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ABSTRACT
Ferroptosis, a newly discovered iron-dependent form of cell death, contributes to various pathol-
ogies; however, the prognostic value of ferroptosis-related genes (FRGs) in cervical cancer (CC) 
remains unclear. Herein, we identified 15 differentially expressed FRGs based on data from The 
Cancer Genome Atlas database. Ten FRGs that correlated with prognosis were screened by 
univariate Cox regression analysis. The least absolute shrinkage and selection operator regression 
model was performed to develop a novel prognostic signature. A four-gene model was built to 
separate samples into high-risk and low-risk groups. Overall survival was lower in the high-risk 
group than in the low-risk group (p < 0.05). Receiver operating characteristic curve showed a good 
diagnostic efficiency of the signature. The risk score was identified as an independent prognostic 
factor via multivariate Cox regression. A functional analysis further revealed a difference in the 
immune status between the two risk groups. To conclude, we constructed a novel prognostic 
signature based on FRGs. Targeting ferroptosis may represent a promising approach for the 
treatment of CC.
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Highlights

● Fifteen differentially expressed genes in cervi-
cal cancer were identified.

● A novel ferroptosis-related four-gene signa-
ture was built.

● Ferroptosis may be associated with prognosis 
and immunity in cervical cancer.

1. Introduction

Cervical cancer (CC) ranks fourth in both preva-
lence and mortality among malignancies in 
women worldwide [1], accounting for approxi-
mately 570,000 new cases and 311,400 deaths 
per year [2]. Human papilloma virus (HPV) infec-
tion is the main cause of CC [3]; however, CC only 
develops in a minority of HPV carriers. CC is 
a complex and heterogeneous disease involving 
genetic and environmental factors, making the 
prediction of outcomes a challenge. Patients with 
CC have a poor prognosis with limited treatment 
options, especially those at an advanced stage or 
with recurrent disease [4]. Despite the availability 
of cervical screening programs and HPV vaccines, 
CC remains an important public health issue 
worldwide [5]. The accurate identification of 
patients at a high risk of poor prognosis and timely 
adjustment of treatment strategies, including the 
use of immunotherapy or targeted therapy, may 
improve survival. Therefore, it is necessary to find 
reliable biomarkers and to develop novel prognos-
tic models for CC.

Cell death is the terminal fate of individual cells 
and is an indispensable part of homeostasis [6]. 
Tumor initiation and development are related to 
a reduction in cell death. Therefore, studies of 
tumor cell death are expected to provide 
a rationale for the design of therapeutic targets. 
Apoptosis, autophagy, aponecrosis, pyroptosis, 
and necrosis are major cell death mechanisms 
[7]. Ferroptosis is a recently identified mode of 
programmed cell death in which the iron- 
dependent accumulation of reactive oxygen species 
and lipid peroxidation trigger death [8,9]. It con-
stitutes a constellation of unique genetic, biochem-
ical, and morphological features, different from 
other types of regulated cell death [10]. Recent 

studies have revealed that ferroptosis is involved 
in many pathophysiological processes, such as kid-
ney injury [11], neurodegenerative diseases [12], 
T-cell immunity [9], and metabolic diseases [13]. 
In addition, ferroptosis has been observed in var-
ious malignancies, such as ovarian cancer [14], 
liver cancer [15], glioma [16], osteosarcoma [17], 
and renal cell carcinoma [18]. Interestingly, 
dependence on iron and sensitivity to ferroptosis 
are greater in cancer cells than in healthy cells. 
Therefore, ferroptosis may be an alternative target 
for therapy-resistant cancer treatment [19]. In 
addition to drug-induced cell ferroptosis, 
a number of genes associated with tumor forma-
tion and progression have also been identified as 
markers or modulators of ferroptosis. For exam-
ple, RRM2 protects against ferroptosis by sustain-
ing GSH synthesis in liver cancer cells [15], and 
SCD1 facilitates tumor growth, protects against 
ferroptosis, and is associated with a poor prognosis 
in gastric cancer [20]. These ferroptosis-related 
biomarkers are promising drug targets for the 
precision treatment of various cancers. However, 
associations between ferroptosis-related genes 
(FRGs) and prognosis in CC have not been 
evaluated.

