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Abstract: Research into machine learning (ML) for clinical vascular analysis, such as those useful for
stroke and coronary artery disease, varies greatly between imaging modalities and vascular regions.
Limited accessibility to large diverse patient imaging datasets, as well as a lack of transparency
in specific methods, are obstacles to further development. This paper reviews the current status
of quantitative vascular ML, identifying advantages and disadvantages common to all imaging
modalities. Literature from the past 8 years was systematically collected from MEDLINE® and Scopus
database searches in January 2021. Papers satisfying all search criteria, including a minimum of
50 patients, were further analysed and extracted of relevant data, for a total of 47 publications. Current
ML image segmentation, disease risk prediction, and pathology quantitation methods have shown
sensitivities and specificities over 70%, compared to expert manual analysis or invasive quantitation.
Despite this, inconsistencies in methodology and the reporting of results have prevented inter-model
comparison, impeding the identification of approaches with the greatest potential. The clinical
potential of this technology has been well demonstrated in Computed Tomography of coronary
artery disease, but remains practically limited in other modalities and body regions, particularly due
to a lack of routine invasive reference measurements and patient datasets.

Keywords: artificial intelligence; machine learning; cta; vascular disease

1. Introduction

As the first and second leading causes of global mortality, ischemic heart disease and
stroke demonstrate the need for improved tools in the management of occlusive vascular
disease [1]. In spite of the global incidence of both being on the decline, regional trends vary,
and the total number of persons affected continues to rise due to population growth [2,3].
Patients with cardiovascular disease leading to stroke and myocardial infarction often
require significant medical imaging in the acute, sub-acute, and chronic settings, using a
range of imaging modalities. Vascular imaging is then used as a key source of information
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in the determination of appropriate clinical management, from a range of potential pharma-
cological and surgical approaches [4–6]. The large datasets obtained from this imaging are
traditionally interpreted qualitatively by clinicians and are highly heterogeneous, varying
due to differences in patient, imaging technology, and site scanning protocols.

Artificial Intelligence (AI) is a broad field usually characterised by two key common-
alities; the design of machines to mimic human cognition, and the design of machines
to complete a task whilst optimising the outcome [7]. The potential applications of ma-
chine learning (ML) to medical imaging is an emergent field, attracting growing research
investment [8]. Patients suspected of cardiovascular and neurovascular diseases undergo
multiple medical imaging procedures, which generates large amounts of data used in
conjunction with conventional medical datasets such as patient records. Whilst these
records are meticulously maintained for each individual patient, pooling this data into
multi-site collaborative databases will bolster the development of ML tools and automated
ML analysis. Within medicine, ML has emerged as a prominent approach for automated
diagnosis and image segmentation; for detailed background of ML theory and associated
medical applications, readers are directed to [9,10].

Selecting the appropriate algorithm from a great many possibilities, with each hav-
ing inherent strengths and weaknesses, is a core component in development of any ML
technology. Discussion of algorithm selection, technical explanation of algorithm function,
or explanation of supporting mathematics are beyond the scope of this work. ML, as the
currently preferred approach for analysing medical imaging datasets, refers to algorithms
used to build a model capable of identifying correlations between data features. The corre-
lations in data features are identified by “seen” input data, before then being applied to
previously unseen data to perform predictions.

This seen input data can be provided in two forms, supervised and unsupervised, with
each using different classes of algorithms for model development. Supervised machine
learning uses input data labelled by a relevant domain expert, such as a medical specialist.
These labels may be in the form of sematic segmentation, labelling at a voxel level by
contouring structures from an image, or classify at an image level with labels singularly
classifying the image as a whole. These labels could identify the presence of pathology
in an image, or sort images based on disease stage or sub-type [10]. Common supervised
ML algorithms include Support Vector Machines (SVM), k-nearest neighbour, deep neural
networks, and random forest [11]. In unsupervised machine learning algorithms such
as fuzzy C-means, experts do not provide data labels, instead allowing the algorithm
to determine classifications independently [9,10]. Although medical imaging data can
be acquired using a variety of modalities or protocols and is notoriously heterogeneous,
datasets can be considered as decimal arrays with two or more dimensions. Each pixel or
voxel then represents levels of grey between 0 and the maximum bit-depth of the image.
These matrices of grey level values are the input data which ML algorithms use for their
model development.

The appearance, volume, and variability of data made available to researchers, as well
as the clinical condition being investigated, all determine which machine learning algorithm
and imaging modality are employed. Invasive Coronary Angiography (ICA), Computed
Tomography Angiography (CTA), two-dimensional ltrasound (US), Intravascular ultra-
Sound (IVUS), Magnetic Resonance Imaging (MRI), Optical Coherence Tomography (OCT),
Invasive Coronary Angiography (ICA), and Nuclear Medicine (NM) each play a role in
diagnostic and therapeutic vascular imaging, in the process generating datasets suitable
for ML analysis.

Previous reviews of medical imaging ML applications have provided a broad inspec-
tion of literature across all diseases [12–14] and covered narrow topics in great detail, such
as a single imaging modality [15,16], task [17], vascular location (overwhelmingly cardiac
vessels [18–22]), or have covered a specific combination of all three [23–25].

Imaging of vasculature following myocardial infarction or stroke is routinely per-
formed using a range of imaging techniques, as each provides unique information. The cur-
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rently published research in clinically useful vascular ML demonstrates different stages
of development, varying with both vascular region and imaging modality. For example,
US and IVUS ML research has a wealth of carotid publications, but a comparative dearth
of coronary papers. Conversely, coronary CTA products have been commercialised for
routine clinical use, whilst preliminary studies into non-coronary CTA products are lacking
or absent. Both cardiovascular and neurovascular diseases have large disease burdens,
especially in developed countries [26], but current ML research is not proportionate, and
coronary applications are far more advanced. This is due to many factors, including coro-
nary disease being the global leading cause of death and recent advances in the hardware
and software used for coronary CTA, improving both image quality and acquisition speed.
These techniques have the potential to assist in clinical management and reduce disease
burdens, but the highly heterogeneous state of current literature makes the identification
of future areas difficult. Review, synthesis, and critical analysis of ML approaches from a
wide range of modalities and vascular locations is needed to identify commonalities and
gaps in research. With this, researchers are better placed to ensure future work focuses
on relevant clinical needs and more effectively translate into clinical practice, improving
patient care.

This work reviews the current status of combined knowledge for ML based quantita-
tion of both coronary and neurological vascular disease. The current effectiveness of ML to
provide quantitative descriptors of vessel disease will be examined, as well as the impact
of this quantitation on clinical decision making and patient outcomes, for a wide range of
medical imaging modalities.

