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Abstract

Anovel test is described that visualizes theabsolutemodel-datafitof thesubstitutionandtreecomponentsofanevolutionarymodel.

The test utilizes statistics based on counts of character state matches and mismatches in alignments of observed and simulated

sequences. This comparison is used to assess model-data fit. In simulations conducted to evaluate the performance of the test, the

test estimator was able to identify both the correct tree topology and substitution model under conditions where the Goldman–Cox

test—which tests the fit of a substitution model to sequence data and is also based on comparing simulated replicates with observed

data—showed high error rates. The novel test was found to identify the correct tree topology within a wide range of DNA substi-

tution model misspecifications, indicating the high discriminatory power of the test. Use of this test provides a practical approach for

assessing absolute model-data fit when testing phylogenetic hypotheses.
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Introduction

Substitution model misspecification contributes greatly to phy-

logenetic uncertainty (Gaut and Lewis 1995; Inagaki et al.

2004; Jermiin et al. 2004; Gruenheit et al. 2008; Sheffield

et al. 2009; Nesnidal et al. 2010; Betancur-R et al. 2013;

Goremykin et al. 2013, 2015; Xi et al. 2014) and can lead to

phylogenetic error in reconstructed relationships (Lockhart et al.

1996; Bruno and Halpern 1999; Buckley 2002; Lartillot et al.

2007). However, direct estimations of model-data fit are very

rarely used in phylogenetic practice. In the vast majority of ex-

ploratory phylogenetic studies, only the relative fit of different

substitution models to each other is estimated (e.g., via the

hierarchical likelihood ratio tests: Frati et al. 1997; Sullivan

et al. 1997; via Akaike or Bayesian information criterion-

based comparisons, respectively: Akaike 1974; Schwarz

1978; or via cross-validation: Lartillot et al. 2007). This practice

occurs, even though there are strong indications that assess-

ment of model-data fit based on direct comparison of observed

data and parametric replicates is more reliable for assessing

phylogenetic accuracy than are measures of relative model fit

(Waddell et al. 2009; Grievink et al. 2010).

Absolute model fit indicators compare simulated and em-

pirical data, and the measures of resemblance used by

different approaches are diverse. A characteristic trait of ab-

solute model fit indicators is that the best possible model has a

fit of zero. All indicators assess whether an evolutionary model

is likely to well predict observed data properties. A weakness

of current methods is that the statistics employed are often

insufficient to distinguish between models. The most widely

used statistics are the frequentist Goldman–Cox (GC) test

(Goldman 1993) and the Bayesian posterior predictive model

checking approach (Rubin 1984; Bollback 2002). Both meth-

ods utilize multinomial likelihood-based statistics to assess ab-

solute model fit (Althoff et al. 2006; Lanfear and Bromham

2008; Grievink et al. 2010; Anisimova et al. 2011; Ekman and

Blaalid 2011; Nguyen et al. 2012; Reid et al. 2014; Kitahara

et al. 2014; Kaehler et al. 2015; Duchêne et al. 2016). These

two tests assess overall model fit, and not specific data fea-

tures such as composition and saturation (Foster 2004;

Duchêne et al. 2016). These tests are also similar in the sense

that they check the ability of a model to correctly predict the

distribution of frequencies of site patterns in the observed

data.

The statistics of the frequentist GC test examine the differ-

ence between the model-based likelihood and the multinomial

likelihood (the product, across all alignment positions, of
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frequencies of site patterns). Although multinomial likelihoods

are simple to calculate they have also been reported to lack

discriminatory power (Bollback 2002; Foster 2004; Waddell

et al. 2009; Ripplinger and Sullivan 2010; Duchêne et al. 2016).

Lewis et al. (2014) have noted that multinomial likelihood-

based statistics “depend[s] only on the counts associated

with site patterns and not the patterns themselves. Thus,

two data sets that are extremely different can potentially

have identical numerical values for this statistic.” Pointing

out the irrelevance of information contained in the site pat-

terns for the multinomial likelihood inference, Lewis et al.

(2014) have instead suggested a modification of the

Gelfand and Ghosh (1998) test statistic (GG) for assessment

of similarity between observed data and replicates simulated

on an evolutionary model. An advantage of using this statis-

tic is that it evaluates accuracy in prediction of data patterns

directly (Lewis et al. 2014). Theoretically, the GG test statistic

as applied by Lewis et al. (2014) can evaluate model-based

predictions of distinct site pattern frequencies. Practically,

the test requires that the same site pattern must occur at

least once in the observed data and in each simulated repli-

cate in order to avoid calculation of logarithm of zero (as

explained in detail in the section “Estimation of Substitution

Model Fit”). Because this is unlikely to always occur, Lewis

et al. (2014) group individual patterns into categories com-

posed of A, C, G, T, AC, AG, AT, CG, CT, GT, ACG, ACT,

AGT, CGT, and ACGT character states, since these categories

are more likely to be encountered in all alignments.

To further explore the potential of using phylogenetic in-

formation contained in alignment site patterns, a novel

pattern-sensitive frequentist test is proposed for assessing ab-

solute model-data fit. This test incorporates GG statistics, al-

beit based on different data properties. The discriminatory

power of this novel test for model-data fit is compared with

the frequentist GC test. The performance of these tests has

been examined for a number of DNA evolutionary models.

Because phylogenetic analyses of biological data always

involve a degree of model misfit, assessment of the tests

has considered model-data fit when the substitution model

component of the evolutionary model was misspecified. The

novel test metric described was found to be sufficiently sen-

sitive to identify the correct tree topology within wide range

of DNA substitution model misspecification. The high discrim-

inatory power of the novel test and its robustness to substi-

tution model misspecification encourage its use for hypothesis

testing in phylogenetics.

Materials and Methods

Calculation Details for Testing and Ranking Models

Estimation of Substitution Model Fit

In order to perform the test of substitution model fit, counts

are first made of pairwise aligned character states (e.g., A–A,

A–C, A–G, A–T, C–C, C–G, C–T, G–G, G–T, T–T) in each mul-

tiple sequence alignment analyzed. For a multiple sequence

alignment (henceforth referred as msa) which has n sequen-

ces and k columns the counts of character state alignments

are calculated in the following way:

Cxy ¼
Xa¼k

a¼1

Xi¼n

i¼1

Xj¼n

j¼1

1i 6¼j1Sia¼x1Sja¼y ; (1)

wherein x2{A, C, G, T}, y2{A, C, G, T}, Sia and Sja are the

character states at site a for sequences i and j, respectively,

and 1v ¼ 1 if v is true and 0 otherwise. The alignments com-

pared should not contain gaps and ambiguous character

states.