We hypothesized that FRGs are associated with 
prognosis and tumor immunity in CC. To evaluate 
this hypothesis, we conducted a series of analyses 
of FRGs in CC, including univariate Cox regres-
sion, LASSO regression, multivariate Cox regres-
sion, and functional enrichment analyses. We 
established an innovative prognostic gene signa-
ture for predicting clinical outcomes. Our results 
provide new insight into the role of ferroptosis in 
CC and provide a basis for the development of 
novel targeted anticancer drugs.

2. Materials and methods

2.1. Raw data acquisition and pre-processing

RNA sequencing (RNA-seq) expression data 
(level 3) and corresponding clinicopathological 
information for 309 samples were acquired from 
The Cancer Genome Atlas (TCGA) portal up to 
8 April 2020 (https://portal.gdc.cancer.gov/pro 
jects). All gene expression data were normalized 
using the across-array scale function of the limma 
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R/Bioconductor package (http://www.r-project. 
org). Gene expression values were converted to 
fragments per kilobase of transcript per million 
mapped reads (FPKM). All datasets analyzed in 
this study are publicly available (TCGA data por-
tal); therefore, approval from an external ethics 
committee was not required. Additionally, our 
research was in strict adherence to TCGA data 
access policies and publication guidelines. A list 
of 60 ferroptosis-associated genes was derived 
from previous literature [19,21–23] and is pre-
sented in Supplementary STable 1.

2.2. Construction of a FRG-based prognostic 
model

First, the limma Bioconductor R package was uti-
lized to identify differentially expressed genes 
(DEGs) between CC samples and adjacent non- 
cancerous cervical tissue samples. The false discov-
ery rate (FDR) threshold was set at p < 0.05 for 
DEG calling. Second, the univariate Cox regres-
sion method was used to screen for FRGs with 
potential prognostic significance. To control for 
false discovery, all p values were adjusted with 
the Benjamini–Hochberg (BH) correction algo-
rithm. Then, a protein–protein interaction (PPI) 
network of proteins encoded by all overlapping 
DEGs with prognostic value was visualized using 
String (http://string-db.org) (version 11.0) [24]. To 
avoid overfitting, the LASSO L1-penalized Cox 
regression method was utilized to select variables 
with high prognostic value [25,26]. Next, 1000 
LASSO iterations were performed for prognostic 
model construction using the ‘glmnet’ package 
in R.

The final prognostic model included the nor-
malized candidate gene expression matrix as the 
independent variable. The overall survival (OS) 
time and patient survival status were considered 
response variables. The optimal regularization 
parameter λ was selected by 10-fold cross- 
validation at one standard error, where the final 
λ parameter value reached the classification error 
of cross-validation. The risk score for all samples 
was thus estimated by the normalized gene expres-
sion levels and corresponding regression coeffi-
cients in the model. The established formula for 
calculating risk scores was as follows: Risk 

score = ∑ni = ∑Coefi × xi, where xi represents the 
normalized expression level of target gene i and 
Coefi represents the regression coefficient. All 
patients were further allocated into high- or low- 
risk cohorts based on the median value of the risk 
scores. PCA was performed using the ‘prcomp’ 
function in the STATS package in R based on 
expression levels of genes in the signature. 
A t-SNE analysis was implemented to compare 
distributions between the two cohorts using the 
R package Rtsne (https://github.com/jkrijthe/ 
Rtsne). For a survival analysis of the genes in the 
signature, the best cutoff point was iteratively 
determined with the function surv_cutpoint in 
the survminer package (version 0.4.6). To evaluate 
the performance of the prognostic signature in 
differentiating patients with CC with distinct risk 
levels, time-dependent ROC curves were generated 
using the R package survivalROC (version: 1.0.3).