2. Materials and Methods

A systematic review was conducted in accordance with guidance included in the
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) state-
ment [27].

2.1. Data Sources

A computerised literature search of Ovid MEDLINE and Elsevier SCOPUS was per-
formed to find full text, original articles published in the eight years prior to 29 January
2021 in medicine, engineering, or computing, which investigated ML analysis of human
vascular imaging. The search terms were combined as follows: (ALL (“Machine Learning”
OR “Neural Network” OR “Support Vector” OR “Random Forest” OR “Bayesian Network”
OR “Nearest Neighbor”)) AND (ALL (plaque OR calcification OR ulceration OR stenosis)))
AND (ALL (quantif* OR quantitati*))) AND NOT (ALL (spectroscop* OR alzheimer OR
“tau” OR “amyloid” OR “lung” OR “multiple sclerosis”)).

2.2. Data Extraction and Quality Assessment

Studies satisfying these criteria underwent assessment of title and abstract by two
authors (C.B and E.B), with equivocal papers additionally reviewed by a third (G.B). This
included analysis of abstract and titles which indicated quantitative machine learning
analysis of human vascular imaging, with pertinent studies continuing to full text review.
Using a standardised data extraction form, relevant information was collected, including
(a) participant characteristics (patient numbers, patient age, age range, and sex), (b) data
characteristics (number of images, imaging modality, and disease site), (c) AI characteris-
tics (algorithm, algorithm parameters, quantitation results, and model validation/cross-
validation), and (d) per patient outcomes (gold standard, sensitivity/specificity/accuracy,
and Area Under the Curve (AUC)).



Diagnostics 2021, 11, 551 4 of 23

3. Results
3.1. Literature Search

The detailed literature selection process is shown in Figure 1. The systematic search
identified 1098 articles, with most records deemed outside the area of interest based on title
and abstract review. Although several studies quoted large datasets, some were referencing
total number of pixels [28], Region-Of-Interest (ROI) subsets extracted from small image
numbers [29], or number of images extracted from a small number of patients [30–33]. To
manage any potential bias and avoid inclusion of overfit or low variability datasets, articles
where total unique patient numbers were less than or equal to 50 were also excluded. Seven
articles failed to identify the number of patient datasets used and were also excluded. The
reference lists of the remaining 42 papers were then pearled, and an additional 5 papers
were included, for a total of 47.
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selection process.

As previously mentioned, the appropriate ML techniques depend on both the type
and quantity of available data, as well as the ML researchers’ experience, skill, and currency
of knowledge. Experienced ML researchers consider these and other practical factors in
determining the most suitable algorithm, although algorithm choice is not unique, and sev-
eral algorithms may be suitable for one data type, or multiple data types may be analysed
successfully with one algorithm. The literature identified was sorted by imaging modality
and algorithm selection, before extracting and tabulating data relevant for the development
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of an integrative overview of automated ML vascular quantitation. Vascular pathology
quantification was most often performed using CTA (27) and ultrasound (6) imaging, as
well as several publications using other modalities (9). All but one IVUS study [34] was
excluded due to insufficient patient numbers [28,35–41], highlighting the need for more
large-scale research in this modality. A few studies attempting vascular quantitation from
Nuclear Magnetic Resonance (NMR) [42] and Nuclear Medicine (NM) [43–45] imaging
were also included, as well as one publication using ICA [46].

3.2. Modality Specific Vascular Imaging
3.2.1. Computed Tomography Angiography

CT for vascular imaging has increased in utility due to consistent improvement in CT
technology and is now the most prevalent imaging modality for quantitative ML analysis,
spurred on by recent research into the low diagnostic yield of ICA [47]. Technological
advancements allowing increased tube rotation speeds, reducing motion blur, smaller
detector element sizes increasing spatial resolution, and the clinical implementation of
advanced filtration and reconstruction techniques, have all improved visualisation of
vasculature. A summary of CTA quantitative analysis is shown in Table 1.

Table 1. Computed Tomography Angiography (CTA) characteristics.

Organ ML Prediction
Endpoint Author (Year) No. of

Patients (M/F)
ML Approach

or Software ML Validation Gold
Standard

Contrast
Used?

Brain

Faster clinician
identificiation
of intracranial

aneurysm

Park (2019) 662
(157/505) 3-D CNN. 75/14/11

train/validation/test

Clinicians’
segmentation

(n = 8)
Yes

Heart

5 year ACM Motwani
(2017)

10,030
(5628/4402) LogitBoost k-fold cross

validation (n = 10)

Existing
clinical or

cCTA metrics
Yes

ACM Han (2019) 86,155
(59,745/26,410) LogitBoost 70/30 holdout

validation

Mortality
status at follow
up (median 4.6

years)

No

CAD—
Calcium
scoring

Shahzad (2013) 366
(280/86)

k-Nearest
Neighbour

57/43 holdout
validation

Expert
Calcium
Scoring

No

Coronary
vessel

centreline
extraction

Wolterink
(2019) 82 3-D CNN. +

SVM

MICCAI 2008
CAT08 dataset—32

pre segmented
cCTA images

Clinicians’
segmentation

(n = 3)
Yes

FFR variation
with kVp De Geer (2019) 351 SyngoTM cFFR

12,000 virtual
coronary models

Invasive
coronary

angiography
FFR

Yes

Functional
stenosis

significance

Coenen (2018) 351
(258/93) SyngoTM cFFR

12,000 virtual
coronary models

Invasive
coronary

angiography
FFR

Yes

Hae (2018) 1132
(860/272)

Light Gradient
Boosting
Machine

83/17 Holdout
validation k-fold
cross validation

(n = 3)

79 external
patients
CAAS-5
software

Yes

Han (2018) 252
(178/74)

SmartHeart
Software

Leave one out cross
validation

Invasive
coronary

angiography
FFR

Yes
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Table 1. Cont.

Organ ML Prediction
Endpoint Author (Year) No. of

Patients (M/F)
ML Approach

or Software ML Validation Gold
Standard

Contrast
Used?