The counts of pairwise aligned character states (eq. 1) are

quantities which can be expected to be predicted well by a fit

substitution model and poorly when a substitution model is

misspecified. They represent the basic type of information

used by the proposed test. The test statistic is calculated by

comparing the counts of pairwise aligned character states in

the data, which have evolved under an unknown model of

evolution (henceforth referred as the “empirical model,” EM),

to the counts in replicates simulated under an explicit evolu-

tionary model (henceforth referred as the “simulation

model,” SM).

The GG criterion for model fit is a sum of two components,

one related to goodness-of-fit (GGg) and the other related to

variance (GGp):

GG ¼ GGgþ GGp: (2)

For the purposes of conducting the test, the default GG

parameters as recommended in Lewis et al. (2014) following

Ibrahim et al. (2001) and Chen et al. (2004) are used. If the

sum of all counts of pairwise aligned character states in each

msa included in the test is s, and the number of replicates

generated is q, then

GGp ¼ 2s
1

q

Xi¼q

i¼1

t1ðiÞ

 !
� t2

" #
(3)

and

GGg ¼ 4s
t2 þ t3

2
� t4

� �
(4)

.Each of the four t functions in equations (3) and (4) is com-

puted as:

tx ¼ �lnsþ 1

s

Xi¼d

i¼1

CðiÞlnCðiÞ; (5)

wherein x represents the corresponding function number as

shown in equations (3) and (4), d is an alphabet-specific num-

ber of distinct character state alignments and C is a variable
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indicating the values for counts of character state alignments.

For t1, the C variable indicates the values for character state

alignment counts in each replicate. For t2, the C variable indi-

cates the mean value over counts of each such alignment in

the distribution of replicates. For t3, the C variable indicates

the counts of pairwise character state alignment in the ob-

served msa. In the t4 function, the C variable indicates the

mean value for each character state alignment over two cor-

responding values used in the functions t2 and t3.

Although originally suggested for Bayesian analyses

(Gelfand and Ghosh 1998), these statistics in fact can also

be expected to function well in a frequentist analytical frame-

work. In the case of no variation in the counts among simu-

lated replicates, the indicator of variance (GGp) would equal

zero. In addition, a perfect fit (GGg ¼ 0) occurs when the

mean values predicted by the SM do not deviate from those

of the empirical model. Obviously, such definitions of fit and

variance should hold true for comparisons of observed data

with parametric replicates generated under maximum likeli-

hood models too.

Since use of the full GG statistic (GG¼GGgþGGp) offered

no sizable advantage over using only the GGg function in the

experiments conducted here, the proposed test uses GGg

function as a default option. The full GG statistic, although

not recommended, can also be optionally employed.

An important advantage of the GGg-based test of substi-

tution model fit presented here over the test suggested in

Lewis et al. (2014) is that the GGg-based test can be per-

formed under conditions where the Lewis et al. test cannot

be applied. Regardless of the data properties compared,

Gelfand and Ghosh statistics require each C variable in equa-

tion (5) to have a positive value in order to avoid calculation of

logarithm of zero. In the case of Lewis et al. test, the C variable

indicates counts for 15 site pattern categories which contain

the following character states: A, C, G, T, AC, AG, AT, CG,

CT, GT, ACG, ACT, AGT, CGT, and ACGT. These categories

should be present in observed data and in each replicate,

otherwise the test cannot be performed. The test presented

here requires the following ten character state alignments (in

any combination of character states, since Cxy ¼ Cyx [eq. 1]):

A–A, C–C, T–T, G–G, A–C, A–G, A–T, C–G, C–T, G–T to co-

occur in the observed data. They must also occur at least once

in the distribution of replicates. Thus, the more replicates that

are generated, the higher is the chance of failure in calculation

of the Lewis et al. test and the lower is the chance of failure in

calculation of the proposed test. Moreover, the alignments of

character states can be distributed across the above site pat-

tern categories in any order. This leads to fewer categories

necessary to conduct the proposed test compared with the

Lewis et al. test. For example, a single ACGT category contains

all necessary alignments of nonequal character states and can

also contain all other alignments. Simpler AC, AG, AT, CG,

CT, and GT categories contain all necessary alignments of

nonequal character states and are likely to contain all other

alignments too. As a consequence, the suggested test can be

performed when Lewis et al. test cannot be employed.

In preliminary experiments aimed at working out the scor-

ing options in the presented study, I encountered program

crashes which could be traced back to the problem of non-

calculability of Lewis et al. test with large number of replicates

and small alignments used for testing purposes. For this rea-

son, this test cannot be performed on a number of published

data sets (Nikiforova et al. 2013; Fu�c�ıkov�a et al. 2016;

Johnson et al. 2018; McManus et al. 2018). The alignments

from these studies which cause calculation failure of the test

(43 in total) are provided as Supplementary Material online. In

contrast to the performance of Lewis et al. test, these align-

ments, ranging in length from 96 to 134,553 positions, fulfill

the conditions required by the novel test presented here.

Assessment of substitution model fit based on counts of

pairwise alignments among the character states is illustrated

with the following example. Let us consider the two trees

shown in figure 1. In Tree I, taxon A is sister to taxon B, while

in Tree II, taxon A is sister to taxon C, otherwise the trees are

identical.

With the help of the INDELIBLE program (Fletcher and

Yang 2009), a 10,000 positions long replicate has been sim-

ulated on Tree I. The simulation assumed a GTRþG model

(with the numerical parameters taken from arbitrarily selected

T01þGTRþG EM model used in table 2). The corresponding

evolutionary model is referred to hereafter as the “empirical

model 1,” EM1. Two further replicates of the same length

were generated under Tree I and Tree II assuming a GTR

model with the same numerical parameters as the above

GTRþG model. These evolutionary models assuming Tree I

and Tree II have been termed simulation model 1 (SM1) and

simulation model 2 (SM2), respectively. SM1 was used to il-

lustrate a case where the tree and substitution model are

correct, while SM2 illustrates a case where the tree is misspe-

cified and the substitution model is correct. Replicates of the

same length were also generated under Tree I and Tree II

assuming a K80 model (with the numerical parameters taken

from arbitrarily selected T01þK80 EM model used in table 2).

These evolutionary models assuming Tree I and Tree II have

been termed simulation model 3 (SM3) and simulation model

4 (SM4), respectively. SM3 was used to illustrate a case where

the tree is correct and the substitution model is misspecified.

SM4 illustrates a case where both the tree and substitution

model were misspecified.

Counts of alignments among character states (eq. 1) in

replicates representing EM1, and four SMs were calculated

(fig. 2). The results presented in figure 2 show similarity in the

counts calculated for the replicates simulated under all models

assuming a GTRþG substitution model component (EM1,

SM1, and SM2). The values calculated for the models assum-

ing a K80 substitution model component (SM3 and SM4)

were also similar to each other. These were quite distinct

from those calculated for GTRþG-based replicates for a

Novel Test for Absolute Fit of Evolutionary Models GBE
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majority of character state alignments. GGg test values calcu-

lated in comparisons of EM1 to SM1 (68.14), EM1 to SM2

(69.76), EM1 to SM3 (16,367.30), and EM1 to SM4

(16,135.76) allow visualization of the difference in data-

model fit due to substitution model misspecification.

