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Introduction
Communities of microbes are found in diverse environmental 
niches, such as the ocean, soil, and inside host organisms, 
including all animals, plants, and lower eukaryotes.1 These 
communities show characteristics, such as complexity, diver-
sity, interaction, cooperation, dynamism, generosity, danger, 
and competition.2 In such communities, microbes may com-
pete for nutrients,3 share functional genes through horizontal 
gene transfer,4 produce toxins that can kill other microbes,5 
produce various metabolites and signaling molecules for shar-
ing and communication,6 and combine forces to fight com-
mon enemies, such as the host immune system.7 In short, the 
importance of the microbial community stems from the fact 
that they are critical to the health of the environmental niche 
in which they reside,8 and an imbalance in the community 
could be harmful.9

Traditionally, a microbiome has been defined as a microbial 
community occupying a reasonably well-defined habitat.10 One 
of the most common approaches to studying a microbiome is 

analyzing its constituent microbial genomes through meta
genomics. More recently, this definition has evolved to include 
not only the microbes and their genomes but also the aggregate 
of environmental and host factors. The inclusion of the host 
environment as part of the microbiome significantly expands 
its implications, with the interactions between the host and 
its associated microbial community now relevant to under-
standing the dynamics of the microbiome. For evolutionary 
and functional studies of the microbiome, modifications in 
the host environment (eg, a diet shift in the host organism 
or a compositional change in the environmental matrix under 
study) now become critical and must be taken into consider-
ation. Coevolution processes can then be identified, providing 
valuable information to understand the relationship of the 
microbial community with its host. This apparent concep-
tual shift is accompanied by the recognition that, in order to 
achieve a more comprehensive study of microbiomes, metage-
nomics must be combined with other omic approaches. Many 
relevant omic approaches have been proposed for microbiome 
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studies. In this article, we discuss metatranscriptomics and 
metabolomics, which are rapidly becoming critical to micro-
biome studies.

Metagenomics is the study of the genomes in a micro-
bial community and constitutes the first step to studying the 
microbiome. As seen in the “Metagenomics” section, metag-
enomics comes in different flavors. However, its main purpose 
is to infer the taxonomic profile of a microbial community. 
Although whole-metagenome sequencing (WMS) provides 
a partial glimpse into the functional profile of a microbial 
community, it is better inferred using metatranscriptomics, 
which involves sequencing the complete (meta)transcriptome 
of the microbial community. Metatranscriptomics informs us 
of the genes that are expressed by the community as a whole. 
With the use of functional annotations of expressed genes, it 
is possible to infer the functional profile of a community under 
specific conditions, which are usually dependent on the status 
of the host. While metagenomics helps address the question 
“what is the composition of a microbial community under dif-
ferent conditions?”, and metatrascriptomics helps answer the 
question “what genes are collectively expressed under differ-
ent conditions?”, the question considered by metabolomics is 
“what byproducts are produced under different conditions?”. 
The metabolites released by the microbial community are 
largely responsible for the health of the environmental niche 
that they inhabit.

Regardless of whether microbiome studies are biomedi-
cal or environmental in their focus, it is clear that the different 
omic approaches provide invaluable information. However, 
the best results are obtained by performing integrative studies 
that involve all available omic datasets.11 While such efforts 
hold promise, the integration must be done carefully.12

As suggested by a variety of different analyses,13–16 we 
believe that network-based approaches can lead to a sophis-
ticated in-depth analysis of microbiomes, particularly when 
applied to integrative studies, and consequently lead to critical 
insights into the world of microbiomes.

Major microbiome initiatives. Human microbiome studies. 
The National Institute of Health has funded a major initiative 
that aims to generate resources for a comprehensive charac-
terization of the human microbiome to understand its impact 
on human health and disease. The first phase, known as the 
Human Microbiome Project (HMP),17 focuses on the study of 
microbial communities that inhabit the human body of healthy 
individuals,18,19 with particular emphasis on nasal, oral, skin, 
gastrointestinal, and urogenital areas.17,18,20–23 It is known that 
the amount of microbial cells present in the human body is 
notably larger than the amount of human cells. These bacterial 
communities play critical roles, such as assisting in the diges-
tion of food, synthesizing necessary vitamins, and aiding 
the immune system in defending our body from pathogenic 
invaders.24 Human microbiome studies have revealed strong 
correlations between changes in microbial community profiles 
and diseases.22,25–27 These studies have also shown that the 

structure of the microbial community is significantly different  
in five areas of the human body (gut, mouth, airways, urogeni-
tal, and skin), and that this seems to be independent of gender, 
age, and ethnicity.18,19 All the data and protocols associated 
with this project are available at the HMP Data Analysis and 
Coordination Center (DACC).28

The Integrative HMP (iHMP)27 is the second phase of 
this initiative, going a step further by gathering multiple omic 
data from both the microbiome and the host. This is part of 
a longitudinal study with a broader objective of understand-
ing host–microbiome interactions using integrative analyses. 
Another related initiative focused on the human microbiome is 
the Metagenomics of the Human Intestinal Tract (MetaHIT) 
project.29 This project was funded by the European Seventh 
Framework Programme until 2012. Its goal was to understand 
the link between the human intestinal microbiota and human 
health/disease. For this purpose, they focused on two disor-
ders of increasing incidence in Europe: obesity and inflam-
matory bowel disease. Similarly, the Human Food Project and 
the American Gut Project30 focus on the gut microbiome with 
the aim of determining how to acquire a healthy microbiome 
through food.

Environmental microbiome studies. The Earth Microbiome 
Project (EMP) is a remarkable effort started in 2010 to char-
acterize the diversity, distribution, and structure of microbial 
ecosystems across the planet and has already gathered over 
30,000 samples.31 Their focus is on diverse ecosystems, includ-
ing not only the ones within the bodies of humans, animals, and 
plants but also terrestrial, marine, freshwater, sediment, air, 
and constructed environments, as well as every intersection of  
these ecosystems.

J. Craig Venter Institute’s (JCVI) Global Oceanic Sam-
pling (GOS) expeditions and the European Tara Oceans ini-
tiatives32–36 have focused on understanding and cataloging 
the marine microbiome diversity across the planet. JCVI’s 
vessel, Sorcerer II, has made multiple oceanic expeditions 
to collect samples from oceans across the globe. Their mul-
tistage processing allows them to exploit size differences to 
separate different groups of microbes, including large micro-
zooplankton and phytoplankton (3–20 µm), picoplankton and 
large cyanobacteria (0.8–3 µm), prokaryotes and large viruses 
(0.1–5 µm), and viroplankton (below 0.1 µm).

Metagenomics
Metagenomics allows us to investigate the composition of a 
microbial community. Genomic studies consider the genetic 
material of a specific organism, while metagenomics (meta 
meaning beyond) refers to studies of genetic material of entire 
communities of organisms. This process usually involves next-
generation sequencing (NGS) after the DNA is extracted 
from the samples. NGS produces a large volume of data in 
the form of short reads, from which a microbial community 
profile or other information can be pieced together just like 
gathering information from the pieces of a puzzle.
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Recently, some authors have argued in favor of a termino
logical distinction between metagenomics (used to describe a 
broad comprehensive genomic approach to microbiome profil-
ing) and metataxonomics (which uses amplicons from a tar-
geted marker gene in order to make taxonomic inferences).37 
One popular marker gene used in metataxonomic studies 
is 16S rDNA.13,38–42 A large number of databases are avail-
able for amplicons targeted in this region43–45 and to aid in 
classification of reads and in building taxonomic profiles of 
a microbiome. With the advancement of technology, studies 
have shifted toward shotgun approaches,46 such as WMS. As 
a result, a number of specialized databases with complete ref-
erence genomes have been developed.47 These databases are 
then used to construct taxonomic profiles18,48,49 but are also 
useful for inferring potential functional profiles for the micro-
bial community based on the collection of genes present in 
the sample.

Tools and techniques. A variety of tools and analysis 
pipelines have been developed to analyze metagenomic data.50 
problem solving environments (PSEs51) provide user-friendly 
workbenches to develop flexible scientific analysis pipelines 
using a menu of available tools. Such workbenches incor-
porate different ranges of generality. For instance, Galaxy52 
maximizes generality by providing a framework for genomic 
analysis while allowing the user to supply tools and file for-
mats for various stages in a pipeline. Galaxy can execute jobs 
remotely, allows for undoing or repeating of individual steps, 
and permits inspection of intermediate results but requires 
considerable computational and storage resources. QIIME53 
provides a set of integratable scripts for analyzing raw micro-
bial DNA samples including taxonomic classification using 
marker genes, such as 16S rRNA, but allows flexible pipelines 
to be constructed. Mothur54 was initially designed to target 
the microbial ecology community but has since been adopted 
by the human microbiome community as well. It provides 
an extensible package with functionality accessible through 
a domain-specific language. Like QIIME, Mothur is also a 
metataxonomic tool, focusing on marker genes, such as 16S 
rRNA. Pathoscope55 provides a pipeline that can identify bac-
terial strains present in a series of raw sequences and generate 
reports of statistics, such as percentages, gene locations, and 
protein products. Ideally, a PSE should be open source, infi-
nitely extensible, lightweight, and able to accommodate any 
tool, user, or developer.