Kurata
(2019)

74
(56/18) SyngoTM cFFR

12,000 virtual
coronary models

Invasive
coronary

angiography
FFR

Yes

van
Hamersvelt

(2019)

126
(97/29)

As described
in Zreik (2018)

k-fold cross
validation (n = 50)

Invasive
coronary

angiography
FFR

Yes

Zreik (2018) 166
(128/38)

3-D CNN +
SVM

Manual
segmentation of

40 patients

Invasive
coronary

angiography
FFR

Yes

Dey (2018) 254
(162/92)

Ensemble
classification

approach
(Supervised

ensemble
learning)

k-fold cross
validation (n = 10)

Invasive
coronary

angiography
FFR

Yes

von Knebel
Doeberitz

(2018)

84
(54/30) SyngoTM cFFR

12,000 virtual
coronary models

Invasive
coronary

angiography
FFR

Yes

Wardziak
(2019)

90
(61/29) SyngoTM cFFR

12,000 virtual
coronary models

Invasive
coronary

angiography
FFR

Yes

Yu (2018) 129 SyngoTM cFFR
12,000 virtual

coronary models

Invasive
coronary

angiography
FFR

Yes

Yu (2019) 180 SyngoTM cFFR
12,000 virtual

coronary models

Invasive
coronary

angiography
FFR

Yes

Hu (2018) 105
(73/32) SyngoTM cFFR

12,000 virtual
coronary models

Invasive
coronary

angiography
FFR

Yes

Nous
(2019)

351
(258/93) SyngoTM cFFR

12,000 virtual
coronary models

Invasive
coronary

angiography
FFR

Yes

Zreik (2019) 163
(126/37)

Recurrent
CNN

50/10/40
train/validation/test

Clinicians’
segmentation

(n = 2)
Yes

Functional
stenosis

significance
(myocardial

bridging)

Zhou (2019) 161
(103/58) SyngoTM cFFR

12,000 virtual
coronary models

41 control
patients

Clinicians
segmentations

(n = 2)

Yes
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Table 1. Cont.

Organ ML Prediction
Endpoint Author (Year) No. of

Patients (M/F)
ML Approach

or Software ML Validation Gold
Standard

Contrast
Used?

MACE related
lesions

Tesche (2016) 92
(57/35)

SyngoTM

Coronary
Plaque

Analysis 2.0.3

Invasive
coronary

angiography
FFR

Yes

von Knebel
Doeberitz

(2019)

82
(51/30) SyngoTM cFFR

12,000 virtual
coronary models

Invasive
coronary

angiography
FFR

Yes

Machine
learning

ischemia risk
score

Kwan
(2020)

352
(238/114)

Ensemble
classification

approach
(Supervised

ensemble
learning)

k-fold cross
validation (n = 10)

Invasive
coronary

angiography
FFR

Yes

Plaque based
risk

stratification

Priyatharshini
(2017) 76

Active contour
model-based

region growing
Agatston score Yes

Plaque based
risk

stratification
Zhang (2019) 129 Dense U-net

k-fold cross
validation (n = 5)

40 “orScore”
database patients

2 expert
Agatston score No

Plaque based
risk

stratification

van Rosendael
(2018)

8844
(5102/3742)

Gradient
boosted

decision trees

80/20 holdout
validation k-fold
cross validation

(n = 5)

Clinician
segmentation +

cCTA risk
score

Yes

Plaque based
risk

stratification
Wang (2019) 530

3D-Resnet
deep neural

network

56/17/27
train/validation/test Agatston Score No

Plaque stability Al’Aref
(2020) 468 XGBoost

80/20 holdout
validation k-fold
cross validation

(n = 10)

Invasive
coronary

angiography
Yes

Rapidly
progressing

plaque

Han
(2020)

1083
(624/459)

LogitBoost,
Naïve Bayes,

BayesNet,
AdaBoost,
Random
Forest,

Bagging,
Stacking, MLP,

Sequential
Minimimal

Optimization,
ADTree

70/30 holdout
validation

Atherosclerotic
cardiovascular

disease risk
score/duke

coronary artery
disease score

Yes

CNN = Convolutional Neural Network, ACM = All-cause mortality, cCTA = Coronary computed tomography angiography, CAD =
Coronary artery disease, FFR = Fractional flow reserve, kVp = Kilovoltage peak, cFFR = Software computation of FFR, SVM = Support
vector machine, MACE = Major adverse cardiovascular events, MLP = Multilayer perceptron, ADTree = Alternating decision tree.

ML vascular analysis from CTA imaging is a well-established field [48,49], with
assessment of ML and CTA-based calculation of Fractional Flow Reserve (FFR) published
by multiple sites [50–57] and now explored by several comprehensive reviews [58–60]. FFR
is defined as the ratio of blood flow, proximally and distally to a coronary vascular lesion,
measured under pharmacologically maximised coronary blood flow [61]. Han et al. [62]
performed CT-based FFR quantification using resting perfusion CT, instead of the more
widely used CTA, obtaining sensitivity, specificity, and accuracy values shown in Table 2.
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Table 2. Model performance statistics for machine learning (ML) quantitation using CTA.

Organ ML PredictionEndpoint Statistics
Quoted Author (Year) Sample Size

Sensitivity Specificity Accuracy AUC

Min Max Min Max Min Max Min Max

Brain Faster aneurysm
identification

Per
clinician Park (2019) 818 exams 0.89 0.98 0.93

Heart

5-year ACM Per patient Motwani (2017) 10,030
patients 0.79 0.79

ACM (CAD) Per patient Han (2019) 86,155
patients 0.74 0.78

CAD—Calcium scoring Per patient Shahzad (2013) 366 patients 0.84

Coronary vessel centreline
extraction Wolterink (2019) 82 patients

FFR variation with kVp Per vessel De Geer (2019) 525 vessels 0.74 1.00 0.73 0.79 0.77 0.86 0.82 0.90