The test component used for assessing overall substitution

model fit is a mean over GGg values computed for a set of

evolutionary models sharing a substitution model component:

A ¼ 1

w

Xi¼w

i¼1

GGgi; (6)

wherein w is a number of such models. The tree model com-

ponent influences GGg values only slightly and randomly, and

so this metric cannot be used to rank alternative tree compo-

nents of an evolutionary model. For example, SM3 which

shared the same tree with EM showed worse fit compared

with SM4, an evolutionary model which assumed a wrong

tree. In the example presented above, the A value (eq. 6) for a

GTRþG model is calculated as (68.14þ 69.76)/2¼ 68.95 and

the analogous value for a K80 model is calculated as

(16,367.30þ 16,135.76)/2¼ 16,251.53.

Ranking Combinations of Each Substitution Model and
Model Tree in Terms of Model-Data Fit

The metric presented above cannot be used to rank alterna-

tive tree components of an evolutionary model. However, by

considering data partitions (groups of sequences) separately,

a further statistic can be defined that will provide a means of

accomplishing this task.

FIG. 1.—Model trees used for simulation.

FIG. 2.—Changes in the distributions of the counts of character state alignments resulting from substitution model misspecification. In the figure, EM1

and SM1 assume Tree I (fig. 1) plus GTRþG model, SM2 assumes Tree II (fig. 1) plus GTRþG model, SM3 assumes Tree I plus K80 model and SM4 assumes

Tree II plus K80 model.
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To obtain this statistic, the counts of pairwise aligned char-

acter states are first transformed into frequencies. For each

msa which has n sequences and k columns:

fxy ¼
Cxy

knðn� 1Þ ; (7)

wherein x2{A, C, G, T}, y2{A, C, G, T}, and Cxy is the value

estimated in equation (1). The frequencies of alignments of

nonequal character states should be divided by a large con-

stant positive value (P-factor) to produce the scoring matrix

values. As explained later in this section, division of frequen-

cies of character state mismatches by a large positive P-factor

value improves the discriminatory power of the test. The scor-

ing matrix values are given by equation (8):

mxy ¼
fxy

Px 6¼y
; (8)

wherein Pv ¼ P if v is true and 1 otherwise. The script which

performs the calculation for the component of the presented

test related to model tree fit (test_stage1.pl, available at:

https://github.com/vadimgoremykin/absolute-model-data-fit)

uses a default P-factor value ¼ 10,000, which was used in all

experiments conducted here, unless stated otherwise.

Thescoringmatrixvaluesareusedtoestimatedissimilarity (D

values) between subsets of taxa separated by internal branches

in the model trees. D values provide a means to evaluate which

fully resolved tree is most supported by the data. Furthermore,

although the spaceofall possible trees canbe large, competing

hypothesesofrelationshipoftenonlyconcernafinitenumberof

possible tree topologies, which are represented by a limited

number of alternative internal branches. Thus, while there are

2(n�1)�n�1 splits or internal branches in a tree space with n

taxa, D values do not need to be calculated for all splits in the

possible treespace,but rather theyneedonlybecalculatedfora

set of splits that represents competing trees. D values can be

usedtoranktreemodelsbecausetheirvalueis influencedbythe

treelike divergence of sequences.

D values for each internal branch are obtained by consid-

ering the average heterogeneity of m values for the node on

one side of the branch being evaluated against the average

heterogeneity of m values across the branch at each align-

ment position. A D value is calculated for each of the two

internal tree nodes separated by the internal branch. The

position-based D value for each node is calculated as the

ratio of a mean m value (eq. 8) for character alignments

within the taxon subset on a side of the branch correspond-

ing to the node (termed here “node-specific taxon subset”)

at the given alignment column c (V1c) to the mean m value

for alignments between these characters and all other char-

acters at the same column (V2c).

The V1c value is computed as the mean of the m values

(eq. 8) for all possible alignments between the character

states in the node-specific taxon subset at the column c.

Since mxy ¼ myx, V1c can be computed as a mean over the

m values in an upper or lower triangular part of a square

matrix which rows and columns represent OTUs included

into the subset, populated with the m values for letter align-

ments among these OTUs, e.g.:

V1c ¼
1

hðh� 1Þ0:5
Xi¼h

i¼1

Xj¼h

j¼1

mxðiÞ;yðjÞ

ði > jÞ

; (9)

wherein h is the number of taxa in the subset, and mx(i), y(j) is

the scoring matrix value for the character states in column c (x

and y) observed, respectively, in sequences i and j which be-

long to the subset.

The value for V2c is analogously computed as a mean of m

values for the character state alignments between each char-

acter state observed in the node-specific taxon subset at the

same column c and each character state not included in the

subset at the column:

V2c ¼
1

hb

Xi¼h

i¼1

Xj¼b

j¼1

mxðiÞ;yðjÞ; (10)

where x(i) is a character in the column c observed at the ith

OTU from the node-specific taxon subset which has a total of

h OTUs, y(j) is a character in the column c observed at the jth

OTU which belongs to the rest of OTUs, comprised of b

sequences and mx(i), y(j) is the scoring matrix value for x(i)

and y(j) character states.

The D value for a node-specific taxon subset at the column

c is a ratio of the corresponding V1c value to the V2c value:

Dc ¼
V1c

V2c
: (11)

The D value for a node-specific taxon subset in a multiple se-

quence alignment of k positions is calculated as the arithmetical

mean of all the corresponding position-based Dc values:

D ¼ 1

k

Xc¼k

c¼1

Dc: (12)

The D values are computed for all internal tree branches pre-

sent in all the model trees representing alternative evolution-

ary hypotheses to be tested. For the test purposes, the trees

should be fully resolved. The set of the D values (eq. 12) used

for model fit assessment should not contain redundant esti-

mates. Regardless of the frequency of occurrence of an inter-

nal branch in the model trees, the corresponding D values

should be present in the set only once.

A feature of this novel statistics which is utilized to identify

the true tree topology is that D values that correspond to splits

that are in the true tree will tend to be larger than D values for

the same splits if they are not in the true tree. Employing

Novel Test for Absolute Fit of Evolutionary Models GBE
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P-factors in calculation of D values helps to emphasize this

difference.

In designing a scoring function related to model tree fit, it

was assumed that common character state(s) observed across

a hypothesized branch at an alignment position indicate that

the position (termed “X site”) does not support the branch,

but rather supports other branches or does not support any

branch (e.g., is constant). In addition, it is assumed that a

position at which common character state(s) are not shared

across a hypothesized branch (termed “S site”) supports the

branch. In the case of S sites, the denominator in equation

(11) is a mean over the m values assigned to mismatches only.

