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Sustainable vaccine developmen
t: a vaccine
manufacturer’s perspective

Rino Rappuoli1 and Emmanuel Hanon2
Vaccination remains the most cost-effective public health

intervention after clean water, and the benefits impressively

outweigh the costs. The efforts needed to fulfill the steadily

growing demands for next-generation and novel vaccines

designed for emerging pathogens and new indications are only

realizable in a sustainable business model. Vaccine

development can be fast-tracked through strengthening

international collaborations, and the continuous innovation of

technologies to accelerate their design, development, and

manufacturing. However, these processes should be

supported by a balanced project portfolio, and by managing

sustainable vaccine procurement strategies for different types

of markets. Collectively this will allow a gradual shift to a more

streamlined and profitable vaccine production, which can

significantly contribute to the worldwide effort to shape global

health.
Addresses
1GSK, Siena, Italy
2GSK, Rixensart, Belgium

Corresponding author: Rappuoli, Rino (rino.r.rappuoli@gsk.com)

Current Opinion in Immunology 2018, 53 [1_TD$DIFF]:111–[2_TD$DIFF]118

This review comes from a themed issue on Vaccines

Edited by Patrick C Wilson and Florian Krammer

For a complete overview see the Issue and the Editorial

Available online 8th May 2018

https://doi.org/10.1016/j.coi.2018.04.019

0952-7915/ã 2018 The Authors. Published by Elsevier Ltd. This is an

open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).

Introduction
Vaccination remains one of the most cost-effective public

health interventions to address the world-wide health

economic (HE) burden associated with infectious dis-

eases. Indeed, for every US$ 1 spent on vaccination

against diseases associated with 10 antigens in low-

income and middle-income countries (LMICs), the esti-

mated return on investment for society is US$16 due to

direct savings on healthcare and increased productivity,

and nearly three times higher (US$44) when broader

economic and social benefits are considered [1��]. From
2001 to 2020, the broader benefits could amount to a

staggering US$ 820 billion in the 73 countries supported

by the Global Alliance for Vaccines and Immunization

(GAVI) [2], a public–private partnership (PPP) involving
www.sciencedirect.com
amongst others the UN, the vaccine industry and the Bill

and Melinda Gates Foundation (BMGF). Due to the

higher disease burden and more limited medical infra-

structure, the HE gain from introducing a vaccine in

LMICs will be greater than in higher-income countries

(HICs), where the gain will largely be determined by

competition between the different health options on offer

[3].

The global demand for vaccines is growing due to a host of

factors, such as global population growth, future imple-

mentation of newly licensed or advanced-stage vaccines

into health-care systems, and ongoing global immuniza-

tion campaigns. The latter is illustrated by GAVI’s aim to

reach an additional 300 million children for routine child-

hood vaccination by 2020. Also, the pressure is mounting

to deliver improved or new vaccines against challenging

infectious diseases (e.g. tuberculosis, HIV/AIDS), new

zoonotic pathogens, and therapeutic vaccines against

non-communicable chronic diseases such as cancer and

neurodegenerative diseases. They are also needed to

address the scourge of antibiotic-resistant bacteria [4]

and the varying vaccine needs across a person’s life-span

(vaccine ‘life-cycle management to support life-course

immunization’ [5]).

To meet the increasing demands, there is a continuous

quest for innovation of vaccine design and manufacturing

technologies. Traditionally, the multiphase vaccine

development process, which typically progresses over a

10–15-year period from vaccine discovery to advanced

clinical development in Phase 3 efficacy trials, can require

investments of US$ 0.5–1 billion [6–8]. This, combined

with the slim (<10%) probability of candidates to enter

the market, has negatively impacted the number of

investing vaccine manufacturers and has contributed to

the current productivity gap in vaccine development.

The selection criteria supporting prioritization of a vac-

cine project must therefore be increasingly stringent.

Here we discuss the key considerations in this deci-

sion-making process from a vaccine manufacturer’s

perspective.

