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Abstract: As the key component to transmit power and torque, the fault diagnosis of rotating
machinery is crucial to guarantee the reliable operation of mechanical equipment. Regrettably,
sample class imbalance is a common phenomenon in industrial applications, which causes large
cross-domain distribution discrepancies for domain adaptation (DA) and results in performance
degradation for most of the existing mechanical fault diagnosis approaches. To address this issue,
a novel DA approach that simultaneously reduces the cross-domain distribution difference and
the geometric difference is proposed, which is defined as MRMI. This work contains three parts to
improve the sample class imbalance issue: (1) A novel distance metric method (MVD) is proposed and
applied to improve the performance of marginal distribution adaptation. (2) Manifold regularization
is combined with instance reweighting to simultaneously explore the intrinsic manifold structure
and remove irrelevant source-domain samples adaptively. (3) The `2-norm regularization is applied
as the data preprocessing tool to improve the model generalization performance. The gear and
rolling bearing datasets with class imbalanced samples are applied to validate the reliability of MRMI.
According to the fault diagnosis results, MRMI can significantly outperform competitive approaches
under the condition of sample class imbalance.

Keywords: fault diagnosis; samples class imbalance; manifold regularization; maximum variance
discrepancy; domain adaptation

1. Introduction

Bearings and gears are vital components and are widely utilized in machinery equip-
ment [1]. In addition, bearing and gear faults are the most common failure mode which
may lead to unexpected fatal failures and elevated maintenance costs. Thus, there is a
strong demand for intelligent fault diagnosis techniques of bearings and gears to ensure
the security and reliability of mechanical equipment [2–4].

For deep learning methods, for instance, deep belief networks [5], sparse filtering [6],
and autoencoders (AEs) [7,8], the main assumption is that the datasets applied to train and
test the model have the same feature distribution. Unfortunately, the raw vibration signals
are usually obtained under variable working cases in practical applications, which show
deviation from the assumption [9,10]. As a result, poor performances may be obtained for
most machine learning methods. The above issue is often denoted as cross-domain learning.

Within the last decade, DA techniques have been focused on solving the above prob-
lem. The source and target domain data show similar but different feature distributions
for DA [11]. Many existing DA approaches usually aim to reduce the difference of cross-
domain feature distributions, e.g., the distribution adaptation, the instance reweighting, or
joint matching (join the distribution adaptation and instance reweighting). The distribu-
tion adaptation approaches [12–14] mainly include marginal adaptation (MDA) [15–19],
conditional adaptation (CDA) [20], or both [12,21] and are applied for most distribution
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adaptation approaches. Lu et al. [15] adapted the marginal distribution by MMD to min-
imize the distribution discrepancy across domains and introduced MMD into a deep
neural network (DNN). Han et al. [21] introduced the joint distribution adaptation (JDA)
into a deep transfer network (DTN) to avoid negative adaptation and presented smooth
convergence for fault diagnosis in industry applications. The discussion in [12] showed
that joint distribution adaptation may obtain better performance in fault diagnosis by
reweighting the source instance on the basis of its correlation with the target instance to
reduce the cross-domain feature distribution discrepancy [22,23]. Chen et al. [23] developed
an unsupervised domain adaptation approach to reduce the domain shifts between the
data gathered from the experimental platform and the operating platform of the rotating
machine by aligning the features extracted from the two data domains. In addition, some
published DA methods tried to join feature reweighting and subspace learning [24,25].
Long et al. [24] reduced the cross-domain distribution discrepancy and achieved good clas-
sification results by combining these two learning strategies. However, the above approach
matches the sample moments among distinct data distributions and down-weighs the
irrelevant source domain features, which may perform badly while the data distribution
discrepancy across the two domains is rather large, e.g., the sample class imbalance case.

Sample class imbalance denotes a situation where the number of instances in one
class is much different from the number of instances in other classes. The class imbalance
will lead to a substantially large cross-domain distribution difference and usually exists in
many domain adaptation scenarios. Unfortunately, the class imbalance is usually ignored
for most DA approaches [12,14]. They usually assume the sample classes are balanced
or tackle the sample bias for one domain, which decreases the validity of DA. When the
proportion of different classes is substantially imbalanced, distribution adaptation only
or independent manifold learning is not enough to obtain good fault classification results.
Thus, it is an important challenge to tackle the class imbalanced case in domain adaptation.

To this end, it is very necessary to study the deep information in the marginal distri-
butions [26]. As a distance metric, MVD is very suitable for the class imbalance situation.
In addition, manifold regularization can search the intrinsic manifold structure and fur-
ther exploit the marginal distributions across domains. This motivates us to combine
manifold regularization with the MVD, which can further extract effective information by
optimizing the manifold consistency underlying marginal distributions and the manifold
geometric structure. Moreover, the instance reweighting approach can further reduce
the cross-domain difference by down-weighting the irrelevant source domain instances
compared with target domain instances.

In recent years, manifold learning has drawn much attention in the field of fault
diagnosis [27–29]. Wang et al. [27] applied manifold alignment for cross-domain fault
diagnosis and decreased the distributional shift and structural shift at the same time
via transforming the fault features into two low-dimension subspaces. Wang et al. [28]
applied manifold learning to decrease the dimension of a wave pocket envelope matrix
to learn the embedded inherent defect characteristics, and reveal the inherent envelope
structure of impact impulses without the optimal band selection. Compared with the
previous approaches, our work aims to model the manifold regularization, MVD and the
instance reweighting techniques in a unified way to solve the class imbalance problem in
fault diagnosis.