As shown in Figure  1, metagenomic analysis pipelines 
can be divided into three main steps: (1) preprocessing the 
reads, (2) processing the reads, and (3) downstream analyses.

Preprocessing and processing the reads. The procedures 
followed in preprocessing and processing of the reads (steps 1 
and 2) have become fairly standardized. Hence, we describe 
them briefly and focus mostly on downstream analysis 
(“Downstream analyses of metagenomic data” section).

Preprocessing mainly involves removing adapters 
from reads, filtering reads by quality and length, removing  

contaminants, identifying and removing any chimeric 
sequences that may have been generated during polymerase 
chain reaction (PCR) amplification, and preparing data for 
subsequent analysis. A survey of some of the popular tools 
and techniques currently available for this step can be found 
in Kim et al.50

After preprocessing of the reads, the next step is to clas-
sify each read based on the taxa with the highest probability 
of being the origin of that read. This step often uses a refer-
ence database of relevant microbial genomes and produces a 
microbial profile usually represented as an abundance matrix 
with microbial taxa as rows, samples as columns, and values 
representing the abundance of a taxon in the sample.

In the case of metataxonomics, reads are frequently 
grouped (or clustered) prior to assigning a label. Unlike WMS, 
which produces a lower coverage and may identify thousands 
of strains per sample, targeted approaches have reads that 
come from relatively small regions of the genome, making 
this extra clustering step valuable in lowering errors in the 
classification. Groups of reads that result from the clustering 
process displaying similarity in sequence and/or composition 
are inferred to have a common origin and referred to as opera-
tional taxomonic units (OTUs).

The classification and labeling performed on the reads 
can be either taxonomy dependent or taxonomy independent. 
Taxonomy-dependent methods use a database of reference 
genomes, which has some bias toward data with pathogenic 
or commercial applications. Methods in this category can be 
further classified as alignment-based, composition-based, or 
hybrid. Alignment-based methods usually give the highest 

Step 1:
Preprocessing

Step 2:
Processing

Step 3:
Downstream

analysis

Figure 1. Generic microbiome analysis pipeline.
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accuracy but are limited by the reference database and by the 
alignment parameters used and are generally computation 
and memory intensive. Composition-based methods store 
only compact models instead of the whole genome, requir-
ing fewer computational resources. These methods use fea-
tures extracted from the genomes (eg, GC percentage and 
codon or oligonucleotide usage patterns) to build models 
but have not yet achieved the accuracy of alignment- based 
approaches. Hybrid approaches offer a compromise between 
the two. Taxonomy-independent methods, on the other 
hand, do not require a priori knowledge. Instead, they seg-
regate reads based on properties, such as distance, k-mers, 
abundance levels, and frequencies. These methods are typi-
cally used if the samples are more likely to have microbes 
that are not documented in the databases. Chen et al.56 and 
Mande et al.57 reported an extensive review of popular tools 
and techniques used for processing 16S reads and for pro-
cessing WMS reads, respectively.

Accurate classification and labeling are challenging 
because (a) sequencing technologies produce short reads,  
(b) for economic reasons the datasets often have low cover-
age of the genomes in the microbiome, (c) some sequencing 
technologies have a high percentage of sequencing errors, and  
(d) the reference genome databases used are not comprehen-
sive, often failing to provide an accurate taxonomic context 
because of lateral gene transfers between microbial taxa.

Downstream analyses of metagenomic data. Once the 
reads have been assigned labels or classified as best as possible, 
downstream analyses attempt to extract useful knowledge 
from the data. Typical questions addressed in this step include 
“how diverse are the microbial taxa in the sample?”, “what is 
the functional profile of the genes present and/or expressed in 
the microbial community?”, “what microbial taxa are differen-
tially abundant in the samples?”, “what phylogenetic groups, 
functional and metabolic pathways, orthologous groups of 
genes, and gene ontology terms are particularly enriched or 
depleted in the samples?”, and “what microbial groups tend 
to co-occur or co-avoid in the samples of interest?”. We now 
review several current tools and techniques for performing 
downstream analysis.

Richness and diversity are measures that have tradition-
ally been used to characterize a metagenomic sample.58,59 
Richness is a simple count of taxa present in a sample. Diver-
sity refers to a collection of indices and measures (eg, Shannon, 
Chao, Simpson, and Berger–Parker) that quantify the even-
ness of the distribution of the abundances of the taxa,59 often 
incorporating distance measures or similarity indices (eg, 
Jaccard, Sorenson, and Bray–Curtis). Richness and diversity 
offer measures of complexity of the community but disclose 
little about interactions within the community, which requires 
more complex downstream analyses.

Visualizing taxonomic profiles is a task that has been 
addressed by several initiatives. Krona,60 for example, is a 
simple and intuitive web-based tool to visualize the taxonomic 

profile as a pie chart with an embedded hierarchy. In contrast, 
the Visualization and Analysis of Microbial Population Struc-
ture (VAMPS) tool61 can measure and visualize statistically 
significant similarities and differences between multiple taxo-
nomic profiles of complex microbial communities.

Integrating additional information in metagenomic 
analyses is extremely valuable in order to provide improved 
perspectives of the microbial profiles. Based on this premise, 
a number of approaches have sought the use of phylogenetic 
information to enhance the labeling and classification of reads, 
as is the case with Amphora2,62 which performs phylogenetic 
inference using phylum-specific marker databases. This type 
of inference can be done algorithmically as well, through edge 
principal component analysis (PCA) and squash clustering.63 
Phymm64,65 is a software package that classifies sequence frag-
ments into phylogenetic groups using interpolated Markov 
models. Finally, PPlacer66 performs phylogenetic placement 
using a fixed reference tree and maximum-likelihood infer-
ence with distance calculations to indicate uncertainty and can 
be executed in parallel.

A more significant improvement is possible with the 
help of functional annotations of the genes to which the reads 
are mapped.67,68 Although many analytical metagenomic 
approaches focus on the composition or structure of the 
samples, functional profiling is also essential, as it provides 
insight into the underlying biological processes. Other use-
ful resources for annotation include gene ontology (GO),69,70 
Kyoto Encyclopedia of Genes and Genomes (KEGG),71,72 and 
Clusters of Orthologous Groups (COG).73,74 As a part of the 
HMP initiative to analyze WMS data, a methodology called 
HUMAnN75 was developed for inferring the functional and 
metabolic potential of a microbial community.

Alternatively, other existing tools, such as IMG/M,76 
CAMERA,77 METAREP,78 MEGAN,79 and CoMet,80 can 
also be used to obtain functional profiles of microbiomes. 
IMG/M, METAREP, and CoMet provide a web-based 
user interface, while CAMERA aims to offer a state-of-the-
art computational structure for high-performance network 
access and grid computing as a part of a distributed archi-
tecture. In contrast, MEGAN is a standalone computer pro-
gram. METAREP and CoMet annotate the data with GO 
and KEGG, whereas MEGAN uses the NCBI taxonomy to 
summarize and order the results obtained after performing 
BLAST. METAREP also offers the option to annotate the 
data with taxonomic information, and IMG/M uses BLAST 
to infer phylogenetic information from the sample. However, 
IMG/M is more oriented toward protein-related information 
by annotating the results with resources, such as COG, Pfam, 
TIGRFAMs, ENZYME, and KEGG. IMG/M was devel-
oped by the Joint Genome Institute and contains data from 
the HMP and the Genome Encyclopedia of Bacterial and 
Archaea Genomes. CAMERA has been designed for envi-
ronmental and ecological purposes with the aim of provid-
ing new ways of visualizing and interacting with data and was 

http://www.la-press.com
http://www.la-press.com/journal-evolutionary-bioinformatics-j17


Metagenomics, metatranscriptomics, and metabolomics approaches for microbiome analysis

9Evolutionary Bioinformatics 2016:12(S1)

applied to data from GOS. METAREP, on the other hand, 
was developed at JCVI. It performs statistical tests and muti-
dimensional scaling (MDS) and can also produce graphi-
cal summaries, heatmaps and hierarchical clustering plots. 
MEGAN uses the lowest common ancestor algorithm to 
label the reads and has been applied to datasets, such as the 
Saragaso Sea dataset, and data from mammoth bone. Finally, 
CoMet combines open reading frame finding and assignment 
of protein sequences to Pfam domain families with compara-
tive statistical analysis, providing the user with comprehensive 
tabular data files and visualizations in the form of hierarchical 
clustering and MDS. It was applied to 454 data.