Toward sustainable vaccine development
Medical need is a key factor for project prioritization, as

illustrated by the spurred development of vaccines

against the globally emerging threat posed by Clostridium
difficile infections, or by the accelerated clinical develop-

ment periods during the devastating Ebola crisis in West

Africa in 2014, which for some vaccines could be
Current Opinion in Immunology 2018, 53:111–118
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Sustainable vaccine development and collaborations. Funnel: Guiding criteria for vaccine project prioritization are, first, the unmet medical need,

as supported by health-economical (‘HE’) and epidemiological (‘Epi’) evaluations; second, technical feasibility, often benefitting from partnerships

with academia (‘Acad’), and third, the sustainability of its development, which depends on the availability of funding partners for collaborative

development, as well as on the competitive landscape (‘comp’) and the economic development status of the market for which the vaccine is

intended (‘Market’). While the development of vaccines with a market that includes high-income countries is often predominantly industry-funded,

trials evaluating vaccines for predominantly low-to-middle-income markets, or prepandemic vaccines, are typically co-funded by public–private

partnerships including industry, governments and international non-governmental organizations. Bars: Red and blue bars indicate the development

stages typically benefitting from involvement/support by academia and international funding organizations, respectively. Academic partners mostly

contribute by providing immunological insights in late preclinical and Phase 1/2 clinical phases. Funding partners can provide support throughout

the whole process, including the licensing (‘Lic’) phase, and the post-licensing phases comprising vaccine manufacturing (‘Manu’) and

implementation (‘Implement’), for example the supply chain management support provided by the public–private partnership (mVacciNation). Post-

marketing Phase 4 studies monitoring vaccine usage, adverse effects (pharmacovigilance), and long-term immunity are typically industry-funded.

Red arrowed bars indicate the technologies used to guide antigen discovery and/or vaccine design (reverse vaccinology, delivery, adjuvants and

platform technologies), while systems biology data, often generated in industry-academic partnerships, can guide during the discovery phase, as

well as in later clinical phases, by supporting adaptive trial designs to expedite progression to Phase 3 clinical evaluations. Finally, strategies to

manage the sustainable procurement of new vaccines, such as tiered pricing policies, will also majorly drive the vaccine development process.
shortened to less than a year. In the prevailing business

model, other key guiding criteria are the technical feasi-

bility, as well as the expected return on investment. The

latter is largely determined by competitive landscape

analyses, and is dependent of the economic development

status of the market in question (Figure 1). To nurture

and sustain the R&D processes, manufacturers’ business

strategies will strive to maintain a project portfolio that is

balanced between projects offering a solid business case,
Current Opinion in Immunology 2018, 53:111–118
and higher-risk, longer-term and/or lower-feasibility pro-

jects. The considerable financial risks inherent to the

latter category, combined with a pressing immediate need

or expected future medical need, has been prompting

industry to seek strategic funding partners such as gov-

ernments and/or non-profit international vaccination

foundations. Indeed, nearly every vaccine available in

resource-poor settings today has been developed through

combinations of public and private efforts. Underpinning
www.sciencedirect.com
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the criterion of technical feasibility is a solid understand-

ing of human immunopathology, and it is at this point that

academic partnerships have been delivering critical

know-how and contributions, particularly in the early

clinical development stages [9]. Ultimately, vaccine

development will also be driven by strategies to accom-

plish a sustainable procurement of these vaccines, such as

tiered pricing policies. We next examine the importance

of collaborative development in different market scenar-

ios, and the key technological advances in vaccinology

supporting it.

Collaboration in different market scenarios

The first market scenario involves the development of

vaccines with a high technical feasibility targeting an

unmet medical need that is at least partially identified

in the developed portions of the world. Such vaccines are

generally expected to have a large market potential and a

favorable return on investment, and are often developed

with only a minimum of external funding. Prime exam-

ples are the quadrivalent influenza vaccines (QIVs),

recommended by the WHO since 2013/2014, the menin-

gococcus B vaccines, and the recently licensed subunit

herpes zoster vaccine (HZ/su) indicated for the preven-

tion of shingles in persons aged �50 years. These vac-

cines are expected to translate into considerable HE

benefits for society [10�,11–13].

Considering their considerable HE burden worldwide, for

example, US$1 trillion/year for Alzheimer’s disease [14],

development of therapeutic vaccines against chronic dis-

orders such as neurodegenerative diseases or cancer would

be commercially appealing. Yet, given their low technical

feasibility and the lack of knowledge surrounding what

constitutes a protective response, their development has

been deprioritized by major manufacturers, but is priori-

tized by several biotech companies, which can afford to

take higher risks. The groundwork laid by international

PPPs such as the Human Vaccines Project, or the Euro-

pean Innovative Medicines Initiative (IMI) consortium

‘BIOVACSAFE’, which aim to provide insight in the

human immunity required for a successful vaccine, may

break the technical impasse at least in some areas.