Functional stenosis
significance

Per patient

Coenen (2018) 525 lesions 0.82 0.96 0.60 0.83 0.75 0.91

Hae (2018) 1132 lesions 0.73 0.84 0.76 0.85 0.74 0.84 0.80 0.91

Han (2018) 252 patients 0.52 0.71 0.61 0.85 0.64 0.68

Kurata (2019) 91 lesions 0.33 0.90 0.38 0.91 0.59 0.85

van Hamersvelt
(2019) 126 patients 0.85 0.48 0.72 0.76

Zreik (2018) 166 patients 0.70 0.71 0.71 0.62 0.85

Per lesion

Dey (2018) 2758 artery
segments 0.84

von Knebel
Doeberitz (2018) 103 lesions 0.62 0.88 0.33 0.68 0.61 0.93

Wardziak (2019) 96 lesions 0.76 0.72 0.74 0.84

Yu (2018) 166 lesions 0.85 0.88

Yu (2019) 208 lesions 0.81 0.94 0.82 0.87 0.83 0.86 0.87 0.94

Per vessel
Hu (2018) 117 lesions 0.61 0.91 0.82 0.86 0.92

Nous (2019) 525 arteries 0.79 0.88 0.72 0.80 0.75 0.83 0.82 0.88

Per
segment Zreik (2019) 676 lesions 0.62 0.80

Functional stenosis
significance (myocardial

bridging)
Per lesion Zhou (2019) 161 patients 0.65 0.77

MACE
Per patient Tesche (2016) 258 lesions 0.63 0.83 0.73 0.83 0.72 0.82

Per lesion von Knebel
Doeberitz (2019) 82 patients 0.82 0.79 0.94

Machine learning ischemia
risk score Per vessel Kwan (2020) 352 patients 0.78

Plaque based risk
stratification

Per patient Priyatharshini (2017) 76 patients 0.91

Per lesion Zhang (2019) 129 patients 0.86 0.91

Per vessel van Rosendael
(2018) 8844 patients 0.77

Wang (2019) 530 patients

Plaque stability Per lesion Al’Aref (2020) 582 lesions 0.77

Rapidly progressing plaque Per patient Han (2020) 1083 patients 0.79 0.83

ACM = All-cause mortality, CAD = Coronary artery disease, FFR = Fractional flow reserve, kVp = Kilovoltage peak, MACE = Major adverse
cardiovascular event.

Siemens® Syngo cFFR (Erlangen, Germany) software was widely used across the
literature, in various development stages, for the quantitation of FFR, and results are
summarised in Table 3. This technology, based on coronary deep neural network research
published previously [63], was used by both [53] and Yu et al. [57] to quantify FFR as part
of a wider evaluation of lesion specific ischemia and functional significance. Both authors
found a limited but measurable benefit of including CT-based FFR in plaque analysis. The
resulting Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC)
measured by Coenen et al. [64], Hu et al. [51], and Yu et al. [54] for CT-based FFR were all
similar to that quoted above, with all using invasive FFR measurements as a benchmark.
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FFR clinical significance was typically based on a threshold of 0.8 and equivocality around
this value (termed the ‘grey zone’ [57]) was observed for all measurement techniques,
although to varying degrees [54].

Table 3. Model performance statistics using Siemens Syngo cFFR.

Organ ML Prediction Endpoint Statistics
Quoted Author (Year) Sample Size

Sensitivity Specificity Accuracy AUC

Min Max Min Max Min Max Min Max

Heart

FFR variation with kVp Per vessel De Geer (2019) 525 vessels 0.74 1.00 0.73 0.79 0.77 0.86 0.82 0.90

Functional stenosis
significance

Per patient

Coenen (2018) 525 lesions 0.82 0.96 0.60 0.83 0.75 0.91

Kurata (2019) 91 lesions 0.33 0.90 0.38 0.91 0.59 0.85

von Knebel
Doeberitz (2018) 103 lesions 0.62 0.88 0.33 0.68 0.61 0.93

Wardziak (2019) 96 lesions 0.76 0.72 0.74 0.84

Yu (2018) 166 lesions 0.85 0.88

Yu (2019) 208 lesions 0.81 0.94 0.82 0.87 0.83 0.86 0.87 0.94

Per vessel Hu (2018) 117 lesions 0.61 0.91 0.82 0.86 0.92

Nous (2019) 525 arteries 0.79 0.88 0.72 0.80 0.75 0.83 0.82 0.88

Functional stenosis
significance (myocardial

bridging)
Per lesion Zhou (2019) 161 patients 0.65 0.77

MACE related lesions Per lesion von Knebel
Doeberitz (2019) 82 patients 0.82 0.79 0.94

FFR = Fractional flow reserve, kVp = Kilovoltage peak, MACE = Major adverse cardiovascular events.

Various other aspects of vascular health were quantitatively analysed using machine
learning, based on CT imaging datasets. In these instances, hold-out [65–68] and k-fold
cross validation [50,65,67], two ML validation techniques, were employed to improve
algorithm performance, with both used in conjunction where possible to minimise bias.
Quantification of individual plaque risk and Major Adverse Cardiovascular Events (MACE)
risk stratification was examined in several papers, both with [53,69] and without [65,67,70]
CTA-derived FFR.

Specific data properties used in ML analysis, often termed ‘features’, contribute un-
equally to the overall model performance and the inclusion of features should be done
judiciously [71]. In vascular analysis, features such as remodelling index, plaque length,
mean lumen diameter, mean luminal area, and napkin ring sign showed some utility as
discriminating features, whilst others such as calcified plaque burden and spotty calcifica-
tion had near zero information gain, meaning they were unlikely to provide any predictive
power to model performance [50,53,69,70,72]. Several equivocal image features were iden-
tified as both strongly and weakly predictive by different publications, and these included
total plaque volume, non-calcified plaque volume, and Agatston score (a score based on
the maximal Hounsfield Unit (HU) value observed in CT imaging of coronary artery calci-
fications) [50,53,69,72]. This equivocality suggests feature selection should be performed
systematically for each research work individually, due to variabilities in available data
and project outcomes. Generally, ranking of features by information gain was consistent for
CTA imaging, with quantitative image parameters contributing greater to model function
than qualitative imaging parameters or clinical/laboratory values [71]. The automated
and semi-automated determination of Agatston score has also been investigated sepa-
rately [68,73–77], although some publications utilise thresholding and individual/direct
image analysis approaches, rather than ML.

Although useful, plaque quantitation is not the only informative quantitative metric
in cardiovascular risk management. Motwani et al. [78], with access to one of the largest
CTA imaging datasets in current vascular ML research, compared existing coronary risk
stratification quantifiers such as Agatston score and Framingham risk score with a ML
LogitBoost model for quantification of five-year All-Cause Mortality (ACM). Analysis of
44 imaging features and 25 clinical features found a statistically significant increase in the
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AUC of all-cause mortality risk, compared to Framingham risk score alone (0.79 v 0.61),
although no validation cohort was investigated. Similar ML performance was observed in
the ACM risk quantification of an 86,155 strong cohort of Korean patients [79], with the
AUC values of ML and Agatston score mortality risk of 0.82 and 0.70, respectively. Despite
the large dataset, performance in a validation cohort was not found to be statistically
significant (AUC: 0.78 v 0.62), possibly suggestive of model overfitting in spite of large
sample sizes.