Obtaining the functional profile is typically not possible 
with targeted approaches, since it provides no direct evidence 
of the functional capabilities of the microbial community. 
However, the tool Phylogenetic Investigation of Communities 
by Reconstruction of Unobserved States (PICRUSt) shows 
how to infer a functional profile of a microbial community 
directly from taxonomic profiles of marker genes, such as the 
16S rDNA, and a database of reference genomes.81 Their results 
provide useful insights on uncultivated microbial communi-
ties, prior to which only marker gene surveys were available.

Discussion. In summary, metataxonomics helps us to 
compute the taxonomic profile of a microbial community, 
while metagenomics helps us to compute the functional pro-
file by focusing on the gene content and using the available 
functional annotations of the corresponding proteins. While 
metagenomics is powerful, solely using it to study a micro-
biome is limited in value. Many experts have confirmed that 
the percentage of documented bacteria is very low compared 
to the estimate of bacterial species on our planet.82 This may 
be due partially to the impossibility of culturing complex envi-
ronments or replicating in the laboratory the real conditions in 
which the microbiome exists. Either way, the reference data-
bases used to classify and label bacteria are limited to what has 
been cataloged. Current methods typically either discard reads 
from undocumented microbes or label them based on the clos-
est documented microbe from the database. Thus, inevitably, 
results will be based on a biased percentage of bacteria pres-
ent in the samples, representing the first shortcoming of these 
methods. Another limitation is that metagenomics cannot 
reveal dynamic properties, such as the spatiotemporal activity 
of the community and the impact of the environment on these 
activities. The only information that can be obtained at a func-
tional level is the potential of the microbiome to display func-
tional properties associated with the presence of genes with no 
information about their expression levels or lack thereof. The 
need to monitor gene expression patterns brings us to the topic 
of our next section, metatranscriptomics.

Metatranscriptomics
By focusing on what genes are expressed by the entire micro-
bial community, metatranscriptomics sheds light on the 
active functional profile of a microbial community.83 The 

metatranscriptome provides a snapshot of the gene expression 
in a given sample at a given moment and under specific condi-
tions by capturing the total mRNA. Pioneering studies aim-
ing to identify expressed genes in environmental samples date 
back to 200584,85 and represent the dawn of metatranscrip-
tomics. However, these were limited to a relatively narrow 
group of genes. As for metagenomics, it is now possible to 
perform whole metatranscriptomics shotgun sequencing. This 
(meta)genome-wide expression provides the expression and 
functional profile of a microbiome.48,86,87

When processing reads, a typical metatranscriptom-
ics analysis pipeline will either (1) map reads to a reference 
genome or (2) perform de novo assembly of the reads into 
transcript contigs and supercontigs. The first strategy, in a 
manner similar to the alignment-based methods in WMS, 
maps reads to reference databases, thus gathering information 
to infer the relative expression of individual genes. The second 
strategy infers the same but with assembled sequences. The 
first strategy is limited by the information in the database of 
reference genomes. The second strategy is limited by the abil-
ity of software programs to assemble contigs and supercontigs 
correctly from short reads data.

Tools and techniques. The application of metatranscrip-
tomics to the study of the microbiome is far less common 
relative to other omics reviewed in this article. Most analy-
sis pipelines described in the literature were built ad hoc. The 
majority of these methods follow the aforementioned first 
strategy based on read mapping.88–92 In this case, metatran-
scriptomic reads are generally mapped to specialized databases 
(usually downloaded from the NCBI) using alignment tools, 
such as Bowtie2, BWA, and BLAST. The results are then 
annotated using resources, such as GO, KEGG, COG, and 
Swiss-Prot. Finally, different types of downstream analysis 
are carried out depending on the goal of the study (eg, PCA-
based phylogenetic analysis or enrichment analysis). The latest 
metatranscriptomics techniques include stable isotope prob-
ing (SIP), which has been used to retrieve specific targeted 
transcriptomes of aerobic microbes in lake sediment.93 This 
not only helps to target specific organisms but also contributes 
significantly to metabolomics studies.

The second strategy requires assembling metatranscrip-
tomic reads into longer fragments called contigs. For this 
purpose, numerous software packages are available. Celaj 
et  al.94 compared de novo sequence assemblers to reference-
based mapping tools. The compared tools included Trinity,95 
MetaVelvet,96 Oases,97 AbySS, Trans-Abyss, and SOAPden-
ovo,98–100 as well as tools such as Scripture and Cufflinks.101,102 
It was found that compared to other tools Trinity not only 
outperformed all of them but also appeared to be best tuned 
for sensitivity across the broadest range of expression levels. 
This was particularly noticeable in reconstructing transcripts 
within the highest expression quintiles, in which other de 
novo strategies failed to perform well.95 Li and Dewey103 
developed RNA-Seq by Expectation Maximization (RSEM), 
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a quantitative pipeline for transcriptomic analysis, currently 
provided as stand-alone software or a plug-in within Trinity. 
RSEM takes as input a reference transcriptome or assembly 
(most likely obtained through Trinity) along with RNA-Seq 
reads generated from the sample and calculates normalized 
transcript abundance (ie, the number of RNA-Seq reads cor-
responding to each reference transcriptome or assembly).104,105 
Although both Trinity and RSEM were designed for tran-
scriptomic datasets (ie, obtained from a single organism), it 
may be possible to apply them to metatranscriptomic data 
(ie, obtained from a whole microbial community). MEGAN 
annotates results with GO to perform enrichment analysis.106

Discussion. Although current metatranscriptomic tech
niques are promising, there are still several obstacles that limit 
their large-scale application. First, much of the harvested 
RNA comes from ribosomal RNA, and its dominating abun-
dance can dramatically reduce the coverage of mRNA, which 
is the main focus of transcriptomic studies. Some efforts have 
been made to effectively remove rRNA.107 Second, mRNA 
is notoriously unstable, compromising the integrity of the 
sample before sequencing. Third, differentiating between 
host and microbial RNA can be challenging, although com-
mercial enrichment kits are available. This may also be done 
in silico if a reference genome is available for the host, as in 
the work of Perez-Losada et al.108 who consider the impact 
of host–pathogen interactions on the human airway micro-
biome. Finally, transcriptome reference databases are limited 
in their coverage.

WMS approaches provide information on the taxonomic 
profile of a microbial community as well as its potential func-
tional profile; in contrast, whole metatranscriptome sequenc-
ing describes the active functional profile. This would help 
in studying the dynamics of functional profiles with varying 
conditions. We now discuss metabolomics, which studies the 
consequences of the shifts in the collective gene expression 
of the microbial community that modifies the very medium 
where the microbial community must feed, grow, reproduce, 
and cooperate or compete to survive.

Metabolomics
Metabolomics is the comprehensive analysis by which all 
metabolites of a sample (small molecules released by the 
organism into the immediate environment) are identified and 
quantified.109 The metabolome is considered the most direct 
indicator of the health of an environment or of the alterations 
in homeostases (ie, dysbiosis).110 Variation in the production 
of signature metabolites are related to changes in activity 
of metabolic routes, and therefore, metabolomics represents 
an applicable approach to pathway analysis.111 Addition-
ally, the application of metabolomics for drug discovery and  
pharmacogenomics represents a promising avenue for person-
alized medicine.112

The metabolomic profile associated with the microbiome 
may show a strong dependence on environmental factors  

(eg, diet, exposure to xenobiotics, and environmental stressors), 
providing valuable information not just about the character-
istics of the microbiome but also about the interactions of 
the microbial community with the host environment.113–115 
Thus, metabolomics aims to improve our understanding of 
the role of the microbiome in the transformation of nutri-
ents and pollutants as well as other abiotic factors that may 
affect the homeostasis of the host environment. Microbial 
communities exert a strong influence on critical biogeo-
chemical cycles, and the study of their metabolome can help 
to develop predictive biomarkers for environmental stres-
sors.116 The microbiome is regarded as a biological reactor 
that, based on its genetic pool, can transform resources and 
hazardous elements into products that are either beneficial 
or detrimental to the health of its environment. A good 
example is bioremediation and its application to reduce the 
consequences of pollution.117

Most interestingly, the metabolome can illustrate signal-
ing processes involved during communication between bac-
teria, such as quorum sensing, which relates gene expression 
responses to changes in cell population density.118–123 A deeper 
understanding of the communication mechanisms within 
microbial communities could possibly revolutionize the cur-
rent strategies in areas such as infections disease control, and 
optimize agricultural exploitation in environmental conserva-
tion. Thus, metabolomics complements the information pro-
vided by the other omics (mentioned earlier) by describing not 
just biological systems themselves, but how they interact inter-
nally and externally.