The significance of this is that division of frequencies of mis-

matches by a P-factor value in equation (8) leads to relative

increase of sizes of position-based D values for S sites com-

pared with the corresponding values calculated for X sites.

Consequently, the numerical size of a D value (eq. 12), which

is a mean of the position-based D values calculated over all

msa positions, would be largely determined by S sites. Under

each substitution model, employing P-factors emphasizes the

difference between a D value calculated in the case when S

sites are abundant, which is expected if a branch is in the true

tree, and the D value for the same node-specific taxon subset

calculated when S sites are scarce. The latter is expected when

the branch is not in the true tree. The difference between D

values for the same node-specific taxon subsets expected un-

der these alternative evolutionary scenarios provides the basis

for discriminating between model trees as described below.

The effect of using P-factors is illustrated in table 3. At high P-

factor values, there is greater resolution among models (ta-

ble 3) while numerical test values (table 5) are similar.

The D values are calculated based on each individual msa,

representing either EM or SM. The strength of rank correla-

tion between a set of D values calculated based on an align-

ment representing the empirical model and a set of D values

calculated for a SM-based replicate is measured using the

Spearman correlation coefficient (rs). The replicate-specific rs
values are each estimated by comparing a set of D values for

an individual msa representing EM to a set of D values for

each replicate representing SM. They are converted to a nor-

mally distributed variable z by the Fisher transformation:

z ¼ 1

2
ln

1þ rs

1� rs

� �
: (13)

In the rare case in which rs is >0.999999999999999, rs is set

to this value to enable computation of the Fisher transforma-

tion in the Perl programming language. The arithmetical

mean for a q-member distribution of z values is calculated as:

�z ¼ 1

q

Xi¼q

i¼1

zi: (14)

The test component used for assessing evolutionary model fit

to a msa representing EM is obtained by inverting the Fisher

transformation for the mean value (eq. 14) and subtracting

the resulting value from 1:

B ¼ 1� exp ð2�zÞ � 1

exp ð2�zÞ þ 1

� �
: (15)

The smaller is the resulting value, the better is SM-data fit.

Model tree selection based on D values is illustrated

employing the replicates simulated on the trees shown in fig-

ure 1 and used to provide an example for the calculation of

substitution model fit (eq. 6). D values were calculated based

on each replicate for all the node-specific taxon subsets which

could be sampled from the model trees (fig. 3).

The results presented in figure 3A and B show that, under

each distinct substitution model, each D value that corre-

sponds to a split that is in the model tree is larger than the

D value for the same node-specific taxon subset if the split is

not in the model tree. D values for each of the AB and CDEF

node-specific taxon subsets which are separated by a branch

in the Tree I but not in Tree II are larger for the evolutionary

models assuming Tree I compared with those assuming Tree

II. D values for each of the AC and BDEF node-specific taxon

subsets, which are separated by a branch in Tree II but not in

Tree I, are smaller for evolutionary models assuming Tree I

compared with those assuming Tree II.

Spearman rank correlation coefficients (rs) were

employed to assess the difference in model-data fit due

to an incorrect tree. In the case of no substitution model

misfit, comparison of identical evolutionary models (EM1

and SM1) yielded rs¼ 0.98, and the comparison of models

assuming Tree I and Tree II (EM1 and SM2, respectively)

yielded rs ¼ 0.38. In comparisons involving GTRþG-based

EM1 and evolutionary models that contained a substitu-

tion model component (K80 model) that was misspeci-

fied, comparison of models assuming the same set of

correct branches (EM1 and SM3) yielded rs ¼ 0.98, and

comparison of EM1 and SM4, assuming different sets,

yielded a relatively lower value (rs ¼ 0.36).

These results illustrate the assessment of model-data fit

when distinct SMs share the substitution model component

but assume different trees. The highest degree of rank corre-

lation can be expected when tree topologies are equivalent

for the empirical model and the simulation evolutionary

model. In this case, the sets of correct and wrong branches

used for model fit assessment would be the same for the EM

and SM. When the SM assumes a misspecified tree, each

node-specific D value for the internal branch that is in the

SM tree, but not in EM tree, is expected to be larger in the

simulation than in the observed data. In contrast, each node-

specific D value for the internal branch that is in the EM tree,

but not in the SM tree can be expected to be smaller in the

simulation than in the observed data. The rank correlation

coefficients provide a simple means to assess these shifts in

D values in SM compared with EM.
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Test Statistic

It should be mentioned that the proposed rank correlation

analysis is not well-suited to distinguish substitution models

which exhibit the same or similar rank correlation values and

the same tree topologies. A combined test metric for evolu-

tionary model fit (T) which is a product of two components

(value A and value B, eqs. 6 and 15, respectively) is free from

this limitation:

T ¼ AB (16)

.In the case of perfect fit the test value should approximate

zero. In practice, a fit of 0 is rarely achieved even in compar-

ison of identical models due to stochastic differences in rep-

licate samples.

In the case of comparison of models represented by single

replicates used here to illustrate the principles of model fit

assessment, B¼ 1�rs. Thus, comparison of EM1 to identical

SM1 yields T¼ 68.95(1–0.98) ¼ 1.38, comparison of EM1 to

SM2 yields T¼ 68.95(1–0.38) ¼ 42.75, comparison of EM1

to SM3 yields T¼ 16,251.53(1–0.98) ¼ 325.03 and compar-

ison of EM1 to SM4 yields T¼ 16,251.53(1–0.36) ¼
10,400.98. The combined test statistic (T) was able to identify

both the correct substitution model and the model tree. The

correct substitution model was identified as a component of

the best fitting SM (SM1). The correct model tree could be

identified even when the substitution model was

misspecified.

Evaluation and Comparison of Performance

Assessment of Resolution among Individual Models and
Sufficiency of the Number of Replicates for Correct Model
Identification

The discriminatory power of the proposed test has been

assessed in experiments involving comparison of explicit

A

B

FIG. 3.—Evolutionary model-driven changes in the distributions of D values calculated for the node-specific taxon subsets corresponding to all the

distinct internal tree branches sampled from the model trees (fig. 1). (A) Changes registered in absence of substitution model misspecification. In the figure,

EM1 and SM1 assume Tree I (fig. 1) plus GTRþG model and SM2 assumes Tree II (fig. 1) plus GTRþG model, (B) Changes registered when simulation models

shared a misspecified substitution model component. In the figure, SM3 assumes Tree I plus K80 model and SM4 assumes Tree II plus K80 model. Empirical

model (EM1) is the same as in figure 3A.
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models, where correct test outcomes were known. In such

experiments, stochasticity in test estimates can arise due to

the limited size of the SM-based replicate distribution (error

source 1) and due to the choice of the replicate representing

the “correct model” (which, e.g., can be an outlier, error

source 2). In order to quantify the error rate associated with

each specific experimental setup directly, a number of EM-

based replicates were compared with each distribution of the

SM-derived replicates. When both SM and EM have repre-

sented the same evolutionary model, the replicates compared

were different.