In this paper, considering the practical defect diagnosis application, a novel DA ap-
proach is proposed to handle the class imbalance problems. Firstly, the raw vibration signal
under different rotating speed and load conditions are preprocessed by the fast Fourier
transformation (FFT) to obtain the frequency spectrum. Then, `2-norm regularization is
applied for processing the frequency spectrum, which can improve the model general-
ization performance. Next, manifold regularization is combined with MVD and instance
reweighting to simultaneously reduces the cross-domain distribution difference, geometric
difference, and the proportion of unrelated source-domain samples, which can obtain the
domain-invariant fault features with sufficient transferability. Finally, softmax regression
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is applied for predicting the fault types. Moreover, the fault features are normalized by
the z-score normalization before fault classification to ensure the robustness of MRMI. The
experimental results show that MRMI outperforms baseline DA approaches significantly.

The rest of this paper is organized as follows: In Section 2, DA, MMD, and the
softmax regression algorithm are briefly presented. The framework of MRMI is described
in Section 3. In Section 4, the validity and robustness of MRMI are validated according to
the fault diagnosis experiments. Finally, the conclusions are given in Section 5.

2. Theoretical Background
2.1. Domain Adaptation

As we can see from Figure 1, the categories of data are represented by different
shapes, and the labeled training data and test data have an identical data distribution
for the traditional intelligent method. By contrast, for domain adaptation, the labeled
source domain data Ds = {(xs1 , ys1), · · · , (xsns , ysns)} and unlabeled target domain data
Dt = {xt1 , · · · , xtnt} show the different but similar data distributions. The further descrip-
tion of domain adaptation is discussed as follows.

1. X refers to data space and P denotes a marginal data distribution. Thus, {X , P(X)}
denotes that dataset X is drawn from X and shows the data distribution P(X). For
DA, datasets have distinct data spaces and marginal data distributions, i.e., Xs 6= Xt
and Ps(Xs) 6= Pt(Xt);

2. For the task T = {Y , f (X)}, the prediction function f (X) = P(Y|X) denotes the
conditional distribution and Y ∈ Y . Ys = Yt, P(Ys|Xs) = P(Yt|Xt), where Y is the
label spaces, since categories for distinct working conditions are the same.

3. In our research, a transfer function F is used to realize the domain adaptation learning,
which satisfiesXs 6= Xt,Ys = Yt, P(F(Xs) = P(F(Xt), and P(Ys|F(Xs)) = P(Yt|F(Xt)).

Figure 1. Intelligent learning system [13].

2.2. Maximum Mean Discrepancy

The fundamental challenge for the generalization performance of DA approaches is
to decrease the cross-domain distribution discrepancy. Thus, it is vital to minimize the
discrepancy between cross-domain probability distributions by formalizing the distinct
distribution and proposing effective approaches. Many parametric criteria have been
applied to calculate the difference between cross-domain distributions, for instance, KL
divergence [30] and Bregman divergence [31]. Nevertheless, as a more difficult density
estimation process, the intermediate density estimate aggravates the model’s complexity.
To solve this non-trivial problem, [32] ignored the intermediate density estimate, proposed
a non-parametric divergence-MMD to compute the distance across domains by matching
the data to the reproducing kernel Hilbert space (RKHS). Datasets X = {x1, · · · , xn1} and



Sensors 2021, 21, 3382 4 of 18

Y = {y1, · · · , yn2} obey the data distributions P and Q, respectively. The cross-domain
distance is calculated as follows.

Dist(X, Y) =

∥∥∥∥∥ 1
n1

n1

∑
i=1

f (xi)−
1
n2

n2

∑
i=1

f (yi)

∥∥∥∥∥
H

, (1)

whereH represents a universal RKHS [33], ϕ: X, Y→H.

2.3. Softmax Regression

The softmax regression (SR) model [34] has been widely used for the supervised
learning stages of many domain adaptation approaches. Generally, the predicted labels of
SR are multi-class classification instead of binary classification, so SR can be regarded as a
generalized case for the logistic regression. In addition, SR is easy to carry out and it has
high computing efficiency. To this end, the softmax regression classifier is selected for our
research. It should be pointed out that the SR classifier is most suitable under the condition
that the corresponding classes are mutually exclusive. Thus, we assume that each fault
occurs separately.

The employed dataset is defined to train the softmax regression model, including m
samples, that is,

{(
x1, y1), · · · (xm, ym)

}
, where x(i) represents the input feature, and the

labels consist of y(i) ∈ {1, 2, · · · , k}, where k represents the number of health conditions.
Furthermore, p(y(i) = j|x(i)) represents the probability value for which x(i) pertains to the
category j. The probability value of each category is calculated for x(i), and then the output
value is identified by selecting the category whose probability value is the maximum. Thus,
the output value hθ

(
x(i)
)

can be written as:

hθ

(
x(i)
)
=


p
(

y(i) = 1
∣∣∣x(i); θ

)
p
(

y(i) = 2
∣∣∣x(i); θ

)
...

p
(

y(i) = k
∣∣∣x(i); θ

)

 =
1

k
∑

j=1
exp

(
θT

j x(i)
)


exp
(

θT
1 x(i)

)
exp

(
θT

2 x(i)
)

...
exp

(
θT

k x(i)
)

, (2)

where θ1, θ2, · · · θk denote the parameters for the model.
The cost function J(θ) is displayed as follows:

J(θ) = − 1
m

m

∑
i=1

k

∑
j=1

1
{

y(i) = j
}

log
exp

(
θT

j x(i)
)

k
∑

l=1
exp

(
θT

l x(i)
) + λ

2

k

∑
i=1

n

∑
j=0

θ2
ij, (3)

where m represents the sample number, n refers to the nth column of weight matrix θ, k
denotes category, λ is the weight decay term.