2.3. Functional enrichment and pathway 
analysis

Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway enrichment 
analyses for all selected DEGs between the two risk 
cohorts were performed with the clusterProfiler 
package in BioConductor using |log2FC| ≥1 and 
FDR <0.05 as thresholds. The p values were then 
adjusted by the BH correction method. 
Enrichment scores for 16 tumor-infiltrating 
immune cells as well as the activity of 13 signaling 
pathways related to immune response were 
obtained by a single-sample gene set enrichment 
analysis (ssGSEA) implemented in the 
Bioconductor R package ‘GSVA’ [27].

2.4. Statistical analysis

The Student’s t-test was used to compare gene 
expression levels between CC samples and non- 
cancer cervical samples. Differences in proportions 
were evaluated using the chi-squared (χ2) test. 
Then, to compare ssGSEA enrichment scores for 
immune cells and immune-related pathways 
between the two groups (i.e., high- or low-risk 
groups), the Mann–Whitney U test was used. 
The OS for the two risk groups was evaluated by 
the log-rank test (Mantel-Cox) and Kaplan–Meier 
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(KM) survival curves. To determine independent 
prognostic factors, both univariate and multivari-
ate survival analyses with the Cox regression 
model were implemented. All statistical analyses 
were completed using R (Version 3.6.3) and SPSS 
(Chicago, IL, USA; Version 20.0). Unless other-
wise stated, p < 0.05 was considered statistically 
significant. The p values for all analyses were 
determined from two-tailed tests.

3. Results

Targeting ferroptosis may provide a new therapeu-
tic approach for tumors [28,29]. However, the role 
of FRGs in CC remains largely unknown. We 
evaluated the FRG signature and its association 
with survival in CC. In particular, we identified 
10 prognostic FRGs by univariate Cox regression 
analysis. These hub genes were screened to estab-
lish a four-gene signature for predicting prognosis. 
KM survival analysis and ROC curves indicated 
the good predictive value of the signature. 
Furthermore, this signature was identified as an 
independent prognostic factor for CC survival in 
both univariate and multivariate analyses. We con-
ducted a series of functional analyses of the FRGs, 
including a GO enrichment analysis, KEGG path-
way analysis, and ssGSEA, revealing several rele-
vant immune molecules and pathways.

The workflow scheme for this study is illu-
strated in Figure 1. In total, 309 samples were 
included in analyses. The clinical and pathological 
characteristics of patients are reported in Table 1.

3.1. Selection of ferroptosis-related genes 
associated with survival

To determine the specific expression patterns of 
FRGs, complete RNA-Seq datasets and corre-
sponding CC clinical profiles in TCGA were 
examined. Among 60 FRGs, 15 genes were signifi-
cantly differentially expressed between CC samples 
and adjacent cervical tissue samples. Ten genes 
(i.e., GPX4, PTGS2, TFRC, TP53, PHKG2, 
ACACA, PEBP1, SQLE, KEAP1, and GOT1) were 
statistically significantly related to OS in the uni-
variate Cox regression model (Figure 2a). These 
were selected as hub genes for further analyses 
(FDR < 0.05; Figure 2(b, c)). A PPI network 

further demonstrated that SQLE was a hub gene 
(Figure 2d). Correlations between expression levels 
of genes are shown in Figure 2e.

3.2. Ferroptosis-related prognostic signature 
construction

A multivariate LASSO cox regression model was 
used to build a prognostic signature based on the 
expression information for 10 ferroptosis-related 
hub genes. A four-gene ferroptosis-related signa-
ture was constructed according to the best setting 
for the tuning parameter λ. In survival analyses, 
the OS for patients with high gene expression 
levels was poor according to the best cutoff value 
for gene expression (adjusted p value < 0.05). The 
formula for the prognostic risk assessment score 
was as follows: risk score = (0.195 × TFRC expres-
sion values + 0.104 × ACACA expression values + 
0.097 × SQLE expression values – 0.512 × PHKG2 
expression values). After samples with a survival 
time of zero were removed, all samples were allo-
cated to the high-risk (n = 145) or low-risk score 
(n = 146) groups based on the median risk score 
(Figure 3a). Next, we deleted samples with no 
complete clinicopathologic information and 
explored risk stratification for patients with differ-
ent clinicopathologic factors, including age, histo-
logical grade, and clinical stage. Age, histological 
grade, and clinical stage were all significantly cor-
related with a higher risk of poor outcomes (Table 
2). PCA and t-SNE mappings showed that patients 
formed two distinct clusters (Figure 3(b, c)). As 
the risk score increased, the patients’ survival time 
decreased, and the death risk increased (Figure 
3d). This was consistent with the results of the 
KM survival analysis (Figure 3e, p < 0.05). The 
prognostic efficiency of the four-gene signature 
was assessed by time-dependent ROC curves. The 
area under the curve (AUC) values were 0.642 
(1-year), 0.670 (3-year), and 0.660 (5-year) (figure 
3f).