Iterative comparison of EM-based replicates to a distribu-

tion of SM-based replicates can yield the mean test value over

all the comparisons, which would be less dependent on the

error source 2. Series of such comparisons can also show how

well the test can discern one model from another. The para-

metric bootstrap-based estimate for model separation (MS)

employed in this study is the percentage of times a preferred

simulation model showed better fit to each EM-derived rep-

licate in comparison to a wrong simulation model.

In the experiments aimed at estimation of the test’s ability

to separate each EM from every other model (table 1), the

preferred evolutionary models had both components (tree

and substitution model) identical to those of the EM. An ob-

vious assumption of these experiments was that the test sta-

tistic used should be able to identify the correct model.

In the experiments aimed at identifying the correct tree

topology when the SM substitution model was misspecified,

the preferred models had tree topologies that were congru-

ent with the correct tree model. In contrast, unfavored models

had incorrect tree topologies under the same substitution

models scheme (e.g., K80þG) as in the preferred models.

The purpose of these experiments was to test the hypothesis

that the specification of a correct tree topology will improve

model-data fit in the case when the substitution model is

misspecified. In addition, the mean test values for over 500

EM-SM comparisons were also used to assess if the specifica-

tion of the correct tree topology led to the best estimates of

model fit within the SM sets, each characterized by the same

misspecified substitution model. Since a degree of model mis-

fit is unavoidable in phylogenetic analyses of the biological

data, estimations of the test’s performance under increasingly

severe model misspecification (table 2) provides another

analytical perspective on the discriminatory power of the

test metric.

It should be noted that the MS scores can be calculated for

any test of model fit which is based on comparison of repli-

cates. For example, in this study, the MS scores described in

the above paragraph were also computed for the GC tests

(table 4).

Increasing the number of replicates (both EM- and SM-

based) in experiments aimed at calculation of MS scores can

also give a researcher the means to judge whether the degree

of model discrimination observed is due to the resolution limit

of the method or rather due to stochasticity in replicate sam-

pling (error source 1). Leveling of the MS values obtained in

experiments involving incrementally increased replicate num-

bers would indicate that the former explanation is correct.

Assessment of Discriminatory Power for the Novel Test and
GC Test

Estimators for model-data fit which use different site pattern-

based statistics were evaluated to determine whether they

could identify evolutionary models used to simulate paramet-

ric replicates. Performance of the estimators was evaluated in

instances where there was specification of the correct substi-

tution model and also when there was substitution model

misspecification.

Model trees with branch lengths and substitution model

parameters for generation of replicates under arbitrarily se-

lected GTRþG4, GTRþIþG4, GTR, HKYþIþG4, HKYþG4,

HKY, K80þIþG4, K80þG4, and K80 substitution models

were obtained from RaxML v. 825 (Stamatakis 2014) tree

searches. For each substitution model, 15 searches under dis-

tinct full topological constraints (supplementary fig. S1,

Supplementary Material online) were performed based on

the 21,300 pos. long alignment of 35 OTUs comprising 30

concatenated aligned mitochondrial gene sequences from

land plants and green algae. The alignment was used only

to obtain model trees with branch lengths and model numer-

ical parameters.

The trees used as full topological constraints in all the

searches performed based on the above-mentioned biological

data set were arbitrarily selected to represent various hypoth-

eses of the relationships among the land plants and their

Table 1

Summary of Attempts to Identify Each Correct Simulation Evolutionary Modela in a Set of 150 Test Models

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

GTRþG 92.6 89.2 88.8 89.0 90.2 86.6 91.4 89.0 89.6 86.8 90.0 88.0 89.0 88.8 91.0

GTRþR 94.0 97.6 98.8 86.0 99.2 95.4 98.0 98.8 86.4 99.4 95.6 97.4 97.8 85.0 99.6

NOTE.—The values shown represent the percentage of times when a correct simulation evolutionary model showed better fit to each of 500 replicates representing EM in
comparison to any other SM included in analyses. Shown are the worst model separation values registered in analyses.

aCorrect simulation evolutionary models assume the correct tree topology (shown above the table and presented in in supplementary fig. S1, Supplementary Material online)
and substitution model component of each “empirical” model (shown in leftmost column).
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Table 2

Ability of the Presented Test to Identify the Tree Components of the Preferred Evolutionary Modelsa in the Presence and Absence of Model
Misspecification

(A) Estimates of Fitb of the Preferred Models to GTR1R-Based Empirical Models

EMs GTR1R GTR1G HKY1G GTR1G1I K801G HKY1G1I K801G1I K80 HKY GTR

T01þGTRþR 72 140,104 140,577 139,809 135,923 140,867 134,071 136,622 148,437 161,611

T02þGTRþR 69 131,197 131,783 131,565 130,572 131,403 128,777 132,168 141,760 154,265

T03þGTRþR 71 130,215 130,868 130,249 130,569 130,551 128,288 130,691 139,927 151,887

T04þGTRþR 68 143,709 143,204 144,926 138,741 145,687 137,618 138,434 151,773 166,060

T05þGTRþR 67 137,612 138,250 136,837 133,771 137,028 132,294 133,530 145,973 158,175

T06þGTRþR 43 107,902 111,203 110,976 119,041 113,739 119,891 123,072 128,937 138,872

T07þGTRþR 43 104,752 107,363 107,085 114,292 108,468 115,759 117,707 124,410 134,180

T08þGTRþR 42 102,443 103,521 105,366 111,828 106,335 113,743 115,196 121,314 131,279

T09þGTRþR 47 110,833 111,923 113,969 117,759 114,943 120,343 122,367 131,718 142,798

T10þGTRþR 46 105,652 107,640 108,651 114,748 110,930 116,885 118,177 125,811 137,070

T11þGTRþR 48 108,982 110,953 112,019 113,490 114,422 115,248 119,651 135,052 144,390

T12þGTRþR 44 103,037 104,921 105,148 107,660 108,741 108,968 113,336 125,545 135,570

T13þGTRþR 43 102,781 102,768 104,088 106,104 106,491 107,766 110,640 122,711 132,414

T14þGTRþR 52 112,073 112,888 114,884 113,350 118,273 118,473 120,560 137,952 147,677

T15þGTRþR 48 105,540 107,818 108,270 108,549 109,886 111,381 114,085 130,567 140,314