Generally, the cost function J(θ) is minimized by:

∇θj J(θ) = −
1
m

m

∑
i=1

[
x(i)(1

{
y(i) = j

}
− p(y(i) = j

∣∣∣x(i); θ))
]
, (4)

∇θj J(θ) represents the partial derivative of J(θ) w.r.t. θj, where j = 1, 2, · · · k.

3. Proposed Framework

In this part, the data preprocessing for MRMI is firstly introduced in Section 3.1. Then,
the model structure and the learning algorithm of MRMI are described in Section 3.2. In
addition, Table 1 shows the frequently used notations.
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Table 1. Notations and descriptions.

Notation Description Notation Description

Ds, Dt Source/Target domain X Input data matrix
ns, nt Source/Target samples A Alignment matrix
Xs, Xt Source/Target data space L Laplacian matrix

k Subspace bases M MMD matrix
λ, γ Regularization parameter G Subgradient matrix

Z Subspace embedding K Input kernel matrix

3.1. Data Preprocessing
3.1.1. Fast Fourier Transform (FFT)

First of all, FFT is adopted for transforming the original vibration signal into the
frequency spectrum. The frequency spectrum can show the discrete frequencies of the
constitutive components for the rotating machines [35] and can be good for extracting
sensitive defect features that are easily discriminated.

3.1.2. `2-norm Regularization

Then, the `2-norm regularization is adopted for the frequency spectrum to avoid the
overfitting problem. The `2-norm regularization can weaken the strong features as much
as possible, and highlight the features with smaller values but more characteristics. Thus,
it makes the corresponding algorithm more inclined to use all input features, rather than
rely heavily on some parts of the input features, which may be very useful to calculate the
similarity between two samples by the kernel methods. In general, the form of `2-norm

can be denoted as
√
|t1|2 + · · ·+ |tn|2, where t = [t1, t2, · · · , tn].

fi
l composes the data matrix, where l represents the row number and i is the column

number. First of all, each row is regularized by the `2-norm across all the samples.

fl = fl/‖fl‖2, (5)

Next, each column is regularized by its `2-norm. As a result, the features lie on the
unit `2-ball.

f̂i = f̂i/‖f̂i‖2, (6)

Since the regularized features have been divided by their `2-norm across all the
samples, it means that the contributions of these features are almost the same.

3.1.3. Data Dimensionality Reduction

As the most commonly used unsupervised linear dimensionality reduction approach,
the principal component analysis (PCA) algorithm can map the high-dimensional vectors to
the low-dimensional subspaces, and retain as much information as possible about the raw
data. Thus, PCA is adopted for the dimensionality reduction of the regularized samples.
As a result, the variance of the embedded data is maximized by the transformation matrix
U ∈ Rm×k.

max
UTU=I

tr
(

UTXHXTU
)

, (7)

where tr (·) denotes the matrix trace, X = [x1, · · · , xn] ∈ Rm×n is the input matrix,
H = I− 1

n 1 represents the centering matrix.
The kernel mapping form ψ: x 7−→ ψ (x) and kernel matrix K = ψ(X)Tψ(X) ∈ Rn×n

are adopted for converting the data to RKHS. Then, the kernel-PCA is obtained by the
representer theorem V = φ(X)A.

max
ATA=I

tr
(

ATKHKTA
)

, (8)
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where A ∈ Rn×k refers to the transformation matrix. As a result, the subspace embedding
is transferred to Z = ATK.

3.2. Model Structure and Learning Algorithm of MRMI

In this section, the model framework of MRMI is firstly presented, and then the
corresponding learning algorithm is introduced.

3.2.1. MRMI Model

The proposed MRMI is realized by minimizing the listed complementary objec-
tive functions:

(1) The MVD term for minimizing the discrepancy between the marginal probability
distributions Ps and Pt;

(2) The `2,1-norm structured sparsity regularization term for reweighting the source
domain instances by structured sparsity;

(3) The manifold regularization for maximizing the manifold consistency between Ps
and Pt.

The prediction function f = wTφ(x) is applied for classification, where w denotes a
parameter of the classifier. The final objective function of MRMI is summarized as follows.

f = arg min
f∈HK

D f ,K(Ps, Pt) + λ ‖T‖2,1 + γM f ,K(Ps, Pt), (9)

where HK denotes a set of f in the kernel space, K represents the kernel function which
is calculated by φ, so

〈
φ(xi), φ

(
xj
)〉

= K
(

xi, xj
)
. In addition, the raw feature vector is

projected into a Hilbert space H by the mapping function φ : X 7→ H [26]. T denotes
the feature transformation to adapt different domains, ‖T‖2,1 represents the `2,1-norm
of T. D f ,K(Ps, Pt) denotes the discrepancy for Ps and Pt, and M f ,K(Ps, Pt) represents the
manifold regularization which can extract more information from Ps and Pt. λ represents
the regularization parameter which is employed for trading off instance reweighting and
feature matching. γ refers to positive regularization parameters. Each term in Equation (9)
is interpreted in the following discussion.

(1) MVD Term

While the distribution discrepancy across domains is rather large, the MMD algorithm
performs badly for marginal distribution adaptation as MMD mainly regards the first-
order statistics. By contrast, MVD simultaneously regards the first-order and second-
order statistics, which shows better performance of marginal distribution adaptation and
can bridge the cross-domain discrepancy more effectively than MMD. In addition, the
deviation of cross-domain data distribution is reduced while the variance difference is
decreased. For MRMI, we introduce MVD for the feature matching to further decrease the
distribution difference.