In a second scenario, a major public health threat is

present primarily in limited commercial markets, as is

the case for HIV/AIDS, tuberculosis and malaria infec-

tions. For the majority of these diseases, incomplete

knowledge of the immunopathogenesis and mechanisms

of natural or acquired immunity amount to a weak busi-

ness case for vaccine development [8], and all important

vaccines targeting these diseases have been developed in

collaborative frameworks. Prequalification by suprana-

tional organizations, such as for the four-dose vial presen-

tation of a pneumococcal vaccine recently awarded by the

WHO, makes the vaccines eligible for procurement by

UN agencies, and provides an early return on
www.sciencedirect.com
investments. Tiered pricing can also support the devel-

opment of new vaccines using the profits made from the

higher prices in HIC markets, an approach followed for

many childhood vaccines [15,16].

The world’s first malaria vaccine, RTS,S/AS01, was

developed through PPPs that have included the Walter

Reed Army Institute for Research, and subsequently

PATH Malaria Vaccine Initiative (MVI) and BMGF.

Supported by vaccine donations from industry and

MVI, the vaccine will enter a pilot implementation in

Sub-Saharan Africa in 2018, which will be coordinated by

the WHO and funded by multiple supranational orga-

nizations. In theory, post-marketing access to this vaccine

is enhanced by setting prices affordable for LMICs,

which are expected to cover manufacturing costs as well

as a small return, to be reinvested in R&D for next-

generation malaria vaccines or vaccines against other

tropical diseases. In practice however, realization of a

sustainable post-marketing phase and procurement of

RTS,S/AS01 is still challenging due to the absence of a

sustainable market for this vaccine. Furthermore, an

AERAS-funded collaboration, with academic support

for in-depth cellular immunity assessments [17,18],

yielded the tuberculosis candidate vaccine M72/AS01,

for which the first results of the Phase 2b efficacy trial

are expected in 2018 [NCT01755598]. Collaborative

development also brought about the only licensed den-

gue vaccine (though recent safety concerns have posed a

major setback in its roll-outs [19]), as well as several

Shigella candidate vaccines, particularly important to com-

bat the high shigellosis burden in infants in LMIC set-

tings. Though no established correlates of protection

exist, Shigella vaccine development is facilitated by gen-

erally accepted immunological associations with protec-

tion. Two promising approaches already evaluated in

Phase 2 studies include the bioconjugate S. flexneri 2a
vaccine (Flexyn2a) supported by The Wellcome Trust,

and a monovalent S. sonnei vaccine (1790GAHB) based on

genetically-derived outer membrane vesicles of Shigella,
generated using the Generalized Modules for Membrane

Antigens (GMMA) technology ([20,21] and

NCT02646371). The latter vaccine is being developed

with funding from the European Commission’s FP7

program. In addition, several multivalent Shigella vaccines
are in early development.

A third category of vaccines are those targeting zoonotic

pathogens with pandemic potential but which do not pose

an immediate threat. Such vaccines generally lack market

incentives. For the purpose of pandemic preparedness,

these pathogens necessitate not only continuous surveil-

lance in humans and animals, but also intensified devel-

opment of prepandemic vaccines in the inter-outbreak

periods. Beyond recent outbreaks of pandemic influenza,

Ebola and Zika viruses, the WHO lists 70 diseases with

outbreak potential. Yet with the possible exception of
Current Opinion in Immunology 2018, 53:111–118
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pandemic influenza vaccines [8], industry alone cannot

deliver the resources needed for the world’s vaccine

supplies. Therefore, new globally-funded PPPs have

been tasked with prepandemic vaccine development,

such as CEPI (founded by industry, the Wellcome Trust,

BMGF and several national governments), which will

initially target three viruses from the WHO priority list

(i.e., Middle East respiratory syndrome coronavirus and

Lassa and Nipah viruses). An additional initiative, the

proposed BioPreparedness Organization, will focus on

development and utilization of vaccine platform technol-

ogies, but the sustainable supply, pricing and procure-

ment of these vaccines have not been addressed yet.

Platform technologies are critical in overcoming the bot-

tlenecks in manufacturing, as further discussed below.

Technical feasibility: fast-tracking design, development

and manufacturing

Multiple innovative tools and technologies originating

from advances in virology, genetics, structural biology

and biotechnology are available, to support prioritization

based on technical feasibility throughout the whole

development spectrum.

Antigen design

Antigen discovery and design has been transformed by

novel bioinformatics technologies, and by the whole-

genome and proteome data currently available for many

pathogens. For example the identification of new anti-

gens has been revolutionized by ‘reverse vaccinology’,

the genome-wide sequencing of pathogens to scour for

conserved surface-expressed proteins, which is then com-

plemented by confirmation of their surface location in
vitro and subsequent preclinical immunogenicity evalua-

tion. The combination of such immunogens led to the

development of several broadly protective bacterial and

viral (candidate) vaccines, such as a recent Shigella candi-

date vaccine, and a licensed vaccine against serogroup B

meningococcus [22�,23].