(B) MS Valuesc for the Preferred Models Shown in Subtable A

EMs GTR1R GTR1G HKY1G GTR1G1I K801G HKY1G1I K801G1I K80 HKY GTR

T01þGTRþR 94 93 94 96 96 95 96 93 90 91

T02þGTRþR 98 98 98 98 98 98 98 98 98 98

T03þGTRþR 99 99 99 99 98 99 98 98 99 99

T04þGTRþR 86 86 86 83 82 83 79 86 87 88

T05þGTRþR 99 99 99 99 99 99 99 99 99 99

T06þGTRþR 95 94 93 95 92 93 95 90 93 93

T07þGTRþR 98 97 96 98 96 97 96 96 97 97

T08þGTRþR 99 98 99 98 98 98 98 97 99 98

T09þGTRþR 86 88 91 87 92 90 89 94 91 89

T10þGTRþR 99 100 100 100 99 100 99 100 100 100

T11þGTRþR 96 95 94 95 93 96 96 92 94 93

T12þGTRþR 97 98 98 98 98 97 98 98 98 98

T13þGTRþR 98 97 97 97 96 98 96 96 97 97

T14þGTRþR 85 86 86 86 88 82 83 90 87 89

T15þGTRþR 100 100 100 100 99 100 100 99 100 100

(C) Estimates of Fitb of the Preferred Models to GTR1G-Based Empirical Models

EMs GTR1G GTR1G1I HKY1G HKY1G1I HKY GTR K801G K801G1I K80 GTR1R

T01þGTRþG 51 74 2,043 2,105 15,462 16,739 23,677 23,562 27,833 140,851

T02þGTRþG 47 69 1,975 2,044 15,499 16,718 23,590 23,588 28,380 133,976

T03þGTRþG 49 71 1,961 2,019 15,162 16,367 23,196 23,101 27,478 132,028

T04þGTRþG 53 76 2,112 2,217 16,236 17,995 24,764 24,817 29,260 143,301

T05þGTRþG 48 72 2,067 2,136 15,822 17,177 24,256 24,211 28,611 137,211

T06þGTRþG 37 53 1,575 1,665 14,247 15,437 20,246 20,819 25,754 107,128

T07þGTRþG 34 51 1,530 1,617 14,050 15,065 19,553 20,101 24,690 104,006

T08þGTRþG 35 51 1,482 1,588 13,631 14,849 18,913 19,772 23,998 102,077

T09þGTRþG 40 56 1,581 1,675 14,418 15,787 20,348 21,133 25,694 107,947

T10þGTRþG 36 53 1,509 1,631 13,917 15,136 19,465 20,147 24,451 103,195

T11þGTRþG 36 53 1,494 1,590 14,194 15,297 18,259 18,879 23,572 108,964

(continued)
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closest modern algal relatives. The selection of the constraints

simulates a typical case in the phylogenetic literature in which

the alternative hypotheses concern changes resulting from

pruning and regrafting of several internal branches in com-

peting trees (from one to four, in comparison to every model

tree in the experiments presented here).

The best-fitting model for the above data set selected by

the ModelFinder pipeline (Kalyaanamoorthy et al. 2017) was a

GTR-based model (GTRþR) with across sites rate heterogene-

ity modeled via FreeRate model (Soubrier et al. 2012), which

allows site rates to vary freely and allows automatic determi-

nation of the number of rate categories. The best model as-

sumed five rate categories. Model trees and substitution

model parameters for generation of replicates under the op-

timal GTRþR model were obtained from 15 IQ-TREE (Nguyen

et al. 2015) searches performed based on the observed align-

ment iteratively specifying each of the above mentioned 15

topological constraints.

Multiple sequence alignments were simulated using

INDELIBLE (Fletcher and Yang 2009) for all the models, except

those that used a GTRþR substitution model component, for

which I used Seq-Gen (Rambaut and Grassly 1997). All

INDELIBLE configuration files used for replicate generation

and Seq-Gen command lines used to generate the GTRþR

model-based replicate distributions are available as

Supplementary Material online.

The simulations under each of GTRþIþG4, GTR,

HKYþIþG4, HKYþG4, HKY, K80þIþG4, K80þG4, and

K80-based evolutionary models (substitution modelþtree

combinations, 120 in total) were conducted to sample

sets of 500 parametric replicates, each 21,300 pos.

long. The replicate sets were chosen to represent 120

simulation evolutionary models (SMs) in follow up experi-

ments. For each GTRþR and GTRþG4-based evolutionary

model (30 in total), I simulated 1,000 replicates, each

21,300 pos. long. Each of the 30 resulting replicate files

was then partitioned to obtain a partition A with the first

500 replicates sampled and a partition B containing the

rest of replicates. The A partitions were chosen to repre-

sent 30 “empirical” models (EMs) and the B partitions

were chosen to represent other 30 simulation evolution-

ary models (SMs) in follow up experiments.

Table 2 Continued

(C) Estimates of Fitb of the Preferred Models to GTR1G-Based Empirical Models

EMs GTR1G GTR1G1I HKY1G HKY1G1I HKY GTR K801G K801G1I K80 GTR1R

T12þGTRþG 34 49 1,425 1,526 13,316 14,571 17,906 18,439 22,876 101,202

T13þGTRþG 33 49 1,415 1,507 13,422 14,553 17,504 18,106 22,571 100,703

T14þGTRþG 38 55 1,582 1,710 14,866 15,990 19,329 20,491 24,829 112,148

T15þGTRþG 36 53 1,505 1,582 14,051 15,201 18,166 18,985 23,405 105,331

(D) MS Valuesc for the Preferred Models Shown in Subtable C

EMs GTR1G GTR1G1I HKY1G HKY1G1I HKY GTR K801G K801G1I K80 GTR1R

T01þGTRþG 98 99 98 98 96 97 99 99 98 97

T02þGTRþG 99 100 99 99 99 99 100 100 99 99

T03þGTRþG 99 99 100 100 99 99 99 99 99 100

T04þGTRþG 91 89 89 89 93 91 86 84 90 91

T05þGTRþG 100 100 100 100 100 100 100 100 100 100

T06þGTRþG 97 97 96 97 96 96 97 97 95 97

T07þGTRþG 98 98 98 98 97 99 98 98 98 97

T08þGTRþG 99 99 99 99 99 99 99 99 99 99

T09þGTRþG 93 94 94 94 94 93 92 91 95 93

T10þGTRþG 100 100 100 100 100 100 100 100 100 100

T11þGTRþG 97 97 96 98 96 95 97 98 95 97

T12þGTRþG 99 99 98 98 98 98 99 99 99 98

T13þGTRþG 99 98 99 99 99 99 98 98 98 99

T14þGTRþG 90 89 90 89 92 94 90 85 94 90

T15þGTRþG 100 100 100 100 100 100 100 100 100 100

aPreferred simulation models assume the correct tree topology of the empirical model (EM, shown in leftmost column) and one of the ten substitution model components
shown above the subtables. Tree topologies of 15 full topological constraints being part of the EMs are presented in supplementary figure S1, Supplementary Material online.