In general, we can obtain the sample variance S2 by:

S2 =
∑n

i=1(xi − x)2

n
, (10)

where n represents the size of the sample, S denotes the standard deviation for the sample,
and x is the average value.

In addition, the sample variance can be transferred into the other form DU.

DU = E
(

U2
)
− [E(U)]2, (11)

where U denotes a vector of sample, EU represents the expectation.
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Let Zi represents the ith sample of the subspace embedding, we can obtain:

E(Zi) =
n

∑
i=1

f (Zi)Zi, (12)

where f (Zi) denotes the probability value of the i-th sample.
The probability value that every sample occurred is assumed to be equal. As a result,

Equation (12) can be calculated by:

E(Zi) =
∑n

i=1 Zi

n
, (13)

Kernel-PCA is applied to obtain the k dimension embedding for MVD. Then, the
corresponding empirical mathematical expectations are computed by joining Equations (8)
and (11).

‖ 1
ns

∑ns
i=1 (A

Tki)
2 − 1

nt
∑ns+nt

j=ns+1 (A
Tkj)

2‖2
H + ‖ 1

ns
∑ns

i=1 ATki+

1
nt

∑ns+nt
j=ns+1 ATkj‖2

H × ‖ 1
ns

∑ns
i=1 ATki − 1

nt
∑ns+nt

j=ns+1 ATkj‖2
H = tr

(
ATK1MK1

TA
)
−

tr
(

ATKMKTA
)
∗ tr
(

ATKM1KTA
)

,

(14)

where K1 = ψ
(

X2
)T

ψ
(

X2
)
∈ Rn×n, M and M1 are both the MVD matrix, which can be

computed as follows

Mij =


1

nsns
, xi, xj ∈ Ds

1
ntnt

, xi, xj ∈ Dt

− 1
nsnt

, otherwise
, M1ij =


1

nsns
, xi, xj ∈ Ds

1
ntnt

, xi, xj ∈ Dt
1

nsnt
, otherwise

, (15)

where ns and nt represent the samples of the source and target domain, respectively.

(2) The `2,1-norm Structured Sparsity Regularization Term

Nevertheless, only applying the MVD term for minimizing D f ,K(Ps, Pt) is not enough
to obtain representative features, because there are some irrelevant and redundant source
instances. To this end, it is very necessary to down-weight the irrelevant source instances
to further decrease domain discrepancy. In this section, we employ instance reweighting
by the `2,1-norm structured sparsity regularization to down-weight the irrelevant source
instances in the instance space. The `2,1-norm regularization is applied to induce row-
sparsity in matrix A. Owing to row-sparsity, each row of the transformation matrix A can be
regarded as an instance which intrinsically facilitates the instance reweighting. Instance
reweighting regularization can be constructed in the following way [24].

‖As‖2,1 + ‖At‖2
F, (16)

where AsA1:ns ,: represents the source domain transformation matrix, and AtAns+1:ns+nt ,:
denote the target domain one. It should be noted that `2,1-norm regularization is only
employed to reweight the source domain instances with their correlation to the target
ones. When Equation (16) is minimized, Equation (9) will be maximized, which means that
the irrelevant and redundant source instances are down-weighted adaptively in a novel
subspace embedding Z = ATK. As a result, the robustness of MRMI is improved for the
domain discrepancy resulting from irrelevant source instances.

(3) Manifold Regularization Term

The MVD term and the `2,1-norm structured sparsity regularization term can reduce
the domain discrepancy in H and the instance space, respectively. However, they only
match the cross-domain sample moments and down-weight the irrelevant source domain
features, which may perform badly when feature distribution discrepancy across domains
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is rather large, e.g., the class imbalance problem. Thus, manifold regularization is induced
for researching the intrinsic manifold structure and further exploiting the information from
Ps and Pt to learn better functions. Generally, the unlabeled target domain data may reveal
the potential and hidden information, such as sample variances. According to the manifold
assumption [36], the conditional distributions Qs(ys|xs) and Qt(yt|xt) are similar, when
data points xs, xt ∈ X are close to each other in the geometry structure. After smoothing
the geodesic, manifold regularization is calculated as

M f ,K(Ps, Pt) = ∑ns+nt
i,j=1

(
f (xi)− f

(
xj
))2Wij = ∑ns+nt

i,j=1 f (xi)Lij f
(
xj
)
, (17)

where W represents the graph affinity matrix, and L denotes the normalized graph Lapla-
cian matrix. In addition, W is formulated as [37]

Wij =

{
cos
(
xi, xj

)
, i f xi ∈ Np

(
xj
)
∨ xj ∈ Np(xi)

0, otherwise
, (18)

whereNp(xi) refers to the p-nearest neighbors. L can be calculated as L = I−D−1/2WD−1/2 [26].
Maximizing the consistency of the intrinsic manifold structure can be used to further

explore the marginal data distributions via regularizing (14) with (17), and the discrimina-
tive hyperplanes across domains can be substantially matched. According to the representer
theorem, the manifold regularization can be rewritten as

M f ,K(Ps, Pt) = tr
(

ATKLKTA
)

, (19)

Above all, by combining Equations (14), (16) and (19), the final objective function is
obtained as follows:

min
ATKHKTA=I

tr
(
ATK1MK1

TA
)
− tr

(
ATKMKTA

)
∗ tr
(
ATKM1KTA

)
+

λ
(
‖As‖2,1 + ‖At‖2

F

)
+ γ

(
tr
(
ATKLKTA

))
,

(20)

by regarding A as the adaptation matrix throughout the rest of this article to emphasize
its functionality. It provides great convenience for the implementation and deployment of
MRMI because a principled dimensionality reduction procedure is applied.