3.3. Independent prognostic value of the 
four-gene signature

To examine whether the risk score could be an 
independent prognostic marker for CC, both uni-
variate and multivariate Cox regression models 
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based on the risk score and other clinical risk 
factors were used. A univariate analysis showed 
that the risk score was obviously related to OS 
(HR = 5.865, 95% CI = 1.853–18.561, p < 0.05) 

(Figure 4a). After adjustment for potential con-
founders, the risk score was still an independent 
indicator of survival in the multivariate analysis 
(HR = 7.696, 95% CI = 2.124–27.884, p < 0.05) 
(Figure 4b).

3.4. Functional analysis of the four-gene 
signature

To investigate potential biological pathways and 
functions related to the risk signature, GO annota-
tion and KEGG pathway analyses of the DEGs 
between these two risk groups were conducted. 

Figure 1. Flow-chart of patient enrollment and data collection.

Table 1. Baseline characteristics of patients with cervical cancer.
Parameter Subtype Number of cases (%)

Age (years) ≤50 179 (61.7)
>50 111 (38.3)

Histological grade I+ II 147 (50.7)
III+IV 116 (40.0)

Unknown 27 (9.3)
Clinical stage I+ II 223 (76.9)

III+IV 61 (21.0)
Unknown 6 (2.1)

Survival status Alive 220 (75.8)
Dead 70 (24.2)
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According to the GO enrichment analysis, these 
DEGs were predominantly enriched in several bio-
logical processes, such as multicellular organismal 
homeostasis, digestion, tissue homeostasis, and 
iron secretion by tissue (adjusted p < 0.05, Figure 
5a). Interestingly, the KEGG enrichment analysis 
indicated that these DEGs were significantly 
enriched in complement and coagulation cascades 
that are closely associated with inflammatory and 
immune responses (adjusted p < 0.05, Figure 5b).

To further probe the relationship between the 
prognostic signature and immune status, ssGSEA 
was conducted to obtain enrichment scores for 
several immune cell types as well as related biolo-
gical pathways or functions. Interestingly, the con-
tents of antigen processing and presentation, 
including the enrichment scores for DCs, pDCs, 
and APC co-inhibition differed significantly 
between the two risk groups (adjusted p value < 
0.05, Figure 6a, b). Additionally, the scores for 

B cells, CD8 + T cells, Mast cells, T helper cells, 
NK cells, TIL, CCR, check-point, cytolytic activity, 
HLA, inflammation-promoting, T cell co- 
inhibition, T cell co-stimulation, and Type I IFN 
response were higher in the low-risk group than in 
the high-risk group (adjusted p value < 0.05, 
Figure 6(a, b)). Remarkably, the scores for pDCs 
and NK cells showed the most highly significant 
differences between the two risk groups.

4. Discussion

In this study, we comprehensively analyzed 60 
FRGs in CC samples and their relationships with 
prognosis. We established a new ferroptosis- 
related four-gene signature. In functional analyses, 
these genes were significantly enriched in several 
immune cell types and immune-related pathways.