bThe mean model fit estimates between each of the 500 replicates representing an empirical model (EM) and a preferred SM.
cThe percentages of times when a preferred SM showed better fit to the each of 500 replicates representing EM in comparison to a distinct SM assuming the same

substitution model scheme as the preferred model. Shown are the worst (lowest) MS values for the separation of a preferred SM from any other SM which assumes the same
substitution model scheme.
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A number of model trees for EMs differed by rearrange-

ment of very short, adjacent internal branches (as illustrated in

supplementary fig. S1, Supplementary Material online, for

GTRþG-based EMs). Thus, they provide a good example to

test the discriminatory power of the novel test for model-data

fit. The novel test was performed to compare each EM repli-

cate to each SM-based replicate distribution. The T values

(eq. 16) obtained in comparisons of each SM to each individ-

ual EM-based replicate were also used to calculate the follow-

ing: 1) the mean T values over 500 comparisons between

each EM and each SM and 2) the MS values as the percentage

of times when a SM assuming correct tree and substitution

model components showed better fit to each EM-based rep-

licate in comparison to any other SM included in analyzes (the

results of these experiments are summarized in table 1). The

MS values were also used to assess if the specification of the

correct tree topology improves model-data fit for the SMs

having misspecified substitution model components (the

results obtained employing the default P-factor value of

10,000 are presented in the table 2). Analogous experiments

were conducted employing P-factor values set to 1, 10, 100,

1,000, and 100,000 for a subset of evolutionary models to

illustrate the effect of P-factor values on ability of the test to

identify correct tree topology (table 3).

The discriminatory power of the GC test (Goldman 1993)

has also been assessed. The GC metrics have been used to

compare GTRþG4-based EMs to GTRþG4, GTRþIþG4, GTR,

HKYþIþG4, HKYþG4, HKY, K80þIþG4, K80þG4, and K80-

based SMs. Based on lack of resolution (table 4) observed in

these experiments, comparisons involving other models have

not been conducted. In order to obtain model-based likeli-

hood values, RAxML searches were run for replicates gener-

ated under the above models as described above, specifying

the general definition of the substitution model scheme (e.g.,

GTRþG4) and the correct full topological constraint which

was used to create the corresponding replicate. The corre-

sponding RAxML options led to adjustment of branch lengths

and model numerical parameters during the program run.

To obtain the GC test statistics (d ¼
Ln(multinomial)�Ln(model)), the model-based likelihood val-

ues obtained have been compared with the corresponding

unconstrained likelihood values which were calculated for

the replicates. The GC test statistics for each EM-based repli-

cate was compared with the SM-based distributions of the

corresponding values to compute the absolute values of the Z-

scores (numbers of standard deviations between the d value

for a EM replicate and the mean d value for each SM-based

replicate distribution).

The mean Z-scores over 500 individual tests for each EM-

SM pair of evolutionary models were compared and the MS

values for the resolution of the preferred models were calcu-

lated as described above. The MS values and the mean Z-

scores were used to assess if the specification of the correct

tree topology led to the best estimates of model fit within the

15-component SM models sets, each characterized by the

same substitution model. The results have been summarized

in table 4.

Comparison of Individual Test Values

Computation of the final test statistics (eq. 16), computation

of all the MS values and the mean test values helping to

summarize the discriminating ability of the tests compared

here have been conducted with the help of test_stage2.pl

script (available at: https://github.com/vadimgoremykin/abso-

lute-model-data-fit).

An Empirical Example

Empirical tests have been conducted based on a subset of a

concatenated alignment of mammal nuclear genes presented

by Song et al. (2012). Although large (1,297,456 aligned

columns), the alignment presented by the authors (available

from the DataDryad database) has only 10,042 columns

which do not contain missing or ambiguous characters. In

an attempt to increase the length of the alignment subset

Table 3

An Example of Ability of the Presented Test to Identify Preferred Modelsa in the Presence and Absence of Model Misspecification as a Function
of P-Factor Value Size

P Factor GTR1R GTR1G HKY1G GTR1G1I K801G HKY1G1I K801G1I K80 HKY GTR

P¼ 1 87 0 0 0 0 0 0 0 0 0

P¼ 10 71 34 16 13 39 6 1 2 0 0

P¼ 100 79 74 71 80 75 81 83 72 70 73

P¼ 1,000 94 94 94 95 95 94 96 92 88 90

P¼ 10,000 94 93 94 96 96 95 96 93 90 91

P¼ 100,000 94 93 94 96 96 95 96 93 90 91

aPreferred simulation models in this comparisons assume the correct tree topology of the “empirical” model (GTRþR constrained with the full topological constraint
congruent to Tree 1 in supplementary fig. S1, Supplementary Material online) and substitution model components shown above the table. The values shown are the percentages
of times when a preferred SM showed better fit to the each of 500 replicates representing “empirical” model in comparison to a distinct SM assuming the same substitution model
scheme as the preferred model. Shown are the worst (lowest) MS values for the separation of a preferred SM from any other SM which assumes the same substitution model
scheme.
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which can be used by the presented test, I have removed five

species from the original file and produced a longer alignment

partition which contains only DNA alphabet-specific charac-

ters. The partition, henceforth referred to as “empirical data

set,” is available as Supplementary Material online. This data

set has 32 OTUs and 29,900 aligned positions. The compar-

ison of the aforementioned replicates to a shorter mitochon-

drial data set was not conducted because it contained many

indels and missing genes/gene regions. The test presented

here requires presence of only alphabet-specific characters

in each alignment.

The methodological purpose of the experiments presented

in this section was to 1) illustrate sampling of conflicting trees

necessary to conduct the test, 2) to check for uniformity of the

test results under different P-factor values in comparison to an

implicit biological model, and 3) to check if the test rejects an

obviously wrong evolutionary scenario. An additional goal

was to identify the best-fitting model.