(4) Construct the Softmax Regression Classifier

In the process of classification, z-score normalization can eliminate the influence of
dimension on classification results to develop the classification accuracy. Moreover, the
learning rate and the efficiency of dealing with the optimal solution in the process of back
propagation can be optimized via z-score normalization. Hence, it is adopted for processing
the input data for the classifier. In other words, the training data Tr and the testing data
Tt are computed by Tr = F(ZS) and Tt = F(ZT), where ZS = AT

s Ks and ZT = AT
t Kt. Z-score

normalization is formulated as follows:

F(X) =
X−X

σ
, (21)

where X denotes invariant feature subspace ZS or ZT in the finite domain, X refers to the
average value of X, σ is the standard deviation. After carrying out z-score normalization,
the rescaled subspace F(X) with a standard normal distribution is acquired.

Then, the probability value p(y(i) = j|T(i)
t ) corresponding to each category j is calcu-

lated by Equation (2), then the fault category is predicted by selecting the j with maximum
value. Finally, the classification performance of MRMI is obtained by comparing the
consistency between the predicted fault type and the real one.
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3.2.2. Learning Algorithm

By the constrained optimization theory, Φ = diag(φ1, · · · , φk) ∈ Rk×k is adopted as
the Lagrange multiplier for Equation (20). Thus, the Lagrange function is derived as:

F = tr
(
ATK1MK1

TA
)
− tr

(
ATKMKTA

)
∗ tr
(
ATKM1KTA

)
+ λ(‖As‖2,1+

‖At‖2
F) + γtr

(
ATKLKTA

)
+ tr(

(
I−ATKHKTA

)
Φ,

(22)

Let ∂F
∂A = 0, generalized eigen-decomposition is approximately calculated as:(

K1MK1
T −

(
KMKT

)
∗
(

KM1KT
)
+ λG + γKLKT

)
A = KHKTAΦ, (23)

As ‖As‖2,1 refers to a non-smooth function, the subgradient is computed as
∂
(
‖As‖2,1+‖At‖2

F

)
∂A = 2GA, where G represents a diagonal subgradient matrix which consists

of the i-th element as below:

Gii =


1

2‖αi‖ , xi ∈ Ds, αi 6= 0

0, xi ∈ Ds, αi 6= 0
1, xi ∈ Dt

, (24)

In the next step, matrix A is reduced to k smallest eigenvectors by (23). Nevertheless,
the subgradient matrix G and adaptation matrix A are not known in advance. To overcome
this deficiency, the parameters are optimized alternately by updating one parameter while
fixing the other one.

For better interpretation, the structure of MRMI is shown in Figure 2.

Figure 2. The framework of MRMI.
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4. Experiment Results and Analysis
4.1. Case 1: Bearing Fault Diagnosis
4.1.1. Experimental Setup and Data Description

A rolling bearing dataset offered by Case Western Reserve University was employed
to validate the performance of MRMI in this part [38]. It was acquired by accelerometers
installed in the driving position of the motor and includes the normal (Nor) and faulty
data. Furthermore, the faulty data consist of a single-point fault at the inner bearing race
(FI), the outer race (FO), and the roller (FR). Each defect type of the faulty dataset contains
three fault levels, i.e., 0.18, 0.36, 0.54 mm. Therefore, there are 10 health types obtained
for the rolling bearing dataset in this section. The vibration signals were acquired under
four loads (0, 1, 2, 3 hp). In addition, the sampling frequency was fixed as 12 kHz. In
addition, we select the four motor loads as the four scenarios for domain adaptation. To
simulate the situation of class imbalance, Table 2 shows the sample distribution for all
domain adaptation tasks.

Table 2. Rolling bearing dataset with sample class imbalance distribution.

Fault Location Nor Roller Inner Ring Outer Ring Total

Category Labels 1 2 3 4 5 6 7 8 9 10
Fault Size (mm) 0 0.18 0.36 0.54 0.18 0.36 0.54 0.18 0.36 0.54

A (load 0) 100 30 20 10 30 20 10 30 20 10 280
B (load 1) 100 10 15 10 10 15 10 10 15 10 205
C (load 2) 100 50 50 50 30 30 30 20 20 20 400
D (load 3) 100 100 100 100 100 100 100 100 100 100 1000

In Table 2, the vibration data collected with load 0, 1, 2, 3 hp are chosen as the
DA scenarios A, B, C, D, respectively. The numbers of experimental samples for source
and target domains are distinct from each other for different DA scenarios. In DA task
“B→D”, B represents the labeled source domain dataset which includes 205 experimental
samples collected under load 1 hp, while D denotes the unlabeled target domain dataset
which contains 1000 experimental samples collected with load 3 hp. Therefore, the data
distributions of these two domains are imbalanced.

First of all, the data preprocessing process is conducted for the rolling bearing dataset.
As a result, the spectra of original vibration signals are obtained by fast Fourier transforma-
tion (FFT). Then, the time-domain samples with 1200 sample lengths are converted to 600
length samples in the frequency domain.

4.1.2. Experimental Results

(1) Comparison Methods

To validate the effectiveness of manifold regularization-based joint matching (MRMI),
several successful domain adaptation approaches are selected as the baseline methods. The
details of these baseline approaches are described as follows.

