sequencing
identifies the cause of a Mendelian disorder. Nat Genet 42:30–35.

Ng SB, Turner EH, Robertson PD, Flygare SD, Bigham AW, Lee C, Shaffer T, Wong
M, Bhattacharjee A, Eichler EE, Bamshad M, Nickerson DA, et al. 2009. Targeted
capture and massively parallel sequencing of 12 human exomes. Nature 461:
272–276.

Peng G, Fan Y, Palculict TB, Shen P, Ruteshouser EC, Chi AK, Davis RW, Huff V,
Scharfe C, Wang W. 2013. Rare variant detection using family-based sequencing
analysis. Proc Natl Acad Sci USA 110:3985–3990.

Roach JC, Glusman G, Smit AF, Huff CD, Hubley R, Shannon PT, Rowen L, Pant
KP, Goodman N, Bamshad M, Shendure J, Drmanac R, et al. 2010. Analysis
of genetic inheritance in a family quartet by whole-genome sequencing. Science
328:636–639.

Saunders CT, Wong WS, Swamy S, Becq J, Murray LJ, Cheetham RK. 2012. Strelka: ac-
curate somatic small-variant calling from sequenced tumor-normal sample pairs.
Bioinformatics 28:1811–1817.

Schatz MC, Delcher AL, Salzberg SL. 2010. Assembly of large genomes using second-
generation sequencing. Genome Res 20:1165–1173.

Schuster SC, Miller W, Ratan A, Tomsho LP, Giardine B, Kasson LR, Harris RS, Petersen
DC, Zhao F, Qi J, Alkan C, Kidd JM, et al. 2010. Complete Khoisan and Bantu
genomes from southern Africa. Nature 463:943–947.

Shen Y, Wan Z, Coarfa C, Drabek R, Chen L, Ostrowski EA, Liu Y, Weinstock GM,
Wheeler DA, Gibbs RA, Yu F. 2010. A SNP discovery method to assess variant allele
probability from next-generation resequencing data. Genome Res 20:273–280.

Tatton-Brown K, Douglas J, Coleman K, Baujat G, Cole TR, Das S, Horn D, Hughes
HE, Temple IK, Faravelli F, Waggoner D, Turkmen S, et al. 2005. Genotype-
phenotype associations in Sotos syndrome: an analysis of 266 individuals with
NSD1 aberrations. Am J Hum Genet 77:193–204.

The International Human Genome Sequencing Consortium. 2001. Initial sequencing
and analysis of the human genome. Nature 409:860–921.

Treangen TJ, Sommer DD, Angly FE, Koren S, Pop M. 2011. Next generation sequence
assembly with AMOS. Curr Protoc Bioinformatics Chapter 11:Unit 11.8.

Wood DE, Salzberg SL. 2013. Rapid phylogenetic sequence classification through re-
peated exact alignment. Submitted.

Yang Y, Muzny DM, Reid JG, Bainbridge MN, Willis A, Ward PA, Braxton A, Beuten J,
Xia F, Niu Z, Hardison M, Person R, et al. 2013. Clinical whole-exome sequencing
for the diagnosis of mendelian disorders. N Engl J Med 369:1502–1511.

Yoneda Y, Saitsu H, Touyama M, Makita Y, Miyamoto A, Hamada K, Kurotaki N,
Tomita H, Nishiyama K, Tsurusaki Y, Doi H, Miyake N, et al. 2012. Missense
mutations in the DNA-binding/dimerization domain of NFIX cause Sotos-like
features. J Hum Genet 57:207–211.

288 HUMAN MUTATION, Vol. 35, No. 3, 283–288, 2014