Although the potential regulatory effects of the 
inhibition of ferroptosis on the proliferation of CC 

Figure 2. Identification of candidate genes related to ferroptosis in cervical cancer. (a) Venn diagram illustrating prognostic DEGs 
between cervical cancer and adjacent non-cancer samples. (b) Heatmap analysis of 10 prognostic DEGs. (c) Forest plot with hazard 
ratios from the survival analysis based on the univariate Cox regression model using gene expression levels as variables. (d) 
Construction and visualization of a protein–protein interaction (PPI) network of DEGs generated using the STRING database. Yellow 
lines represent text-mining evidence in the PPI network, and black lines represent co-expressed proteins. (e) Network analysis of 
internal correlations among four candidate genes. Correlation coefficients are indicated by different colors.
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cells has been reported [30], the mechanisms by 
which FRGs impact CC and OS remain poorly 
studied. We identified 15 FRGs that were signifi-
cantly differentially expressed between CC samples 
and adjacent non-cancer samples. Unexpectedly, 
10 of these genes (66.7%) were related to OS in 

a univariate Cox regression analysis, supporting 
the general importance of ferroptosis in the patho-
genesis and progression of CC. These results also 
suggests that a predictive signature could be con-
structed using ferroptosis-related prognostic 
markers.

Figure 3. Synthetic analysis of the prognostic value of the ferroptosis-based risk signature. (a) Distribution of risk scores among CC 
samples. (b) Score plot for the principal component analysis (PCA). (c) Two-dimensional projection of CC-seq data from TCGA by 
a t-SNE analysis. (d) Distribution of four-gene risk scores and patient survival status. (e) OS by Kaplan–Meier curves for patients in the 
two risk groups. (f) Time-dependent ROC curves for survival prediction with AUC values.
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The proposed ferroptosis-related predictive sig-
nature generated in our study included four genes 
(TFRC, ACACA, SQLE, and PHKG2). TFRC 
encodes a transmembrane glycoprotein expressed 
on the surface of all nuclear cells; it facilitates iron 
uptake by combining with Fe3+-loaded transferrin 
for subsequent endocytosis. TFRC, an indispensa-
ble iron transporter for cellular iron absorption, is 
critical in carcinogenesis and tumor progression 
and is dysregulated in numerous cancers 

Table 2. Baseline clinical characteristics of patients in the two 
risk groups.

Characteristics High risk Low risk p-value

Age (%) <0.001
≤50 y 150 (48.8) 305 (99.3)
>50 y 157 (51.2) 2 (0.7)
Histological grade (%) <0.001
I+ II 259 (84.3) 223 (72.6)
III+IV 48 (15.7) 84 (27.4)
Clinical stage (%) <0.001
I+ II 166 (54.1) 302 (98.3)
III+IV 141 (45.9) 5 (1.7)

Figure 4. Prognostic value of the risk scores in the univariate (a) and multivariate (b) COX regression models.
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[31,32,32]. Additionally, it is closely related to 
invasion, clinical stage, and pelvic lymph node 
metastases in CC [33,34]. ACACA, which encodes 
a cytosolic enzyme involved in de novo fatty acid 
synthesis, exhibits biotin carboxylase and carboxyl 
transferase activity [35]. Its downregulation exerts 
an anti-tumor effect via the lipid metabolism path-
way in colorectal cancer cells [36]. In addition, 
a novel compound CIL56 that can induce cell 
death via ACACA has been identified [37]. SQLE 
is a newly found ferroptosis regulator involved in 

cholesterol metabolism. SQLE promotes tumor 
progression by multiple mechanisms in different 
types of cancer cells [38]. It exerts an oncogenic 
effect on ALK+ anaplastic large cell lymphoma by 
the alteration of the membrane lipid composition 
and inhibition of ferroptosis [39]. However, the 
inhibition of SQLE expression rescues tumor 
growth defects in small cell lung cancer [40]. 
Therefore, the specific molecular mechanisms 
underlying the effects of the SQLE gene on ferrop-
tosis in different tumors need to be further 

Figure 5. Results of GO (a) and KEGG pathways enrichment analyses (b) of DEGs among CC samples.
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explored. PHKG2, which encodes the catalytic sub-
unit of phosphorylase b kinase, could mediate the 
hormonal and neural regulation of glycogen 

breakdown (glycogenolysis) by a cascade of events, 
thereby activating glycogen phosphorylase. 
Previous studies have found that PHKG2 