Generating metabolomics data differs significantly from 
generating metagenomics and metatranscriptomics data, which 
rely heavily on sequencing. Identifying and quantifying metab-
olites is typically carried out using a combination of chroma-
tography techniques (ie, liquid chromatography, LC, and gas 
chromatography, GC) and detection methods, such as mass 
spectrometry (MS) and nuclear magnetic resonance (NMR). 
For a more detailed review of these technologies and their many 
variants, we refer the reader to a recent review by Aldridge 
and Rhee.124 These technologies produce spectra consisting of 
patterns of peaks that allow both the identification and quan-
tification of metabolites. These patterns (either predicted or 
experimentally obtained) are stored in spectral databases, allow-
ing automated analysis and generation of metabolomic profiles. 
With these technological resources, metabolomics fulfills the 
requirements of a high-throughput analytical method, and thus 
data analysis represents a critical step in knowledge generation. 
As a result, we have seen a rise in software development, large 
data repositories, and initiatives for standardization. This in 
turn paves the road for data integration.

Tools and techniques. The analysis pipeline for spec-
tral metabolomic data involves three steps: (1) preprocessing, 
(2) statistical analysis, and (3) machine learning techniques 
for pattern recognition.125 In the first step, denoising and 
peak-picking improve the quality of the data to be processed. 
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Once the peak pattern has been established, a comparison 
against spectral databases identifies the metabolites in the 
sample and the area below the peaks their respective quanti-
ties. To automate this process, spectral databases are main-
tained and curated by specialized international consortia that 
emphasize standardization. These include the following: the 
Human Metabolome Database, a cross-referenced database 
about the small metabolites found in the human body126–128; 
the BioMagResBank, which works as a central repository for 
experimental NMR data including both small metabolites 
and macromolecules129; the Madison-Qingdao Metabolom-
ics Consortium Database,130 which includes both NMR and 
MS data thoroughly annotated collected from other databases 
and literature; MassBank,131 which merges spectral data from 
different collision-induced dissociation conditions to improve 
the precision in the identification of compounds; the Golm 
Metabolome Database,132 which stores spectral data with 
retention indexes, useful for automated identification of com-
pounds analyzed with GC–MS; and the METLIN Metabo-
lite Database,133 which contains curated spectral information 
of biological metabolites without information of the environ-
mental context from which the samples where obtained. Each 
of them differs slightly in functionality but pursues similar 
goals, serving as repositories of spectral data and offering links 
to their biological interpretation.

Discussion. By cataloging all metabolites present in 
a sample, metabolomics offers a powerful way to relate the 
metabolites to the cellular processes of which they are the 
byproducts. The combination of metabolomic and pathways 
information can lead to new hypotheses. One important chal-
lenge of this approach is difficulty in determining whether a 
metabolite was generated by the host or by the microbiome. 
In addition, if conclusions are to be made about which genes, 
enzymes, or pathways are associated with a specific metabo-
lite, the results obtained from a metabolomic study must be 
combined with other omic data. This highlights the need for 
new approaches that deal with integrated omics, as discussed 
in the “Integrating multiomic data” section.

Integrating Multiomic Data
Standard analyses of individual omic datasets focus on the 
community structure and functional roles of individual taxa or 
groups of taxa. The remaining challenge lies in elucidating the 
large, dynamic, and complex network of interactions between 
its constituent entities. With the increasing availability of 
heterogeneous multiomic datasets,11 the need for integrative 
analyses has become even more urgent. A reasonable approach 
(Fig. 2) is to perform separate analysis, adding an extra inte-
grative step within downstream analysis.

Integrating multiple omic datasets is a problem that 
researchers are just beginning to tackle.12 Bringing together 
different studies will allow researchers to build and test 
mathematical models of microbial activity and interaction, 
enabling a better understanding of the interplay between the 

environment and the microbial community.134,135 For example, 
the combination of metagenomics and metatranscriptomics 
may reveal overexpression or underexpression of particular 
functions and, in some cases, the activities of specific organ-
isms.90,136–138 The addition of metabolomics could provide 
insight into the outcome of those changes in gene expression, 
which may lead to differential expression of specific metab-
olites that impact the health of the host environment.139–144 
Understanding the whole ecosystem opens new avenues and 
exciting approaches for generating new knowledge. By com-
bining multiple (potentially noisy and heterogeneous) data 
types, we can build support for specific hypotheses; if inde-
pendent lines of evidence arrive at the same conclusion, then 
our confidence in that conclusion will grow.

Tools and techniques. Current studies indicate that 
integrating metagenomics and metatranscriptomics has the 
potential of attributing functional changes in gene expres-
sion to specific members of the microbial community. 
Franzosa et  al.145 showed a relationship between genomic 
abundances and differential regulations of microbial tran-
scripts, discovering up- and downregulated pathways within 
the human gut microbiome. Shi et  al.146 applied this inte-
grative approach relating the functional and taxonomic pro-
files of marine environmental samples. Current studies also 
indicate that integrating the results of metagenomics with 
metabolomics can provide insight into how members of a 
microbial community interact with each other and with their 
environment.147 For example, Lu et al.148 observed a simulta-
neous effect on both microbiome composition and metabo-
lite production upon introducing arsenic into the mouse gut 
environment. Zhang et al.149 performed a similar study with 
the introduction of disinfection byproducts from drinking 
water. These studies illustrate that the different omics are 
interdependent and that an integrated approach can lead to 
more useful discoveries.

Several current studies suggest that integrating all three 
omic data – metagenomics, metatranscriptomics, and metab-
olomics – would provide a complete picture from genes to 
phenotype.150,151 With the wealth of datasets available but 
not currently integrated, Abram152 argues for a system-based 
approach to multiomics, which would allow predictive model-
ing. In particular, he points out that studying interrelation-
ships between entities (which he refers to as SIP-omics) would 
provide some guidance to establishing linkages between vari-
ous datasets.

Interrelationships also form the basis of the reverse ecol-
ogy algorithm,153 which attempts to connect microbial com-
munities with properties of their environment under the 
assumption that adaptation to the environment is most fun-
damental to their structure and topology. The set of metabo-
lites that are acquired by an organism from external sources is 
called the seed set and represents the metabolic interface with 
the environment. Borenstein et al.154 showed how to compute 
the seed set for individual organisms and how it can be used 
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to characterize the effective biochemical habitat. Ebenhöh 
et al.155 offered predictive models of an organism’s ability to 
flourish in specific environments.

Conclusion and Future Directions
In this article, we have discussed how three different omic 
approaches – metagenomics, metatranscriptomics, and metab-
olomics – provide useful information toward understanding 
microbiomes. We also discussed how the value of an integra-
tive approach is greater than the sum of its parts.

Biological networks have long been used to model inter-
actions between biological entities, with applications to areas, 
such as gene regulation, metabolic and signaling pathways, 
protein–protein networks, and food webs in ecology.156–159 
With its proven application to analyzing interrelationships 
and their critical role in multiomics, we believe biological net-
work analysis will be critical to future multiomic approaches 
to studying the microbiome. In addition, network analyses 
offer the possibility of exploring both local (eg, relationship 
with neighbors) as well as global properties (eg, connectivity) 
of a community. Dutkowski et al.160 studied the assignment 
of ontologies using networks and developed tools, such as 
Cytoscape,161 to perform these analyses.