Structural biology has delivered the insights in pathogen

entry processes leading to the design of the DS-Cav1 RSV

antigen (NIAID). DS-Cav1 comprises the fusion glyco-

protein stabilized in its pre-fusion trimeric conformation

(PreF), the only conformation containing a highly neutral-

ization-sensitive epitope (antigenic site Ø [24]). Preclini-

cal evaluation of DS-Cav1 showed that the vaccine can

boost pre-existing RSV neutralizing responses, and that

adjuvants can enhance its immunogenicity [25,26�], which
may be particularly relevant for vaccines targeting the

elderly [27]. Adjuvanted and non-adjuvanted DS-Cav1

vaccines are currently in Phase 1 trials (NCT03049488),

and different antigen versions such as a ‘head-only’ ver-

sion have been pre-clinically evaluated [28–30].

The need for such ‘universal’ broadly protective vaccines

generating immunity toward highly conserved epitopes is
Current Opinion in Immunology 2018, 53:111–118
particularly evident for vaccines against the seasonal

influenza virus, for which the frequent changes of its

surface proteins have been necessitating annual vaccine

re-formulations, and for pandemic strains as part of pan-

demic preparedness strategies. Facilitated by innovations

in structure-based design, decade-long efforts have

resulted in influenza vaccine candidates targeting the

extracellular domain of theM2 protein, conserved regions

in the HA1 domain, or the conserved HA2 stalk domain,

of which particularly the latter approach appears promis-

ing for both seasonal and pandemic purposes [31]. Given

that upon exposure to new strains, immune responses will

be preferably directed to conserved epitopes on the stalk

[32,33], several avenues are being explored. One of them,

which takes advantage of the current manufacturing

processes, entails repeated vaccination with constructs

expressing chimeric HA subunits with the same con-

served stalk domain, but different exotic HA heads that

are never encountered by humans under natural condi-

tions ([34�,35] and NCT03275389). When combined with

the Adjuvant System 03 (AS03), such regimens were

shown in pre-clinical models to induce anti-stalk IgG

antibodies, as well as anti-NA antibodies which may also

contribute to protection. Another approach includes vac-

cines based on ‘headless’ HA immunogens constructed

through removal or glycan-masking of the HA head

domain, which are still in preclinical phases [32,33].

Adjuvants

Adjuvants are essential components of many vaccines.

They are used to enhance immunity to the antigen, which

is particularly important for populations with reduced

immune responses, including for instance those with

hyporesponsiveness to vaccines, and/or for populations

that are naı̈ve to the pathogen [36,37]. This ability can

also serve to increase the viability of potentially promising

vaccine approaches such as recombinant protein vaccines,

and to allow antigen dose-sparing, which can streamline

production by overcoming limitations in manufacturing

capability. For instance, while the use of a higher antigen

dose improved the efficacy of seasonal influenza vaccines

in the elderly [38], seasonal vaccines containing oil-in-

water adjuvants such asMF59 and AS03 have shown to be

efficacious in this age-group at the standard dose, at least

for certain strains [39,40]. By broadening the B-cell rep-

ertoire, these adjuvants can also extend the protective

coverage of monovalent pandemic influenza vaccines

[41,42].

Continuous efforts are being made to unravel the modes

of action of different adjuvants, and thus the opportu-

nities to maximize their potential for use in new vaccines.

Evaluation of the innate immunity induced by several

adjuvants (AS01, AS03, AS04, or Alum) has highlighted

the role of the IFN-signaling pathway activation in the

enhancement of adaptive immunity induced by AS03 and

AS01 [43�,44], and further research using systems biology
www.sciencedirect.com
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approaches has been performed [45��,46]. AS01 is used in

candidate malaria, tuberculosis and HIV vaccines, as well

as in the licensed HZ/su vaccine.