1. Deep neural network (DNN)-based DA approach (DAFD) [35], which combines MMD
with DNN to extract the domain-invariant features;

2. Geodesic flow kernel (GFK) [15,18], which represents a typical DA approach;
3. Transfer joint matching (TJM) [24], which introduces feature matching into instance

reweighting;
4. Adaptation regularization-based transfer learning (ARTL) [26], which combines JDA

with manifold regularization;
5. Domain-adversarial neural networks (DANNs) [39], which develop a novel represen-

tation learning method for DA.

(2) Setup of the Algorithm
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To provide a relatively fair environment for comparison, the hyperparameter space is
empirically searched to select the best parameter settings. For reducing the randomness of
the experiments, we carry out 15 trials of experiments to every DA task, then calculate the
average classification accuracy to evaluate the performance for each approach. Moreover,
the SR classifier is adopted for predicting the fault types of the target domain for all these
domain adaptation methods.

For all the baseline approaches, the optimum dimension of the subspace is obtained
by searching {10, 20, · · · , 200} and the optimum value is selected by searching {0.001, 0.01,
0.1, 1, 10, 100, 1000}. In addition, the structure of the neural network is {600, 1000, 10] for
DAFD [37], and the size of the hidden layer for DANN is set as 200.

The proposed method contains only three model parameters: subspace dimension
k, regularization parameters λ and γ. Empirical analysis of parameter sensitivity will be
discussed in a later section. According to the parameter selection of the baseline approaches,
the parameters of MRMI are set as k = 50, λ = 1, γ = 10 and the linear kernel is employed
for MRMI.

In this paper, the diagnosis accuracy for the unlabeled data of the target domain is
employed as the performance evaluation index, which has been applied in numerous
published studies [40–42].

CA =

∣∣x : x ∈ Dt ∧ prediction(y) = true(y)
∣∣

|x : x ∈ Dt| × 100%, (25)

(3) Results

For the experiment in this section, 12 DA scenarios are selected: A→B, A→C, A→D,
B→A, B→C, B→D, C→A, C→B, C→D, D→A, D→B, and D→C. The experimental results
of MRMI and all baseline methods are illustrated in Table 3. The result shows that the
average accuracy of DA task a→b is distinct from b→a, e.g., the classification result of
A→D is 99.50% for MRMI but is 96.86% for scenario D→A.

As we can see from the results listed in Table 3, MRMI yields the best diagnosis
accuracy and robustness and outperforms the other four listed compared approaches in
most (11 out of 12) domain adaptation scenarios. This indicates that more transferable and
robustness fault features could be extracted for MRMI. Furthermore, we can draw several
observations as follows.

Firstly, the proposed method performs worse than GFK in the scenario D→A. For
GFK, the final diagnosis result for all 12 domain adaptation tasks can reach 90.91% which
is the highest accuracy compared with the other baseline approaches and is 8.55% less than
MRMI. The smooth transmission of the object datasets can be guaranteed by mapping the
global GFK into a low dimension representation, thus, good diagnosis performance can
be obtained. Nevertheless, GFK performs worse in DA scenarios A→D and B→D, which
indicates that only applying the geodesic flow distance to correct the distribution mismatch
is not enough when the cross-domain discrepancy is rather large.

Secondly, DAFD combines MMD with DNN to extract the domain-invariant features.
However, DAFD performs worse than MRMI, which highlights that MVD can bridge
the cross-domain difference more effectively than MMD. The reason is that MVD simul-
taneously regards the first-order and second-order statistics to minimize the marginal
distribution mismatch. In addition, from the results, we also observe that only adopting
the marginal distribution adaptation is not enough to reduce the cross-domain conditional
distribution difference. Therefore, the average classification accuracy for DAFD is under
80%, which performs worse than ARTL and TJM.

Thirdly, TJM combines instance reweighting with MMD in a principled dimensionality
reduction process to reduce the cross-domain discrepancy. In addition, TJM aims to build
a novel feature representation. It is invariant to distribution discrepancy and irrelevant
source instances. Thus, TJM performs well when the cross-domain distribution difference
is rather large. However, MMD mainly regards the first-order statistics, and while the
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distribution discrepancy across domains is rather large, the MMD algorithm performs
badly for marginal distribution adaptation. As a result, the average classification accuracy
is still 16.06% lower than the proposed approach, which indicates that information of Ps
and Pt needs to be further explored to extract more representative transferable features
for TJM.

Table 3. The classification results (%) on class imbalanced rolling bearing dataset.

Source
Domain Method

Target Domain

A B C D

A

DAFD - 81.46 ± 1.21 83.25 ± 0.36 71.80 ± 0.60
GFK - 96.10 ± 0.15 88.25 ± 0.00 78.20 ± 0.60
TJM - 88.78 ± 0.49 76.00 ± 0.25 95.6 ± 1.10

ARTL - 95.12 ± 0.38 87.25 ± 0.25 89.50 ± 0.35
DANN - 96.09 ± 0.25 89.50 ± 0.17 73.90 ± 0.43
MRMI - 99.61 ± 0.20 99.60 ± 0.05 99.50 ± 0.20

B

DAFD 75.71 ± 1.05 - 79.25 ± 0.83 70.50 ± 2.30
GFK 92.50 ± 0.36 - 89.00 ± 0.50 76.10 ± 1.40
TJM 80.54 ± 0.18 - 85.00 ± 0.00 76.00 ± 0.15

ARTL 77.86 ± 0.95 - 83.75 ± 0.63 73.00 ± 1.20
DANN 96.07 ± 0.46 - 93.25 ± 0.14 65.70 ± 0.29
MRMI 99.64 ± 0.25 - 100.00 ± 0.00 99.80 ± 0.05