Metagenomic studies have shown that interactions 
within a microbiome can be naturally modeled using a net-
work representation,14,42,162 with properties closely related to 
social networks.15,24 Macroscale community structures have 
been observed in these types of networks, indicating clubs 
(ie, groups of co-occurring bacteria) as well as rival clubs  
(ie, groups of bacteria that tend to not co-occur).15,42

In order to integrate data from various omic sources, 
microbiomes can also be modeled as heterogeneous net-
works (Fig. 3), which provides a visual description of what 
such a network in the context of the microbiome would look 
like. A heterogeneous network would allow researchers to 
generate new interesting hypotheses that involve entities 
from the different omics described in this article (rep-
resented in the figure by nodes with different shapes and 
colors). For instance, we could potentially have a club that 
includes genes, microbes, and metabolites. Heterogeneous 
networks have been used in other applications, such as asso-
ciations between genetic interactions and protein–protein 
interactions in order to infer cellular function.163 Another 
study couples these same types of networks to infer gene 
dependencies and new processes, such as DNA damage 
repair, and also different types of co-expression networks.164 
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Many types of omic networks were also integrated to study 
gene regulation in the bacterium Mycobacterium tuberculo-
sis.165 Other omic areas not included in this study include 
metaproteomics, metalipidomics, and metaglycomics. We 
believe that analyzing heterogeneous networks built across 
multiple omic datasets is critical to linking the different lev-
els of complexity inherent to biological systems, thus estab-
lishing a more comprehensive understanding of the nature 
and dynamics of microbiomes.

Author Contributions
Conceived and designed the experiments: VAP, GN. Ana-
lyzed the data: VAP, WH, VSU, TC, GN. Wrote the first 
draft of the manuscript: VAP, WH, VSU, TC. Contributed 
to the writing of the manuscript: VAP, WH, VSU, TC, GN. 
Agree with manuscript results and conclusions: VAP, WH, 
VSU, TC, KM, GN. Jointly developed the structure and argu-
ments for the paper: VAP, GN. Made critical revisions and 
approved final version: VAP, KM, GN. All authors reviewed 
and approved of the final manuscript.

References
	 1.	 Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping 

microbial diversity in the human intestine. Cell. 2006;124(4):837–48.
	 2.	 Costello EK, Lauber CL, Hamady M, et al. Bacterial community variation in 

human body habitats across space and time. Science. 2009;326:1694–7.
	 3.	 Hibbing ME, Fuqua C, Parsek MR, Peterson SB. Bacterial competition: surviv-

ing and thriving in the microbial jungle. Nat Rev Microbiol. 2010;8:15–25.
	 4.	 Liu L, Chen X, Skogerb G, et al. The human microbiome: a hot spot of microbial 

horizontal gene transfer. Genomics. 2012;100(5):265–70.
	 5.	 Proft T. Microbial Toxins: Current Research and Future Trends. Caister Academic 

Press, Norfolk, UK; 2009.
	 6.	 Sharon G, Garg N, Debelius J, Knight R, Dorrestein PC, Mazmanian SK. 

Specialized metabolites from the microbiome in health and disease. Cell Metab. 
2014;20(5):719–30.

	 7.	 Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI. Human nutrition. 
Nature. 2011;474(7351):327–36.

	 8.	 Foxman B, Martin ET. Use of the microbiome in the practice of epidemiology: a 
primer on -omic technologies. Am J Epidemiol. 2015;182(1):1–8.

	 9.	 Betts K. A study in balance: how microbiomes are changing the shape of envi-
ronmental health. Environ Health Perspect. 2011;119(8):340–6.

	 10.	 Whipps JM, Lewis K, Cooke RC. Mycoparasitism and Plant Disease Control. 
Manchester University Press, Manchester, UK; 1988:161–87.

	 11.	 Segata N, Boernigen D, Tickle TL, Morgan XC, Garrett WS, Huttenhower C.  
Computational metaomics for microbial community studies. Mol Syst Biol. 
2013;9(1):666–80.

	 12.	 Franzosa EA, Hsu T, Sirota-Madi A, et al. Sequencing and beyond: integrat-
ing molecular ‘omics’ for microbial community profiling. Nat Rev Microbiol. 
2015;13(6):360–72.

	 13.	 Barberan A, Bates ST, Casamayor EO, Fierer N. Using network analy-
sis to explore cooccurrence patterns in soil microbial communities. ISME J. 
2011;6:343–51.

	 14.	 Faust K, Raes J. Microbial interactions: from networks to models. Nat Rev 
Microbiol. 2012;10:538–50.

	 15.	 Fernandez M, Riveros JD, Campos M, Mathee K, Narasimhan G. Microbial 
“Social Networks”. BMC Genomics. 2015;16(suppl 11):S6.

	 16.	 Fernandez M, Aguiar-Pulido V, Huang W, et al. Microbiome analysis: state-of-
the-art and future trends. In: Mandoiu I, Zelikovsky A, eds. Computational Methods 
for Next Generation Sequencing Data Analysis. Wiley, Hoboken, NJ;2015:333–51.

	 17.	 Peterson J, Garges S, Giovanni M, et al. The NIH Human Microbiome Project. 
Genome Res. 2009;19:2317–23.

	 18.	 Human Microbiome Project Consortium. Structure, function and diversity of 
the healthy human microbiome. Nature. 2012;486:207–14.

	 19.	 Human Microbiome Project Consortium. A framework for human microbiome 
research. Nature. 2012;486(7402):215–21.

	 20.	 Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. 
The human microbiome project. Nature. 2007;449:804–10.

	 21.	 Turnbaugh PJ, Gordon JI. The core gut microbiome, energy balance and obesity. 
J Physiol (Lond). 2009;587:4153–8.

	 22.	 Marrazzo JM, Martin DH, Watts DH, et  al. Bacterial vaginosis: identifying 
research gaps proceedings of a workshop sponsored by DHHS/NIH/NIAID. 
Sex Transm Dis. 2010;37:732–44.

	 23.	 Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by 
metagenomic sequencing. Nature. 2010;464:59–65.

	 24.	 Ackerman J. The ultimate social network. Sci Am. 2012;306(6):36–43.
	 25.	 Brown K, DeCoffe D, Molcan E, Gibson DL. Diet-induced dysbiosis of the 

intestinal micro-biota and the effects on immunity and disease. Nutrients. 
2012;4(8):1095.

	 26.	 Cho I, Blaser MJ. The human microbiome: at the interface of health and disease. 
Nat Rev Genet. 2012;13:260–70.

	 27.	 Integrative HMP (iHMP) Research Network Consortium. The integrative human 
microbiome project: dynamic analysis of microbiome-host omics profiles during 
periods of human health and disease. Cell Host Microbe. 2014;16(3):276–89.

	 28.	 Human Microbiome Project Consortium. HMSCP – Shotgun Community Profiling.  
Available at: http://hmpdacc.org/HMSCP/. Last accessed: Jan. 2016.

	 29.	 Ehrlich SD, MetaHIT Consortium. Metagenomics of the intestinal microbiota: 
potential applications. Gastroenterol Clin Biol. 2010;34:S23–8.

	 30.	 Goedert JJ, Hua X, Yu G, Shi J. Diversity and composition of the adult fecal 
microbiome associated with history of cesarean birth or appendectomy: analysis 
of the American gut project. EBioMedicine. 2014;1(2):167–72.

	 31.	 Gilbert JA, Jansson JK, Knight R. The earth microbiome project: successes and 
aspirations. BMC Biol. 2014;12(1):69.

	 32.	 Venter JC, Remington K, Heidelberg JF, et al. Environmental genome shotgun 
sequencing of the Sargasso sea. Science. 2004;304(5667):66–74.

	 33.	 Nealson KH, Venter JC. Metagenomics and the global ocean survey: what’s in it 
for us, and why should we care? ISME J. 2007;1(3):185.

	 34.	 Lima-Mendez G, Faust K, Henry N, et al. Determinants of community struc-
ture in the global plankton interactome. Science. 2015;348(6237):1262073.

Integrative network

Metabolomics

MetagenomicsMetatranscript
omics

Figure 3. Integrated networks for multiomic data.

http://www.la-press.com
http://www.la-press.com/journal-evolutionary-bioinformatics-j17
http://hmpdacc.org/HMSCP/


Aguiar-Pulido et al

14 Evolutionary Bioinformatics 2016:12(S1)

	 35.	 Karsenti E, Acinas SG, Bork P, et al. A holistic approach to marine eco-systems 
biology. PLoS Biol. 2011;9(10):e1001177.

	 36.	 Sunagawa S, Coelho LP, Chaffron S, et al. Structure and function of the global 
ocean microbiome. Science. 2015;348(6237):1261359.

	 37.	 Marchesi JR, Ravel J. The vocabulary of microbiome research: a proposal. Micro-
biome. 2015;3:31.

	 38.	 Chaffron S, Rehrauer H, Pernthaler J, von Mering C. A global network of coex-
isting microbes from environmental and whole-genome sequence data. Genome 
Res. 2010;20:947–59.

	 39.	 Gonzalez A, Knight R. Advancing analytical algorithms and pipelines for bil-
lions of microbial sequences. Curr Opin Biotechnol. 2012;23:64–71.