Zreik et al. [80] analysed clinical plaque significance using a convolutional neural
network developed in-house, investigating only left ventricular myocardium CT images
with clusters of pixels belonging to myocardium identified by fast K-means clustering. This
method contrasted to the direct vessel imaging approached employed widely throughout
the literature across all modalities. The model development utilised 50% random dropout
and 10-fold cross validation to minimise overfitting, and plaque significance was bench-
marked against invasive FFR. Multiple FFR thresholds were investigated for their impact
on the determination of individual lesion clinical significance, ranging from 0.72 to 0.8.
Technical parameters were similarly varied, using multiple fast K-means cluster values
(1–1000) for division of the myocardium and several convolutional auto-encoders. The
mean AUC across the 50 cross-validations was 0.74 ± 0.02, with the majority of algorithm
and clinical setting combinations returning AUC values between 0.65 and 0.75. In a con-
tinuation of this work, van Hamersvelt et al. [81] applied the analysis method developed
previously to intermediary stenosis (defined as 25–69% stenosis as assessed by invasive
coronary angiography), noting improved sensitivity and AUC with a slight decrease in
specificity.

ML-based coronary vessel FFR quantitation using CTA datasets is rapidly becoming
established as a clinical methodology, although as with all clinical practices, critical evalua-
tion remains ongoing. Two elements of FFR quantitation subject to this critical evaluation
were the significance of X-ray tube peak kilovoltage (kVp) dependencies undertaken by
De Geer et al. [82], and the role of partial volume effects by Freiman et al. [83]. De Geer
et al. [82] concluded no impact in FFR quantitation between 100 and 120 kVp and slightly
better agreement between ML and invasive FFR quantitation at 100 kVp. The large pixels
of CT imaging, in comparison to ultrasound and fluoroscopy, can result in partial volume
effects in which assigned pixel values represent a mean of values from multiple structures
contained within. Consideration of the role these partial volume effects play in FFR were
found to improve both the specificity (0.51 to 0.73) and AUC (0.76 to 0.8) of FFR ML
quantitation as compared with angiographically determined values.

Work in quantitative machine learning cerebrovascular analysis was extremely limited.
No clear practical or technical reason could be found to sufficiently explain why research
in this area is so sparse, particularly given the comparative examination throughput
and vessel lumen diameter of coronary vessels and many cerebral vessels of clinical
significance. The absence of a routinely performed invasive quantitation comparison
methods and no collaborative multi-centre databases appear to be two possible reasons,
with just two groups attempting to investigate this area [66,84]. The work of Park et al. [66]
investigated aneurysm detection by expert operator from CT imaging, with and without
the assistance of a segmentation deep neural network. An incremental but statistically
significant increase in reader sensitivity, accuracy, and agreement was found. Deep learning
approaches to neurological CTA were noted by the authors as absent from current literature
prior to their investigation, suggesting future development may provide clinically useful
results warranting further research. A preliminary pilot study by Acharya et al. [84]
into carotid lumen segmentation and pathology quantification from CT data produced
sensitivities, specificities, and accuracies of 0.88, 0.865, and 0.902, respectively, using an
SVM classifier with radial basis functions. Statistically significant high-level features
(p < 0.01) were identified for the differentiation of symptomatic and asymptomatic plaques,
in particular higher energy and lower entropy in symptomatic images due to increased
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texture complexity. The generalisation of these results was limited, however, as only 20
consecutively sampled patients were used.

3.2.2. Ultrasound

The excellent soft tissue resolution and sub-millimetre spatial resolution of ultrasound
is well suited to imaging of vascular detail, readily applicable to the large, superficial,
and accessible common carotid artery bifurcation. As shown in Table 4 in contrast with
CTA investigations, cardiac studies were comparatively few, with external ultrasound
ill-suited to coronary vasculature investigation. Study sample sizes often included less
than 50 patients and were too small for generalisation, particularly for highly invasive
IVUS studies [28,36,39,40], although recently published works have attempted to address
this [34].

Table 4. Ultrasound characteristics.

Organ ML Prediction
Endpoint Author (Year) No. of

Patients (M/F) US Type ML Approach ML Validation Gold Standard

Brain

Carotid
elastography

Roy-Cardinal
(2019)

66
(47/19) B-Mode Random forest 0.632+ validation Patient

symptoms

Carotid plaque
echomorphology

Golemati
(2020)

77
(59/18) B-Mode Random forest Leave one out

Clinicians’
segmentations

(n = 1)

Huang (2018) 153 B-Mode k-nearest
neighbours

k-fold cross
validation (n = 3)

Grayscale
median

Pedro (2014) 109
(34/75) B-Mode Cutoff of ROC Leave one out

Clinician
assignment of
symptomatic
plaque status

Carotid plaque
segmentation

Menchon-Lara
(2016) 67 B-Mode Neural

Network
66/33 Holdout

validation

Clinicians’
segmentations

(repeated) (n = 2)

IMT
measurement &
plaque detection

Hassan (2013) 300 B-Mode
Fuzzy C-mean
& probabilistic
neural network

Clinicians’
segmentations

(n = 1)

Heart

Probability of
OCT identified

thin-cap
fibroatheroma

Bae (2019) 517 (382/135) IVUS ANN, SVM,
naïve bayes

k-fold cross
(n = 5) 80/20

Holdout

Presence of OCT
thin-cap

fibroatheroma

B-mode = Anatomical ultrasound, ROC = Receiver operating characteristic curve, IMT = Intima-media thickness, OCT = Optical coherence
tomography, IVUS = Intravascular Ultrasound, ANN = Artificial neural network, SVM = Support vector machine.

Research examining segmentation of vascular anatomy and pathology using ultra-
sound is extensive, with publications reaching as back as far as 2000 [85,86], although
advancements enabling automated quantification are comparatively few. The development
of ML tools capable of identifying at-risk asymptomatic carotid disease and providing deci-
sion support is the primary focus of current ultrasound research. Bae et al. [34] developed
and compared the performance of multiple ML methods for identification of vulnerable
coronary plaques from IVUS investigations, as defined by the presence of a fibrous thin
cap atheroma. Results were compared with OCT, the highest resolution vascular imaging
currently clinically available. The implementation of tools such as these would support the
management of neurovascular and cardiovascular diseases, although to date ultrasound is
not widely employed for initial diagnosis in acute stroke [87–89].

As expected from the acquisition technology employed, US examinations offered an
alternative set of image parameters compared to CTA, with some having utility as machine
learning features. The most consistent of these features was the measurement of carotid
Intima Media Thickness (IMT).

IMT is below the spatial resolution of CTA and cannot be visualized, but has been
correlated to increased vascular risk [90]. This makes US a uniquely practical tool for
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measurement of IMT thickness. Segmentation of IMT has been performed using several US
imaging parameters such as the Hough transform [91], frequency domain analysis [92], and
pixel intensity analysis, the latter using a deep learning single-layer feed-forward neural
network. This method achieved a sensitivity and specificity greater than 97% (shown in
Table 5) when compared to expert manual segmentation [33].