C

DAFD 74.29 ± 0.78 82.93 ± 1.35 - 72.60 ± 0.45
GFK 89.29 ± 0.26 95.7 ± 0.31 - 93.20 ± 0.40
TJM 80.76 ± 0.54 84.88 ± 0.00 - 79.00 ± 0.25

ARTL 88.93 ± 0.44 80.98 ± 0.36 - 93.60 ± 0.60
DANN 97.14 ± 0.18 96.59 ± 0.31 - 90.90 ± 0.78
MRMI 98.86 ± 0.35 100.00 ± 0.00 - 99.95 ± 0.05

D

DAFD 76.43 ± 0.28 76.20 ± 1.35 71.25 ± 0.75 -
GFK 97.00 ± 0.50 97.5 ± 0.26 98.10 ± 0.65 -
TJM 95.00 ± 0.36 78.54 ± 0.56 80.75 ± 0.50 -

ARTL 93.93 ± 0.48 89.76 ± 0.18 92.00 ± 0.58 -
DANN 91.79 ± 0.84 95.61 ± 0.36 91.00 ± 0.19 -
MRMI 96.86 ± 0.05 99.75 ± 0.25 100.00 ± 0.00 -

Fourthly, MRMI significantly outperforms ARTL, which is a state-of-the-art DA ap-
proach based on JDA and manifold regularization. ARTL only matches the features without
reweighting source instances. As a result, when cross-domain distribution discrepancy is
larger, some source instances which are irrelevant to the target instances will always be
contained in the feature-matching subspace. Thus, compared with ARTL, the performance
boost of 12.32% can be achieved for MRMI.

Finally, the average accuracy for DANN can reach 89.80%, which performs worse than
the proposed approach on the whole. In particular, for the DA tasks A→D and B→D, the
accuracies of DANN can only reach 73.90% and 65.70%, respectively. This indicates that
the performance of DANN decreases dramatically when the cross-domain discrepancy is
substantially large.

4.1.3. Effectiveness Analysis

(1) Feature Distribution

The distribution of features drawn by GFK and MRMI for domain adaptation scenario
B→C is displayed in Figure 3. It can be seen from Figure 3 that the abscissa denotes a total
of 400 samples and the amount of samples contained in different fault types is imbalanced.
Furthermore, the ordinate represents the dimensions of each sample and different colors re-
fer to the different amplitude sizes. According to the feature distributions extracted by GFK,
many defect features are identified. However, some fault features still perform similarly.
For MRMI, the discrepancies among distinct defect feature distributions are more obvious
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which makes the fault category easier to be distinguished. Thus, MRMI can extract more
discriminative and representative features and obtain better classification performance.

Figure 3. Feature distributions of the unlabeled target domain data based on the learned transferable features (DA task
B→C): (a) GFK; (b) MRMI.

(2) Discussion for MRMI

MRMI greatly outperforms the baseline approaches mainly by introducing `2-norm
regularization, manifold regularization, MVD, and instance reweighting. Several single-
factor-based experiments are executed to further study the contributions of these compo-
nents for MRMI individually, and the experimental results are depicted in Figure 4. To
further show the effectiveness of the components of the proposed model, the results of
the ablation study for MRMI are summarized in Table 4. Based on the ablation study, it
can be seen that the average diagnosis accuracy of MRMI without manifold regularization
(MR) can reach 97.28%, which is 2.18% lower than MRMI. This indicates that inducing
manifold regularization can obtain a 2.18% transfer improvement comparing with MRMI
without MR. For the proposed method, when we do not apply manifold regularization and
MVD, the average classification accuracy is 93.85%. This result means that the contribution
of MVD to the diagnosis accuracy of MRMI is 3.43%. For MRMI, when we do not apply
manifold regularization, MVD, and `2-norm, the average classification accuracy is 89.41%.
This result means that only inducing `2-norm can bring a 4.44% accuracy improvement
for the proposed method. When k-nearest neighbor (kNN) is applied as the classifier for
MRMI, the final diagnosis result is 0.94% lower than the proposed approach which can
reach 98.52%. Notably, the accuracy for task D→A of MRMI with kNN is only 91.2%,
which indicates the bad robustness of the kNN classifier in this experiment. Thus, the
softmax regression classifier-based MRMI can obtain better diagnostic performance than
the kNN classifier-based one.

Figure 4. Classification results of single-factor experiments for MRMI.
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Table 4. An ablation study for MRMI: Performances are evaluated on rolling bearing dataset.

Model MR MVD `2-norm Instance
Reweighting

Softmax
Regression KNN Average

Accuracy (%)

MRMI
√ √ √ √ √

99.46
Without MR

√ √ √ √
97.28

Without MR, MVD
√ √ √

93.85
Without MR, MVD, `2-norm

√ √
89.41

MRMI with KNN
√ √ √ √ √

98.52

Moreover, according to the experiment results, it is necessary to join `2-norm reg-
ularization, manifold regularization, MVD, and instance reweighting to guarantee the
effectiveness and robustness of MRMI while the distribution difference is rather large.

(3) Confusion Matrix

To further study the fault diagnosis effectiveness of MRMI, the confusion matrix of the
classification results for DA scenario B→D is displayed in Figure 5. In Figure 5, the rows
represent the actual defect types, and the columns stand for the predicted defect types. As
we can see from Figure 5, the misclassification issue mainly happens for the defect types
of FI 0.36 and FI 0.54. In detail, only one sample of FI 0.36 and one sample of FI 0.54 are
misclassified to FO 0.54, thus the classification accuracy of 99.8% is finally obtained for
domain adaptation task B→D.