	 40.	 Freilich S, Kreimer A, Meilijson I, Gophna U, Sharan R, Ruppin E. The large-
scale organization of the bacterial network of ecological co-occurrence interac-
tions. Nucleic Acids Res. 2010;38(12):3857–68.

	 41.	 Kuczynski J, Liu Z, Lozupone C, McDonald D, Fierer N, and Knight R. Micro-
bial community resemblance methods differ in their ability to detect biologically 
relevant patterns. Nat Methods. 2010;7:813–9.

	 42.	 Faust K, Sathirapongsasuti JF, Izard J, et al. Microbial co-occurrence relation-
ships in the human microbiome. PLoS Comput Biol. 2012;8(7):e1002606.

	 43.	 Cole JR, Wang Q , Fish JA, et al. Ribosomal Database Project: data and tools for 
high throughput rRNA analysis. Nucleic Acids Res. 2014;42:D633–42.

	 44.	 Pruesse E, Quast C, Knittel K, et al. SILVA: a comprehensive online resource 
for quality checked and aligned ribosomal RNA sequence data compatible with 
ARB. Nucleic Acids Res. 2007;35(21):7188–96.

	 45.	 DeSantis TZ, Hugenholtz P, Larsen N, et al. Greengenes, a chimera-checked 
16S rRNA gene database and workbench compatible with ARB. Appl Environ 
Microbiol. 2006;72:5069–72.

	 46.	 Sharpton TJ. An introduction to the analysis of shotgun metagenomic data. 
Front Plant Sci. 2014;5:209.

	 47.	 Nelson KE, Weinstock GM, Highlander SK, et  al. A catalog of reference 
genomes from the human microbiome. Science. 2010;328:994–9.

	 48.	 Frias-Lopez J, Shi Y, Tyson GW, et al. Microbial community gene expression in 
ocean surface waters. Proc Natl Acad Sci (PNAS). 2008;105(10):3805–10.

	 49.	 Chain PS, Grafham DV, Fulton RS, et al. Genome project standards in a new era 
of sequencing. Science. 2009;326:236–7.

	 50.	 Kim M, Lee K-H, Yoon S-W, Kim B-S, Chun J, and Yi H. Analytical tools 
and databases for metagenomics in the next-generation sequencing era. Genomics 
Inform. 2013;11(3):102–13.

	 51.	 Gallopoulos E, Houstis E, Rice J. Computer as thinker/doer: problem-solving 
environments for computational science. Comput Sci Eng IEEE. 1994;1:11–23.

	 52.	 Goecks J, Nekrutenko A, Taylor J. Galaxy: a comprehensive approach for sup-
porting accessible, reproducible, and transparent computational research in the 
life sciences. Genome Biol. 2010;11:R86.

	 53.	 Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-
throughput community sequencing data. Nat Methods. 2010;7:335–6.

	 54.	 Schloss PD, Westcott SL, Ryabin T, et  al. Introducing Mothur: open-source, 
platform-independent, community-supported software for describing and com-
paring microbial communities. Appl Environ Microbiol. 2009;75(23):7537–41.

	 55.	 Hong C, Manimaran S, Shen Y, et  al. PathoScope 2.0: a complete computa-
tional framework for strain identification in environmental or clinical sequencing 
samples. Microbiome. 2014;2(1):33.

	 56.	 Chen W, Zhang CK, Cheng Y, Zhang S, Zhao H. A comparison of methods for 
clustering 16s rRNA sequences into OTUs. PLoS One. 2013;8(8):e70837.

	 57.	 Mande SS, Mohammed MH, Ghosh TS. Classification of metagenomic 
sequences: methods and challenges. Brief Bioinform. 2012;13(6):669–81.

	 58.	 Colwell R. Estimates, Version 7.5: Statistical Estimation of Species Richness and 
Shared Species from Samples (Software and Users Guide); 2005. Available at: http://
viceroy.eeb.uconn.edu/estimates

	 59.	 Colwell RK. Biodiversity: concepts, patterns, and measurement. In: Levin SA, ed. The 
Princeton Guide to Ecology. Princeton University Press, Princeton, NJ;2009:257–63.

	 60.	 Ondov BD, Bergman NH, Phillippy AM. Interactive metagenomic visualiza-
tion in a web browser. BMC Bioinformatics. 2011;12(1):385.

	 61.	 Huse SM, Welch DBM, Voorhis A, et  al. VAMPS: a website for visualiza-
tion and analysis of microbial population structures. BMC Bioinformatics. 2014; 
15(1):41.

	 62.	 Wu M, Scott AJ. Phylogenomic analysis of bacterial and archaeal sequences with 
amphora2. Bioinformatics. 2012;28(7):1033–4.

	 63.	 Matsen F IV, Evans SN. Edge principal components and squash clustering: 
using the special structure of phylogenetic placement data for sample compari-
son. PLoS One. 2013;8:3.

	 64.	 Brady A, Salzberg SL. Phymm and PhymmBL: metagenomic phylogenetic clas-
sification with interpolated Markov models. Nat Methods. 2009;6:673–6.

	 65.	 Brady A, Salzberg S. Phymmbl expanded: confidence scores, custom databases, 
parallelization and more. Nat Methods. 2011;8(5):367–7.

	 66.	 Matsen FA, Kodner RB, Armbrust EV. pplacer: linear time maximum-likeli-
hood and Bayesian phylogenetic placement of sequences onto a fixed reference 
tree. BMC Bioinformatics. 2010;11(1):538.

	 67.	 Meyer F, Paarmann D, D’Souza M, et al. The metagenomics RAST server – a 
public resource for the automatic phylogenetic and functional analysis of metag-
enomes. BMC Bioinformatics. 2008;9(1):386.

	 68.	 Stark M, Berger SA, Stamatakis A, von Mering C. Mltreemap-accurate maxi-
mum likelihood placement of environmental DNA sequences into taxonomic 
and functional reference phylogenies. BMC Genomics. 2010;11(1):461.

	 69.	 Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification 
of biology. Nat Genet. 2000;25(1):25–9.

	 70.	 Gene Ontology Consortium. Gene ontology consortium: going forward. Nucleic 
Acids Res. 2015;43(D1):D1049–56.

	 71.	 Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic 
Acids Res. 2000;28:27–30.

	 72.	 Kotera M, Moriya Y, Tokimatsu T, Goto S. Kegg and genomenet, new develop-
ments, metagenomic analysis. In: Nelson KE, ed. Encyclopedia of Metagenomics. 
Springer, New York;2015:329–39.

	 73.	 Tatusov RL, Koonin EV, Lipman DJ. A genomic perspective on protein families. 
Science. 1997;278:631–7.

	 74.	 Tatusov RL, Galperin MY, Natale DA, Koonin EV. The cog database: a tool 
for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 
2000;28(1):33–6.

	 75.	 Abubucker S, Segata N, Goll J, et  al. Metabolic reconstruction for metag-
enomic data and its application to the human microbiome. PLoS Comput Biol. 
2012;8(6):e1002358.

	 76.	 Markowitz VM, Chen I-MM, Palaniappan K, et  al. IMG: the integrated 
microbial genomes database and comparative analysis system. Nucleic Acids Res. 
2012;40:D115–22.

	 77.	 Seshadri R, Kravitz SA, Smarr L, et al. Camera: a community resource for meta-
genomics. PLoS Biol. 2007;5(3):e75.

	 78.	 Goll J, Rusch DB, Tanenbaum DM, et  al. METAREP: JCVI metagenomics 
reports – an open source tool for high-performance comparative metagenomics. 
Bioinformatics. 2010;26(20):2631–2.

	 79.	 Huson DH, Mitra S, Ruscheweyh H-J, Schuster SC. Integrative analysis of 
environmental sequences using MEGAN4. Genome Res. 2011;21(9):1552–60.

	 80.	 Lingner T, Aßhauer KP, Schreiber F, Meinicke P. Comet – a web server for com-
parative functional profiling of metagenomes. Nucleic Acids Res. 2011;39(Web 
Server issue):W518–23.

	 81.	 Langille MG, Zaneveld J, Caporaso JG, et al. Predictive functional profiling of 
microbial communities using 16 s rrna marker gene sequences. Nat Biotechnol. 
2013;31(9):814–21.

	 82.	 Eisen J. Environmental shotgun sequencing: its potential and challenges for 
studying the hidden world of microbes. PLoS Biol. 2007;5(3):e82.

	 83.	 Moran MA. Metatranscriptomics: eavesdropping on complex microbial com-
munities. Microbiome. 2009;4(7):329–34.

	 84.	 Poretsky RS, Bano N, Buchan A, et al. Analysis of microbial gene transcripts in 
environmental samples. Appl Environ Microbiol. 2005;71(7):4121–6.