Table 5. Model performance statistics for ML quantitation using B-mode US and IVUS.

Organ ML Prediction
Endpoint

Statistics
Quoted Author (Year) Sample

Size

Sensitivity Specificity Accuracy AUC

Min Max Min Max Min Max Min Max

Brain

Carotid elastography Per patient Roy-Cardinal
(2019) 66 patients 0.79 0.83

Carotid plaque
echomorphology

Per lesion Golemati (2020) 77 patients 0.69 0.86 0.68 0.88 0.69 0.85 0.79 0.90

Per patient Huang (2018) 315 frames 0.68 0.81 0.63 0.89 0.72 0.85 0.71 0.83

Per image Pedro (2014) 146 frames 0.66 0.70 0.76 0.80 0.73 0.77 0.79 0.89

Carotid plaque
segmentation

Menchon-Lara
(2016) 67 patients

IMT measurement &
plaque detection Per patient Hassan (2013) 300 frames 0.98 0.98 0.98 0.98

Heart
Probability of OCT
identified thin-cap

fibroatheroma
Per image Bae (2019) 41,101

frames 0.81 0.84 0.61 0.79 0.76 0.82 0.74 0.82

IMT = Intima-media thickness, OCT = Optical coherence tomography.

Another analysis utilising image features unique to ultrasound was evaluation of the
discrete Fréchet distances of greyscale cumulative distribution functions, as compared
to idealised functions, from Huang et al. [93]. This greyscale distribution analysis for
individual plaques in combination with a k-nearest neighbour classification system sorted
plaques into echo-rich, intermediate, and echo-lucent, with association between echo type
and plaque vulnerability established elsewhere [94,95].

The correlation of echogenicity and carotid plaque vulnerability was also utilised by
Pedro et al. [96], Roy-Cardinal et al. [97] and Golemati et al. [98], although the former used a
simplistic ROC cut-off analysis to produce a semi-quantitative plaque vulnerability indica-
tor. Echogenicity was used in conjunction with both general greyscale image features such
as Rayleigh parameters or grey level co-occurrence matrix (GLCM) decomposition and
features more specific to ultrasound imaging such as homodyned-K parametric mapping,
wavelet energy decomposition, or elastography. The two other papers, however, provided
comprehensive examination of both symptomatic and asymptomatic carotid stenosis, de-
tailing machine learning techniques, patient descriptors, and clinical outcomes. Using a
range of extracted image parameters, US elastography, and plaque motion synchronisation,
the composition and clinical significance of symptomatic and asymptomatic plaques were
analysed with a random forest classifier. Roy-Cardinal et al. [97] also compared US plaque
to composition determined by MRI, as well as comparing patient symptomology to experi-
mental predictions, keeping results focused on improvement of clinical patient outcomes,
the ultimate target of any ML model.

3.2.3. Other Imaging Modalities

Whilst US and CTA are the dominant imaging modalities, several other methods exist
which are useful in the diagnosis and management of vascular disease, including MRI, NM,
OCT, and ICA. Application of these modalities showed the greatest variability with ML
approaches used on both direct image analysis and routinely obtained clinical descriptors.
Image analysis research from these modalities used markedly smaller sample sizes, espe-
cially when compared to US and CT patient databases described above. Some reasons may
include increased invasiveness and fewer centres to facilitate multi-institutional research
or cost, although the exact reason remains unclear. ICA showed extensive use as a gold
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standard for all other imaging modalities, but ML image analysis of ICA was limited.
Table 6 summarises ML vascular quantitation results performed using modalities other
than CT and ultrasound.

Table 6. Characteristics of modalities other than CT and ultrasound.

Organ ML Prediction
Endpoint Author (Year) No. of

Patients (M/F)
Imaging
Modality ML Approach ML Validation Gold

Standard

Brain

Atherosclerosis
identification Wu (2019) 1482 MRI 2.5D CNN (U-Net) 90/10 holdout

validation

Clinicians’
segmentations
(n unknown)

Cerebral blood
flow & cere-
brovascular

reactivity

Waddle (2019) 53
(10/43) MRI

LOO-CV k-fold
cross validation

(n = 3)

Invasive
coronary

angiography

Heart

Functional
stenosis

significance

Cho
(2019)

1501
(1157/344)

Invasive
Angiography XGBoost

80/20 holdout
validation k-fold
cross validation

(n = 5)

79 external
patients

Gao (2019) 0
Computer
Generated

CTA

Recurrent Neural
Net

180 external
patients

w/Invasive
coronary

angiography
FFR

Presence of
CAD Forssen (2017) 3409

NMR
quantification

of 256
metabolites

Random Forest +
Penalized Logistic

Regression

k-fold logistic
regression

(n = 50)

Coronary
angiography

reports

Probability of
myocardial

ischemia

Nakajima
(2015)

106
(65/41)

NM
(Tc-MPI)

Artificial Neural
Net.

Clinicians’
segmentations

(n = 3)

Nakajima
(2017)

1001
(751/250)

NM
(Tc-MPI)

Artificial Neural
Net.

364 (265/98)
external patients

Clinicians’
segmentations
(n unknown)

Nakajima
(2018)

106
(65/41)

NM
(Tc-MPI)

Artificial Neural
Net.

Clinicians’
segmentations

(n = 3)

Wang (2020) 88
(83/5)

PET
(13N-NH3

&
18F-FDG)

SVM, Logistic
Regression,

Decision Tree,
Linear

Discriminant
Analysis, Naïve
Bayes, k-Nearest

Neighbour,
Random Forest

60/40 holdout
validation

Invasive
coronary

angiography

MRI = Magnetic resonance imaging, CNN = Convolutional neural network, LOO-CV = Leave one out cross validation, CTA = Computed
tomography angiography, CAD = Coronary artery disease, NMR = Nuclear magnetic resonance, NM = Nuclear Medicine, Tc-MPI =
Technetium-99m myocardial perfusion imaging, PET = Positron emission tomography, 13N-NH3 = Nitrogen-13 ammonia, 18F-FDG =
Fluorine-18 fluorodeoxyglucose, SVM = Support vector machine.