Figure 6. Comparison of ssGSEA enrichment scores between high- and low-risk groups in CC samples from TCGA. Boxplots display 
the distribution of ssGSEA enrichment scores of 16 immune cells (a) and 13 immune-related biological processes (b). CCR, cytokine- 
cytokine receptor. Adjusted p-values are represented as follows: ns, not significant; *p < 0.05; **p < 0.01; ***p < 0.001.
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expression is elevated in human breast cancer cells, 
indicating that it might be a useful diagnostic 
biomarker [41]. Additionally, it may be 
a potential biomarker for patients carrying wild- 
type KRAS in metastatic colorectal cancer [42].

In summary, three genes (ACACA, SQLE, and 
PHKG2) in the newly developed signature have 
established roles in the protection of tumor cells 
against ferroptosis, whereas TFRC has the opposite 
effect. Our results indicated that ACACA and 
SQLE are associated with short survival times in 
patients with CC, and PHKG2 is positively corre-
lated with prognosis. Therefore, the effects of these 
genes on survival via the regulation of ferroptosis- 
related signaling pathways and biological processes 
require further investigation. Other than TFRC, 
few empirical studies have evaluated the mechan-
ism and biological effects of these FRGs.

Although the ferroptosis-related molecular 
mechanisms at the cellular level have recently 
become the subject of intensive tumor research, 
the precise relationship between ferroptosis and 
immunity remains unclear. Thus, we further con-
ducted GO and KEGG enrichment analyses of the 
DEGs between low-risk and high-risk groups. As 
expected, these genes were mainly enriched in 
secretion by tissues, digestion, and tissue home-
ostasis, involving iron absorption and secretion. 
Surprisingly, our results indicated that these 
genes were primarily enriched in complement 
and coagulation cascades. Therefore, it is plausible 
that ferroptosis is highly correlated with tumor 
immunity.

Of note, a highly significant difference in the 
importance of genes related to antigen processing 
and presentation was observed between the two 
risk groups. One possible explanation for this dif-
ference is as follows. Ferroptotic dead or dying 
cells initiate lipid oxidation and generate pro- 
ferroptotic signals, including chemokines and 
lipid mediators, to drive active APCs to reach the 
site of ferroptosis [43]. In addition, when com-
pared with the high-risk groups, patients in the 
low-risk groups had higher fractions of CD8 + T 
cells and NK cells. This directly demonstrates that 
CD8 + T cells and NK cells are correlated with 
a favorable prognosis in CC due to their ability to 
target and kill tumor cells [44], consistent with 
numerous previous studies [45–47]. Furthermore, 

low-risk scores were associated with the activation 
of the anti-tumor immune response, including the 
activity of tumor-infiltrating lymphocytes, HLA, 
T cell co-stimulation, and type I IFN response. 
Therefore, improved anti-tumor immunity activity 
in patients with CC at low risk might explain the 
favorable prognosis (Figure S1).

Despite these important findings, this study 
had various limitations. First, a retrospective 
study design based on TCGA was used. Thus, 
selection biases might limit the validity of this 
research, and further prospective studies are 
warranted to verify our conclusions using large- 
scale real-world data. Second, the prognostic 
model lacked external validation, which may 
pose a limitation in terms of generalizability. 
Finally, our model was constructed based on 
single FRGs. The integration of multiple markers 
of multiple clinical features into the signature 
would further improve the predictive value of 
the model.

5. Conclusion

This is the first systematic investigation of the 
expression patterns of FRGs in CC and their 
relationship with patient outcomes. A four-gene 
prognostic signature based on FRGs was devel-
oped. High-risk scores were associated with poor 
survival. Our results provide new insights into 
ferroptosis in cervical carcinogenesis and pro-
gression and offers a valuable ferroptosis- 
targeted therapeutic avenue for CC. Moreover, 
our results further support the role of FRGs in 
tumor immunity. Given that our work is based 
on TCGA RNA-Seq data, the specific mechan-
isms by which FRGs contribute to anti-tumor 
immunity should be further explored in the 
future.
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