	 85.	 Botero LM, D’imperio S, Burr M, McDermott TR, Young M, Hassett DJ. Poly 
(a) polymerase modification and reverse transcriptase PCR amplification of envi-
ronmental RNA. Appl Environ Microbiol. 2005;71(3):1267–75.

	 86.	 Carvalhais LC, Dennis PG, Tyson GW, Schenk PM. Application of metatran-
scriptomics to soil environments. J Microbiol Methods. 2012;91(2):246–51.

	 87.	 Gilbert JA, Field D, Huang Y, et  al. Detection of large numbers of novel 
sequences in the metatranscriptomes of complex marine microbial communities. 
PLoS One. 2008;3(8):e3042.

	 88.	 Leimena MM, Ramiro-Garcia J, Davids M, et al. A comprehensive metatran-
scriptome analysis pipeline and its validation using human small intestine micro-
biota datasets. BMC Genomics. 2013;14(1):530.

	 89.	 Yost S, Duran-Pinedo AE, Teles R, Krishnan K, Frias-Lopez J. Functional sig-
natures of oral dysbiosis during periodontitis progression revealed by microbial 
metatranscriptome analysis. Genome Med. 2015;7(1):27.

	 90.	 Duran-Pinedo AE, Chen T, Teles R, et  al. Community-wide transcriptome 
of the oral microbiome in subjects with and without periodontitis. ISME J. 
2014;8(8):1659–72.

	 91.	 Jorth P, Turner KH, Gumus P, Nizam N, Buduneli N, Whiteley M. Metatran-
scriptomics of the human oral microbiome during health and disease. MBio. 
2014;5(2):e1012–4.

	 92.	 Xiong X, Frank DN, Robertson CE, et al. Generation and analysis of a mouse 
intestinal meta-transcriptome through illumina based RNA-sequencing. PLoS 
One. 2012;7(4):e36009.

	 93.	 Dumont MG, Pommerenke B, Casper P. Using stable isotope probing to obtain a 
targeted metatranscriptome of aerobic methanotrophs in lake sediment. Environ 
Microbiol Rep. 2013;5(5):757–64.

	 94.	 Celaj A, Markle J, Danska J, Parkinson J. Comparison of assembly algorithms 
for improving rate of metatranscriptomic functional annotation. Microbiome. 
2014;2(1):39.

	 95.	 Grabherr MG, Haas BJ, Yassour M, et al. Full-length transcriptome assembly 
from RNA-seq data without a reference genome. Nat Biotechnol. 2011;29(7): 
644–52.

http://www.la-press.com
http://www.la-press.com/journal-evolutionary-bioinformatics-j17


Metagenomics, metatranscriptomics, and metabolomics approaches for microbiome analysis

15Evolutionary Bioinformatics 2016:12(S1)

	 96.	 Namiki T, Hachiya T, Tanaka H, Sakakibara Y. Metavelvet: an extension of 
velvet assembler to de novo metagenome assembly from short sequence reads. 
Nucleic Acids Res. 2012;40(20):e155.

	 97.	 Schulz MH, Zerbino DR, Vingron M, Birney E. Oases: robust de novo RNA-
seq assembly across the dynamic range of expression levels. Bioinformatics. 
2012;28(8):1086–92.

	 98.	 Birol I, Jackman SD, Nielsen CB, et al. De novo transcriptome assembly with 
abyss. Bioinformatics. 2009;25(21):2872–7.

	 99.	 Li R, Zhu H, Ruan J, et al. De novo assembly of human genomes with massively 
parallel short read sequencing. Genome Res. 2010;20:265–72.

	100.	 Robertson G, Schein J, Chiu R, et al. De novo assembly and analysis of RNA-seq 
data. Nat Methods. 2010;7(11):909–12.

	101.	 Guttman M, Garber M, Levin JZ, et al. Ab initio reconstruction of cell type-
specific transcriptomes in mouse reveals the conserved multi-exonic structure of 
lincrnas. Nat Biotechnol. 2010;28(5):503–10.

	102.	 Trapnell C, Williams BA, Pertea G, et al. Transcript assembly and quantification 
by RNA-seq reveals unannotated transcripts and isoform switching during cell 
differentiation. Nat Biotechnol. 2010;28(5):511–5.

	103.	 Li B, Dewey CN. Rsem: accurate transcript quantification from RNA-seq data 
with or without a reference genome. BMC Bioinformatics. 2011;12(1):323.

	104.	 Haas BJ, Papanicolaou A, Yassour M, et al. De novo transcript sequence recon-
struction from RNA-seq using the trinity platform for reference generation and 
analysis. Nat Protoc. 2013;8(8):1494–512.

	105.	 De Bona F, Ossowski S, Schneeberger K, Rätsch G. Optimal spliced alignments 
of short sequence reads. BMC Bioinformatics. 2008;9(suppl 10):i174–80.

	106.	 Cao HX, Schmutzer T, Scholz U, Pecinka A, Schubert I, Vu GTH. Metatran-
scriptome analysis reveals host-microbiome interactions in traps of carnivorous 
genlisea species. Front Microbiol. 2015;6:526.

	107.	 Peano C, Pietrelli A, Consolandi C, et al. An efficient rRNA removal method for 
RNA sequencing in GC-rich bacteria. Microb Inform Exp. 2013;3(1):1.

	108.	 Perez-Losada M, Castro-Nallar E, Bendall ML, Freishtat RJ, Crandall KA. 
Dual transcriptomic profiling of host and microbiota during health and disease 
in pediatric asthma. PLoS One. 2015;10:e0131819.

	109.	 Fiehn O. Metabolomics – the link between genotypes and phenotypes. Plant Mol 
Biol. 2002;48(1–2):155–71.

	110.	 Bernini P, Bertini I, Luchinat C, et al. Individual human phenotypes in meta-
bolic space and time. J Proteome Res. 2009;8(9):4264–71.

	111.	 Krumsiek J, Mittelstrass K, Do KT, et al. Gender-specific pathway differences in 
the human serum metabolome. Metabolomics. 2015;11(6):1815–33.

	112.	 Mastrangelo A, Armitage EG, García A, Barbas C. Metabolomics as a tool 
for drug discovery and personalised medicine. A review. Curr Top Med Chem. 
2014;14(23):2627–36.

	113.	 Xu J, Mahowald MA, Ley RE, et al. Evolution of symbiotic bacteria in the distal 
human intestine. PLoS Biol. 2007;5(7):e156.

	114.	 Manor O, Levy R, Borenstein E. Mapping the inner workings of the micro-
biome: genomic-and metagenomic-based study of metabolism and metabolic 
interactions in the human microbiome. Cell Metab. 2014;20(5):742–52.

	115.	 Wu GD, Compher C, Chen EZ, et  al. Comparative metabolomics in vegans 
and omnivores reveal constraints on diet-dependent gut microbiota metabolite 
production. Gut. 2014;65(1):63–72.

	116.	 Lankadurai BP, Nagato EG, Simpson MJ. Environmental metabolomics: an 
emerging approach to study organism responses to environmental stressors. 
Environ Rev. 2013;21(3):180–205.

	117.	 Kimes NE, Callaghan AV, Aktas DF, et al. Metagenomic analysis and metabo-
lite profiling of deep-sea sediments from the gulf of Mexico following the deep-
water horizon oil spill. Front Microbiol. 2013;4:50.

	118.	 Bassler BL, Greenberg EP, Stevens AM. Cross-species induction of luminescence 
in the quorum-sensing bacterium Vibrio harveyi. J Bacteriol. 1997;179(12):1943–5.

	119.	 Miller MB, Bassler BL. Quorum sensing in bacteria. Ann Rev Microbiol. 2001;55(1): 
165–99.

	120.	 Bassler BL. Small talk: cell-to-cell communication in bacteria. Cell. 2002;109(4): 
421–4.

	121.	 Henke JM, Bassler BL. Three parallel quorum-sensing systems regulate gene 
expression in Vibrio harveyi. J Bacteriol. 2004;186(20):6902–14.

	122.	 Waters CM, Bassler BL. Quorum sensing: cell-to-cell communication in bacte-
ria. Annu Rev Cell Dev Biol. 2005;21:319–46.

	123.	 Camilli A, Bassler BL. Bacterial small-molecule signaling pathways. Science. 
2006;311(5764):1113–6.

	124.	 Aldridge BB, Rhee KY. Microbial metabolomics: innovation, application, 
insight. Curr Opin Microbiol. 2014;19:90–6.