Magnetic Resonance Imaging

Only two identified MRI publications satisfied all selection criteria. Waddle et al. [99],
applied an SVM model with a fitcsvm function and radial bias function kernel to MRI,
Magnetic Resonance Angiography (MRA), and functional MRI (fMRI) data of moyamoya
patients. The hemispheric blood flow of patients was compared with healthy controls, and
ML classification of hemispheres was performed with a resulting sensitivity, specificity,
and AUC of 0.7, 0.83, and 0.71, respectively. The authors commented that ML techniques
are notably underutilised in vascular imaging, despite finding their results “collectively
offer increased support that both anatomical and functional hemodynamic imaging can
serve as important machine learning inputs” [99].
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Wu et al. [100] developed a deep convolutional neural network to investigate MRA of
carotid vessels, applied to blood signal suppressed, or “black blood” images. Patient imag-
ing was supplied from two previously collected research datasets [101,102] with carotid
segmentation performed and quantitatively compared to expert manual segmentation.
In addition to analysis of individual patient slices, data from the images immediately
before and after each slice were considered, producing a “2.5-dimension” dataset. Carotid
lesion types, as defined by the American Heart Association [103], were determined from
segmented vessels and identified as atherosclerotic or non-atherosclerotic, with maximum
ML accuracy and AUC of 0.89 and 0.95, respectively, in relation to expert decisions.

Four other publications utilising magnetic resonance techniques for quantitative
vasculature analysis were identified, which although not satisfying inclusion criteria,
warrant further discussion. These publications show future potential of MRI both for direct
analysis of vessels, and the possible application of ML to information unique to MRI such
as relaxation times or spectroscopic analysis.

The relationship between carotid vessel image parameters and stroke risk was in-
vestigated by Van Den Bouwhuijsen et al. [104] using logistic regression, from a large,
pre-existing patient database [105]. Despite the simplicity of the approach, this method
supports the importance of large datasets, associating stroke risk with intraplaque haem-
orrhage, carotid wall thickness, and calcification. Automated segmentation of Carotid
artery plaque directly from contrast enhanced MRI has also shown promise, with a recent
study [106] using 35 patients to obtain automated segmentations with a Dice score and
true-positive of 0.89 and 0.93, respectively, as compared to manual analysis.

Van Hespen et al. [107] used sub-millimetre isotropic voxels to image ex vivo circle
of Willis specimens and train a convolutional neural net to measure wall thicknesses for
intracranial aneurysm. Although the results were promising, with less than 0.1 mm error
in intracranial vessel wall estimation, a three patient validation sample size, and long
acquisitions in a high field MRI (7T) places limits on any immediate clinical translation.

Forssen et al. [42] demonstrated the breadth of MRI to obtain clinically useful in-
formation when combined with machine learning, utilising supervised ML to quan-
tify 256 metabolites associated with coronary artery disease, through Nuclear Magnetic
Resonance spectroscopy.

Nuclear Medicine

The large difference in spatial resolution between CTA, US, and IVUS discussed
previously is similar when comparing CTA and many common NM procedures. Instead
of imaging vessels directly, Nakajima et al. [43–45] used approximately 2000 Technetium-
99m Myocardial Perfusion Imaging (MPI) studies from Swedish and Japanese datasets
to train an artificial neural network in the detection of perfusion defects and ischemia.
Each model was tested on an in-house cohort of 106 patients and compared to both expert
readers and a >50% stenosis gold standards, with version 1.1 of the model further validated
on 364 patients. As shown in Table 7, improvement was observed in the upgraded 1.1
version ML tool, with sensitivities and specificities in excess of 87% for all patients, peaking
at 88 and 100%, respectively, in patients with no history of prior infarction or coronary
revascularization.

Quantitative and semi-quantitative descriptors routinely obtained during cardiac
Positron Emission Tomography (PET) were also analysed using six ML algorithms and
linear regression. Obstructive coronary disease status was determined from a sample of
88 patients, with performance statistics approaching 0.9 and SVM performing best.
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Table 7. Model performance statistics for ML quantitation using modalities other than CT and ultrasound.

Organ ML Prediction
Endpoint

Statistics
Quoted Author (Year) Sample Size

Sensitivity Specificity Accuracy AUC

Min Max Min Max Min Max Min Max

Brain

Atherosclerosis
identification Wu (2019) 18,915 frames 0.81 0.89 0.87 0.95

Cerebral blood flow
and cerebrovascular

reactivity
Waddle (2019) 112

hemispheres 0.43 0.7 0.67 0.83 0.65 0.71

Heart

Functional stenosis
significance

Per patient Cho(2019) 1501 frames 0.72 0.84 0.77 0.89 0.81 0.85 0.87 0.90

Per patient Gao (2019) 13,000 synthetic
trees 0.84 0.92 0.75 0.89 0.89 0.94

Presence of CAD Per patient Forssen (2017) 3409 patients 0.94 0.94 0.21 0.28 0.71 0.73 0.68 0.71

Probability of
myocardial ischemia

Per patient Nakajima (2015) 106 patients 0.69 0.62 0.66 0.88 0.97

Per patient Nakajima (2017) 1001 patients 0.90 0.93

Per patient Nakajima (2018) 106 patients 0.78 0.87 0.96 0.98 0.89 0.92 0.89 0.96

Per patient Wang (2020) 159 vessels 0.72 0.91 0.32 0.84 0.65 0.81 0.62 0.86

CAD = Coronary artery disease.

4. Discussion

Across many imaging modalities and organ vasculatures, clinically useful information
can be gained by quantitation of atherosclerotic disease and associated infarction. The
task of segmenting and quantifying vascular pathology is currently both repetitive and
laborious, as well as requiring specialist expertise. This combination makes the task well
suited to automation by machine learning.

The ultimate focus of any research into ML vascular quantitation across all modalities
and vascular territories must remain the meaningful and positive impact to patient out-
comes. Although ML analysis of coronary CTA imaging has progressed furthest towards
broad clinical use, accuracies in the range of 70–80% show that research remains to be done.
Researchers should be buoyed by these results however, as they do demonstrate the clinical
potential of quantitative vascular ML steadily becoming actualised.

4.1. Limitations and Future Work

The works reviewed in this paper achieved performance comparable to current meth-
ods and in some cases demonstrated commercialised ML vascular analysis in clinic. Despite
the success of these methods, several hurdles remain before ML vascular image quantitation
is ready to be applied to patient care in some contexts.

4.1.1. Common Machine Learning Limitations

Limited data availability and a lack of code accessibility (the black box reputation
of ML) are limitations seen in many machine learning applications, within medicine
and beyond. Although not unique to quantitative vascular machine learning, both are
nonetheless important considerations in any future research.