Platform technologies

While effective, the egg-based vaccine production cur-

rently used for the majority of seasonal (TIV/QIV) and

pandemic influenza vaccines [47] has the drawback of

being less amenable for the response to surging vaccine

needs during a pandemic. Cell-culture manufacturing, as

used for a licensedMF59-adjuvanted pandemic influenza

vaccine, is a generally faster and more controlled process,

though some obstacles such as the cell-line scale-up still

need to be addressed. Furthermore, the need for new,

high-performance vaccine platforms has prompted the

development of nucleic acid-based technologies (viral

vectors, plasmid DNA, conventional RNA, or self-ampli-

fying RNA [SAM]), which are able to elicit broadly

protective and robust cell-mediated and humoral immune

responses, since expression of the vaccine antigens occurs

in situ. Generally, RNA and SAM vaccines have proven

more potent than plasmid DNA vaccines, and their

production and purification is cost-effective, relatively

versatile and readily transferable between different viral

targets [48,49]. Besides influenza vaccines, RNA and

SAM vaccines targeting several other pathogens such

as HIV and RSV have been evaluated, and were shown

to confer protection in animal models [50,51]. Some of

these vaccines, including those against influenza and

rabies, have also been tested in clinical trials, with prom-

ising but not yet satisfactory results [52,53]. The under-

lying mechanism of action of SAM-induced immunity,

particularly with respect to early innate immunity, is not

fully known [54,55] but may be further elucidated in the

first clinical evaluation of a SAM vaccine, which could

occur in 2019.

While taking more time for vaccine generation as com-

pared to the SAM technology, viral vectors such as VSV,

MVA or simian adenovirus vectors represent a technically

more established vehicle for vaccine delivery. Prime

examples are the replication-incompetent species C

chimpanzee-derived adenovirus (ChAd) vectors, which

have been used for an Ebola vaccine (ChAd3-EBO [56])

and, more recently, an RSV PreF vaccine (ChAd155-RSV;

currently in pediatric Phase 1/2 trials [NCT02927873]).

The attractiveness of the ChAd technology platform lies

in the ability of these vectors to generate potent antigen-

specific T-cell and humoral responses, with a reduced risk

of being neutralized by human sera, which is due to their

negligible seroprevalence in humans.

Fast-tracking clinical development

Systems biology has the potential to change vaccine

development by providing a more informative characteri-

zation of the transcriptional and cellular signatures of

vaccine-induced responses, which has been used to
www.sciencedirect.com
increase our knowledge of the mechanisms of protection

and pathogenesis of challenging diseases such as HIV/

AIDS and tuberculosis [57,58]. By integrating molecular

pathway data generated by one or several ‘omics’ tech-

nologies, molecular correlates of early immunogenicity or

protection have been identified for important vaccines

including the YF-17D yellow fever vaccine, adjuvanted

influenza vaccines and the RTS,S malaria vaccine

[45��,46,59,60�,61,62��]. Omics approaches also allowed

identification of age-related or inter-subject differences in

post-vaccination reactogenicity events and immune

responses, such as a molecular signature of adverse events

associated with a common B-cell phenotype, or the net-

works of antibody characteristics linking with protective

immunity (‘systems serology’) [63��,64].

Integration of common signatures observed for different

populations, adjuvants and antigens aids in the identifi-

cation of novel biomarkers for vaccine efficacy and safety,

and, when supported by mechanistic data in animal

models, can guide the antigen/adjuvant selections for a

given target population, as well as the development of

novel adjuvants [65]. The latter can be relevant in the

context of the accelerated development of vaccines for

LMICs, amongst others. Since ‘omics’ technologies are

used to monitor the occurrence of common signatures,

they allow for smaller-scale clinical trials. Such data could

also help in introducing a more adaptive clinical trial

design, in which multiple vaccine formulations and regi-

mens and several hypotheses are screened, and of which

the most promising arm is then expanded in a Phase

3 efficacy study [66,67]. Moreover, the application of such

technologies to human challenge studies presents a

potential powerful method to identify or elucidate corre-

lates and/or immunological pathways associated with

protection. This approach has been followed in the con-

text of vaccines against malaria, influenza and RSV

[45��,46,68], and is currently being developed for pertus-

sis by the IMI consortium ‘PERISCOPE’.

Finally, multiplexed, high-throughput affinity separation

of cells and proteins are interesting as they enable fast

isolation of the most effective specific antibodies, or rare

B cells or plasma cells from vaccinees [69]. This may aid

the identification of biomarkers for certain antibody-

directed effector functions, which could then guide

early-phase strategies or support the design of later-phase

trials.

Conclusions
The efforts needed to fulfill the growing demands for

next-generation vaccines, and for novel vaccines designed

for emerging pathogens and new indications, are only

realizable in a sustainable business model supported by a

balanced portfolio. The strengthening of international

collaborations and continuous innovation of technologies

to accelerate design, development and manufacturing,
Current Opinion in Immunology 2018, 53:111–118
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will allow a gradual shift to a more streamlined and

profitable vaccine production. This will significantly con-

tribute to the global efforts to prevent infectious diseases,

protect vulnerable populations, and obtain a more rapid

response to future outbreaks, shaping global health.
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