	125.	 Smolinska A, Blanchet L, Buydens LM, Wijmenga SS. NMR and pattern rec-
ognition methods in metabolomics: from data acquisition to biomarker discov-
ery: a review. Anal Chim Acta. 2012;750:82–97.

	126.	 Wishart DS, Tzur D, Knox C, et al. HMDB: the human metabolome database. 
Nucleic Acids Res. 2007;35(suppl 1):D521–6.

	127.	 Wishart DS, Knox C, Guo AC, et al. HMDB: a knowledgebase for the human 
metabolome. Nucleic Acids Res. 2009;37(suppl 1):D603–10.

	128.	 Wishart DS, Jewison T, Guo AC, et  al. HMDB 3.0-the human metabolome 
database in 2013. Nucleic Acids Res. 2012;41(Database issue):D801–7.

	129.	 Ulrich EL, Akutsu H, Doreleijers JF, et al. Biomagresbank. Nucleic Acids Res. 
2008;36(suppl 1):D402–8.

	130.	 Cui Q , Lewis IA, Hegeman AD, et al. Metabolite identification via the Madi-
son metabolomics consortium database. Nat Biotechnol. 2008;26(2):162–4.

	131.	 Horai H, Arita M, Kanaya S, et al. Massbank: a public repository for sharing 
mass spectral data for life sciences. J Mass Spectrom. 2010;45(7):703–14.

	132.	 Kopka J, Schauer N, Krueger S, et al. Gmdcsb.db: the Golm metabolome data-
base. Bioinformatics. 2005;21(8):1635–8.

	133.	 Smith CA, O’Maille G, Want EJ, et al. Metlin: a metabolite mass spectral data-
base. Ther Drug Monit. 2005;27(6):747–51.

	134.	 Reigstad CS, Kashyap PC. Beyond phylotyping: understanding the impact of 
gut microbiota on host biology. Neurogastroenterol Motil. 2013;25(5):358–72.

	135.	 Aw W, Fukuda S. Toward the comprehensive understanding of the gut ecosys-
tem via metabolomics-based integrated omics approach. Semin Immunopathol. 
2015;37(1):5–16.

	136.	 Mason OU, Hazen TC, Borglin S, et al. Metagenome, metatranscriptome and 
single-cell sequencing reveal microbial response to deepwater horizon oil spill. 
ISME J. 2012;6(9):1715–27.

	137.	 McNulty NP, Yatsunenko T, Hsiao A, et al. The impact of a consortium of fer-
mented milk strains on the gut microbiome of gnotobiotic mice and monozygotic 
twins. Sci Transl Med. 2011;3(106):106ra106.

	138.	 Maurice CF, Haiser HJ, Turnbaugh PJ. Xenobiotics shape the physiology and 
gene expression of the active human gut microbiome. Cell. 2013;152(1):39–50.

	139.	 Verberkmoes NC, Russell AL, Shah M, et al. Shotgun metaproteomics of the 
human distal gut microbiota. ISME J. 2009;3(2):179–89.

	140.	 Weir TL, Manter DK, Sheflin AM, Barnett BA, Heuberger AL, Ryan EP. Stool 
microbiome and metabolome differences between colorectal cancer patients and 
healthy adults. PLoS One. 2013;8(8):e70803.

	141.	 Wang Z, Klipfell E, Bennett BJ, et al. Gut flora metabolism of phosphatidylcho-
line promotes cardiovascular disease. Nature. 2011;472(7341):57–63.

	142.	 Koeth RA, Wang Z, Levison BS, et al. Intestinal microbiota metabolism of l-carni-
tine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19(5):576–85.

	143.	 Kaddurah-Daouk R, Baillie RA, Zhu H, et al. Enteric microbiome metabo-
lites correlate with response to simvastatin treatment. PLoS One. 2011;6(10): 
e25482.

	144.	 Haiser HJ, Gootenberg DB, Chatman K, Sirasani G, Balskus EP, Turnbaugh PJ. 
Predicting and manipulating cardiac drug inactivation by the human gut bacte-
rium Eggerthella lenta. Science. 2013;341(6143):295–8.

	145.	 Franzosa EA, Morgan XC, Segata N, et al. Relating the metatranscriptome and 
metagenome of the human gut. Proc Natl Acad Sci. 2014;111(22):E2329–38.

	146.	 Shi Y, Tyson GW, Eppley JM, DeLong EF. Integrated metatranscriptomic and 
metagenomic analyses of stratified microbial assemblages in the open ocean. 
ISME J. 2011;5(6):999–1013.

	147.	 Turnbaugh PJ, Gordon JI. An invitation to the marriage of metagenomics and 
metabolomics. Cell. 2008;134(5):708–13.

	148.	 Lu K, Abo RP, Schlieper KA, et al. Arsenic exposure perturbs the gut micro-
biome and its metabolic profile in mice: an integrated metagenomics and metabo-
lomics analysis. Environ Health Perspect. 2014;122(3):284–91.

	149.	 Zhang Y, Zhao F, Deng Y, Zhao Y, Ren H. Metagenomic and metabolomic 
analysis of the toxic effects of trichloroacetamide-induced gut microbiome and 
urine metabolome perturbations in mice. J Proteome Res. 2015;14(4):1752–61.

	150.	 Narayanasamy S, Muller EE, Sheik AR, Wilmes P. Integrated omics for the 
identification of key functionalities in biological wastewater treatment microbial 
communities. Microb Biotechnol. 2015;8(3):363–8.

	151.	 Muller EE, Glaab E, May P, Vlassis N, Wilmes P. Condensing the omics fog of 
microbial communities. Trends Microbiol. 2013;21(7):325–33.

	152.	 Abram F. Systems-based approaches to unravel multi-species microbial commu-
nity functioning. Comput Struct Biotechnol J. 2015;13:24–32.

	153.	 Levy R, Borenstein E. Reverse ecology: from systems to environments and 
back. In: Soyer OS, ed. Evolutionary Systems Biology. Springer, New York;2012: 
329–45.

	154.	 Borenstein E, Kupiec M, Feldman MW, Ruppin E. Large-scale reconstruc-
tion and phylogenetic analysis of metabolic environments. Proc Natl Acad Sci. 
2008;105(38):14482–7.

	155.	 Ebenhöh O, Handorf T, Heinrich R. Structural analysis of expanding metabolic 
networks. Genome Inform. 2004;15(1):35–45.

	156.	 Bachmaier C, Brandes U, Schreiber F. Chapter 20: Biological networks. In: 
Tamassia R, ed. Handbook of Graph Drawing and Visualization. CRC Press, Boca 
Raton, FL; 2013:621–51.

	157.	 Wuchty S, Ravasz E, Barabási A-L. The architecture of biological networks. In: 
Deisboek TS, Kresh JY, eds. Complex Systems Science in Biomedicine. Springer, 
New York; 2006:165–81.

	158.	 Barabási A-L, Oltvai ZN, Wuchty S. Characteristics of biological networks. In: 
Ben-Naim E, Frauenfelder H, Tonoczkai Z, eds. Complex Networks. Springer-
Verlag, Berlin; 2004:443–57.

http://www.la-press.com
http://www.la-press.com/journal-evolutionary-bioinformatics-j17


Aguiar-Pulido et al

16 Evolutionary Bioinformatics 2016:12(S1)

	159.	 Pawson T, Nash P. Protein-protein interactions define specificity in signal trans-
duction. Genes Dev. 2000;9:1027–47.

	160.	 Dutkowski J, Kramer M, Surma MA, et  al. A gene ontology inferred from 
molecular networks. Nat Biotechnol. 2013;31:38–45.

	161.	 Demchak B, Hull T, Reich M, et al. Cytoscape: the network visualization tool 
for genomespace workflows. F1000Res. 2014;2014(3):151–63.

	162.	 Friedman J, Alm EJ. Inferring correlation networks from genomic survey data. 
PLoS Comput Biol. 2012;8(9):e1002687.

	163.	 Srivas R, Hannum G, Ruscheinski J, et  al. Assembling global maps of cellu-
lar function through integrative analysis of physical and genetic networks.  
Nat Protoc. 2011;6(9):1308–23.

	164.	 Amar D, Shamir R. Constructing module maps for integrated analysis of hetero-
geneous biological networks. Nucleic Acids Res. 2014;42(7):4208–19.

	165.	 van Dam JC, Schaap PJ, dos Santos VAM, Suárez-Diez M. Integration of het-
erogeneous molecular networks to unravel gene-regulation in mycobacterium 
tuberculosis. BMC Syst Biol. 2014;8(1):111.

http://www.la-press.com
http://www.la-press.com/journal-evolutionary-bioinformatics-j17