Data management is the foundation from which all ML research is undertaken, and
the comparative infancy of most current vascular ML quantitation research provides the
ideal opportunity to establish standardised data sharing and result reporting approaches,
which will support the development of useful clinical technology into the future. Con-
struction of vascular imaging benchmark datasets has begun to address both the problem
of transparency and data availability simultaneously. Unfortunately, current datasets are
not truly publicly available (instead limited to ethically approved research trials with
data available to a select group of researchers) and participant numbers insufficient in
most cases for generalisation to the diversity of patients seen in many hospitals. These
small datasets offer developers a starting point for useful evaluation and comparison of
privately developed models, on the understanding that this database is not also used for
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model training. Some identified datasets include the MACHINE consortium [64], CON-
FIRM registry [108], and PARADIGM [109] CTA datasets, as well as the annual challenge
databases of the Medical Image Computing and Computer Assisted Intervention (MICCAI)
society from all modalities, all of which have been used multiple times throughout the
literature [67,73,79,83,110,111]. The handling of patient imaging for use in medical machine
learning is a complex issue being contended with around the world [112]. Only once a
broad framework of requisite protections is in place to allow ethical data handling can
large databases be constructed to allow robust model development.

Many algorithms produced by current research have been developed and evaluated
using patient data that is not independently accessible and which cannot be externally vali-
dated for reproducibility. Once these models are demonstrated by researchers to provide
benefit, some are then packaged into commercial offerings with little or no public details
on further changes or advances [63]. Without an external or open access reference database,
further research benchmarking of the performance of comparative models in a transparent
and useful fashion is impossible. This issue of data availability was discussed in both
Coenen et al. [64] and Cho et al. [46], in which the authors stated patient data will not be
provided for the purpose of independent result validation, with no explicit justification
given. Failure by ML developers to make data or model design specifics available perpet-
uates the black box stereotype of these tools and adversely impacts clinician confidence
when considering whether to use potentially beneficial tools. Gao et al. [113] attempted to
address this with the provision of detailed algorithm processes in a summarised step-by-
step fashion that, although not equivalent to open access, is an interesting intermediary
step to improving reproducibility. Waddle et al. [99] was the only publication identified
in this review which actively supported reproducibility, explicitly stating a provision for
de-identified data to be made available on request.

For CTA studies, and in particular for the assessment of FFR, the commercial avail-
ability of deep learning platforms, such as cFFR v1.0–3.0 (Siemens Healthineers, Erlangen,
Germany), CAAS vFFR (Pie-Medical, Maastricht, The Netherlands), and HeartFlow® FFR-
CT (HeartFlow, Redwood City, CA, USA) limited the provision of algorithm details due to
commercial and intellectual property interests.

4.1.2. Reference Standards

The standardisation of cardiac analysis from CT imaging by the American Heart Foun-
dation [114] has provided consistent segmentation nomenclature in this region. Similarly,
the definition of FFR methodology [61] allowed results of works investigating FFR using
CTA imaging to be compared with this standard metric [70,115]. Routine quantification of
FFR for coronary CTA provides the ideal reference standard for ML based quantification
from CTA imaging. Well defined coronary vascular segments, a defined methodology for
FFR determination and the inclusion of quantitative invasive vascular quantitation for
every patient allows method performances to be compared and approaches to be bench-
marked. The routine quantitation of vascular disease in carotid vessels is currently limited
to manually measured criteria such as that outlined by NASCET [116]. Although such mea-
surements are clinically useful [117], the risk of inter and intra observer variability cannot be
discounted, particularly when incorporated into large multi-nation, multi-centre databases,
the likes of which will be required for robust machine learning model development.

Although not a singular reference measurement, the development and adoption of
MICCAI and AAPM publications providing detailed methodologies for standardised
evaluation of algorithms examining stenosis and lumen segmentation or coronary vascular
quantitation supports model evaluation and comparison in a similar way [76,118,119].
Research into model benchmarking has begun, but is still in the early stages, with small
patient sample sizes (n =10) and limited algorithms investigated (n = 4) [120].
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4.1.3. Image Standards

Beyond the absence of invasive quantitation as a reference standard, the variation in
acquisition methodology between sites also presents a challenge for generalisation from
vascular machine learning. CT image reconstruction methods (filtered back projection,
iterative reconstruction, and AI enhanced reconstruction), MRI settings (bandwidth, TR
and TE times, matrix size), training of sonographers, and combinations of administered
dose and acquisition time in nuclear medicine, all vary with institution. Image appear-
ance preferences also vary between institutions and even reporting clinicians within one
institution, with acquisition parameters changed accordingly. Such wide variability neces-
sitates greater robustness in any clinical models to account for application of developed
technologies to image appearances not previously encountered.

4.1.4. Reporting Standards

Reporting of machine learning results throughout the literature was vague and incon-
sistent for all modalities. Statistical metrics varied widely with combinations of sensitivity,
specificity, accuracy, and AUC reported inconsistently, and compared to different gold stan-
dards. The nature of ML development and analysis further complicated inter-publication
comparison with the result section of each paper quoting sensitivity, specificity, and AUC
values obtained using different image feature combinations, algorithm parameter settings
(such as SVM kernel), and repeating this process for multiple algorithms, resulting in large
tables of statistics encompassing a wide range of values. Finally, the reporting of studies in
vascular quantitation allowed results to be reported on a per-patient, per vessel, per vessel
segment or per lesion basis, with some papers reporting results for several of these.

5. Conclusions

The review highlights that open access data, or a systematic and independent valida-
tion solution, are essential to the continued research growth of vascular ML quantitation.
This issue was identified and best explained by Zreik et al. [121], who despite having
access to a large imaging research facility, observed that “[with] a sufficiently large and
diverse data set, a deeper CNN-only . . . analyzing a large single volume along the artery, could
be employed to perform the presented analyses. However, obtaining such a large data set remains
highly challenging . . . ”. Neural networks, and convolutional neural networks especially,
have been widely recognised across multiple modalities as the most promising candidates
for vascular imaging ML analysis. Despite this, other articles identified by this review [99]
concluded, similarly to Zreik et al. [121], that current data is insufficient for clinical CNN
implementation. Although many techniques exist for maximising model performance
from limited data, large quantities of unique datasets are essential to clinical model per-
formance [122,123]. The imaging data accessible to vascular ML researchers at present
is forcing the selection of algorithms to be heavily influenced by available datasets, not
necessarily those that are the best performing or most informative. Once standardised
datasets are made readily available, transparent and standardised reporting of results
will promote collaboration and improve both the development of ML techniques and the
clinical confidence in the use of the technology.
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