Figure 5. Confusion matrix of the fault diagnosis results for DA task B→D.

(4) Feature Visualization

In this section, we execute the t-SNE [43] algorithm to transform the 100-dimension
feature vector into a map with 3 dimensions to estimate the ability to learn representative
features for MRMI. For instance, the visualization maps of MRMI for DA task B→C is built,
and the results are depicted in Figure 6. We can see that most fault features with the same
labels are concentrated in the corresponding cluster and different clusters are separated
from each other [37]. Thus, MRMI is verified to show strong feature learning ability.

Figure 6. Visualization maps of the learned features of DA task B→C.
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(5) Parameter Sensitivity

In this part, sensitivity analysis on representative DA tasks A→D, B→A, and C→B
is employed for evaluating the effectiveness and selection of the parameters for MRMI
due to space limitation. The classification results with respect to varied parameters k, λ,
and γ are displayed in Figure 7. First of all, we implement MRMI with varied values
of k ∈ [10, 100], and the other parameters are fixed as λ = 1 and γ = 10. According to
the results shown in Figure 7a, stable classification performances can be obtained when
subspace dimension k is larger than 50. Thus, we select k ∈ [50, 100] for MRMI. Then, the
proposed approach with varying values of λ ∈ [1, 10] is executed when k = 50 and γ = 10.
From Figure 7b, robust diagnosis accuracies can be gained with λ ∈ [3, 6]. Finally, varying
values of regularization parameter γ ∈ [1, 10] are implemented for MRMI with the other
parameter settings of k = 50 and λ = 1. As we can see from Figure 7c, stable diagnosis
performance is obtained when γ is larger than 7. Therefore, the optimum regularization
parameter γ is set as γ ∈ [7, 10].

Figure 7. Parameter sensitivity for MRMI on rolling bearing datasets.

4.2. Case 2: Gear Fault Diagnosis
4.2.1. Experimental Setup and Data Description

To further verify the effectiveness of MRMI, a gear dataset with different loads pro-
vided by a specially designed gearbox platform is adopted in this part [44]. The raw signals
of gears were collected by the sensors installed on the fixed plate of the driving end. Four
types of gear fault are considered for the gear fault diagnosis experiment: (1) Single wheel
pitting fault; (2) single pinion wear fault; (3) compound fault of pinion wear and wheel
pitting; (4) compound fault of pinion wear and wheel teeth broken. We define the normal
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state and these four kinds of faults as Type 1 to Type 5, respectively. In addition, the raw
vibration signal was acquired with three distinct loads which were denoted as dataset A, B,
and C, respectively.

The same as the rolling bearing experiment in case 1, a class imbalanced dataset
is adopted for the gear fault diagnosis experiment. The distribution of each dataset is
illustrated in Table 5. In addition, the original samples of each dataset are selected alter-
nately to avoid overlap between samples. Then, FFT is employed for preprocessing the
raw data. Finally, the time-domain sample containing 1200 datapoints is converted to the
frequency-domain sample containing 600 data points.

Table 5. Gear dataset with sample class imbalanced distribution.

Fault Type Type 1 Type 2 Type 3 Type 4 Type 5 Total

Category Labels 1 2 3 4 5
Dataset A 100 40 30 20 10 200
Dataset B 50 15 10 15 10 100
Dataset C 100 100 100 100 100 200

4.2.2. Experimental Results

In this experiment, the compared methods and their corresponding parameter se-
lection method are the same as those of the experiment in case 1. Furthermore, six DA
scenarios are adopted for empirical evaluation: B→A, B→C, C→A, C→B, A→B, and
A→C. The fault classification results for MRMI and the compared methods are displayed
in Figure 8.

Figure 8. The diagnosis results for sample class imbalanced gear dataset.

It can be seen from Figure 8 that MRMI significantly outperforms the listed baseline
approaches in all the domain adaptation scenarios.

Since only six fault types are included in each gear dataset, and the discrepancy
between cross-domain distributions is small, higher classification levels can be gained for
the DA approaches. Thus, the diagnosis results of all the approaches depicted in Figure 7
are all over 90%. The mean classification result of the six DA tasks can reach 99.75%, and a
3.57% diagnosis performance improvement is acquired for MRMI in comparison to GFK
which can obtain the best diagnosis performance among all baseline methods. In general,
DAFD performs worse than the other baseline approaches, especially in the DA scenarios
B→A and C→A. TJM and ARTL can acquire good classification results, and their mean
accuracies are only 4.2% and 4.8% lower than that of MRMI, respectively. Moreover, the
robustness of MRMI also performs better than the other compared methods according
to the diagnosis results. All in all, the classification results of the gear dataset prove the
effectiveness and robustness of MRMI.
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5. Conclusions

This study develops a new MRMI method for mechanical fault diagnosis in a class
imbalance environment. MRMI joins manifold regularization, MVD, and instance reweight-
ing to handle the class imbalance problem. In addition, `2-norm regularization is employed
for improving the generalization ability of MRMI. The proposed method is tested on two
sample class imbalanced vibration datasets. The classification results show that MRMI
can effectively extract more transferable features and significantly outperform the other
four baseline domain adaptation approaches while the distribution discrepancy across
domains is rather large. Thus, MRMI is a robust and effective DA model for cross-domain
mechanical fault diagnosis problems. In the near future, MRMI could be extended to other
related fields, such as online health monitoring.
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