Table 4

Ability of the Goldman–Cox Test to Identify the Tree Components of the Preferred Evolutionary Modelsa in the Presence and Absence of Model
Misspecification

(A) Estimates of Fitb of the Preferred Models to GTR1G-Based Empirical Models

Ems GTR1G HKY1G K801G1I GTR1G1I K801G HKY1G1I K80 HKY GTR

T01þGTRþG 0.80 2.95 3.28 3.64 3.56 8.30 14.17 43.14 45.29

T02þGTRþG 0.83 2.88 3.45 3.91 3.69 7.95 14.14 42.96 43.78

T03þGTRþG 0.78 3.11 3.34 3.54 3.70 8.10 14.42 42.67 43.34

T04þGTRþG 0.82 2.90 3.35 3.38 3.41 8.86 14.70 45.24 47.55

T05þGTRþG 0.82 2.90 3.31 3.51 3.49 7.83 14.73 42.91 44.35

T06þGTRþG 0.85 2.94 2.80 3.11 3.24 7.52 17.61 49.17 45.21

T07þGTRþG 0.73 3.07 2.98 3.18 3.47 8.06 16.23 47.51 46.38

T08þGTRþG 0.80 3.00 2.89 3.02 3.50 7.76 16.16 45.88 49.48

T09þGTRþG 0.80 3.12 3.06 3.04 3.55 7.70 17.31 47.72 48.36

T10þGTRþG 0.84 2.75 2.80 3.17 3.49 7.53 17.14 45.86 48.35

T11þGTRþG 0.82 2.94 3.12 2.86 3.50 7.36 17.41 47.62 46.46

T12þGTRþG 0.76 2.96 3.24 3.25 3.42 7.31 16.59 46.16 47.56

T13þGTRþG 0.85 2.88 3.03 3.18 3.64 7.65 16.75 46.28 46.79

T14þGTRþG 0.73 2.91 2.93 3.23 3.59 7.46 17.54 46.29 48.62

T15þGTRþG 0.75 2.75 2.94 3.15 3.52 7.29 17.30 45.88 46.39

(B) MS Valuesc for the Preferred Models Shown in Subtable A

EMs GTR1G HKY1G K801G1I GTR1G1I K801G HKY1G1I K80 HKY GTR

T01þGTRþG 53 0 0 0 0 0 0 0 0

T02þGTRþG 12 100 0 0 0 2 100 0 0

T03þGTRþG 51 0 100 66 0 0 0 100 100

T04þGTRþG 46 0 0 29 0 0 0 0 0

T05þGTRþG 39 0 0 0 0 96 0 0 0

T06þGTRþG 3 0 0 0 100 0 0 0 0

T07þGTRþG 7 0 0 0 0 0 0 0 0

T08þGTRþG 42 0 0 0 0 0 0 0 0

T09þGTRþG 35 0 0 0 0 0 0 0 0

T10þGTRþG 29 0 0 0 0 0 0 0 0

T11þGTRþG 22 1 0 1 0 0 0 0 0

T12þGTRþG 50 1 0 0 0 0 0 0 0

T13þGTRþG 1 0 0 0 0 0 0 0 0

T14þGTRþG 51 0 0 0 0 0 0 0 0

T15þGTRþG 54 1 0 0 0 0 0 0 0

aPreferred simulation models assume the correct tree topology of the empirical model (EM, shown in leftmost column) and one of the nine substitution model components
shown above the subtables. Tree topologies of 15 full topological constraints being part of the EMs are presented in supplementary figure S1, Supplementary Material online.

bThe mean model fit estimates between each of the 500 replicates representing an empirical model (EM) and a preferred SM.
cThe percentages of times when a preferred SM showed better fit to the each of 500 replicates representing EM in comparison to a distinct SM assuming the same

substitution model scheme as the preferred model. Shown are the worst (lowest) MS values for the separation of a preferred SM from any other SM which assumes the same
substitution model scheme.
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Five cladograms (provided in supplementary fig. S2,

Supplementary Material online) used to generate model trees

were selected based on the results of unconstrained phylog-

eny reconstruction experiments performed on the empirical

data set. Tree reconstruction experiments assuming a

CATþGTR model with rates among sites modeled via a

Dirichlet process (henceforth referred to as “CATþGTRþD”

model) were performed with the help of Phylobayes v. 3.3

(Lartillot et al. 2009). Maximum likelihood-based tree phylog-

eny reconstruction experiments were performed using IQ-

TREE (v. 1.6, Nguyen et al. 2015). Neighbor-joining trees

were built with the help of Seaview alignment editor (Gouy

et al. 2010). The cladogram 1 corresponds to the tree

obtained under the GTR model with rates across sites hetero-

geneity modeled via FreeRate model (Soubrier et al. 2012),

which could be specified as GTRþR4 in IQ-TREE command

line. The above-mentioned FreeRate model assuming four

rate classes was selected as the best-fitting under the

Bayesian Information Criterion (BIC) by the ModelFinder

(Kalyaanamoorthy et al. 2017) pipeline run under specifica-

tion of empirical data set as input alignment file. The clado-

gram 2 corresponds to the tree obtained under the GTRþG

model. The cladograms 3 and 4 represent alternative consen-

sus topologies recovered from two chains run under

CATþGTRþD model by discarding the first 500 cycles as

“burn-in”—which was found to be sufficient for both

chains—and building consensus trees based on next

1,500 cycles. The cladograms 1–4 differ only in placement

of the root of placental mammals and in placement of tree

shrew. The tree shrew appears as sister to primates on

cladograms 1 and 2 and as sister to the rest of

Euarchontoglires, a group which unites tree shrews, pri-

mates, lagomorphs, and rodents, on cladograms 3 and 4.

The Atlantogenata (a group which includes Xenarthra and

Afrotheria) appears as sister to the rest of placental mam-

mals in the cladograms 1 and 3, and Xenartra assumes this

position in cladograms 2 and 4.

The cladogram 5 represents the Neighbor-Joining tree to-

pology which was recovered from Jukes and Cantor, K80 and

LogDet distances using the Seaview alignment editor. This

tree topology was included in analyses to provide an example

of an obviously incorrect evolutionary hypothesis assuming

rodents as the sister group to the rest of placentals

(Churakov et al. 2010; Goremykin et al. 2010). The expecta-

tion was that the test would indicate a poor fit for this case.

Model parameters for the replicate generation under the

optimal ML substitution model (GTRþR4) were determined in

IQ-TREE searches run based on the empirical data set under

iterative specification of each of the five above-mentioned

topological constraints. Five hundred replicates were gener-

ated for each evolutionary model. The model-based replicate

distributions obtained were compared with the empirical data

set to assess absolute model fit employing P-factor values

(eq. 8) 1,000, 10,000, and 100,000.

Results

Comparison of Explicitly Postulated Models

Identification of the Correct Substitution Models

The ability of the novel test to correctly identify the optimal

substitution model among a set of alternatives was assessed,

since arguably this is the most common goal of model fit-

based investigations in the evolutionary studies. I checked if,

under the correct tree topology specification for all evolution-

ary models compared, the SM showing the best fit to

EM-based replicates would be the one that shares the same

substitution model scheme with the EM. A less obvious hy-

pothesis was also tested. This was that, within a set of SMs

assuming different substitution model components and the

same wrong specification of a model tree topology, the SM

assuming the same substitution model scheme as the EM

would show the best fit. The series of experiments performed

to check all above hypotheses involved comparisons of a set

of 10 SMs having 10 different substitution model compo-

nents, all iteratively assuming model tree topologies 1 to 15

to each of 30 EMs.

In all these experiments, which have been conducted by

comparing the mean values over 500 estimations of model-

data fit of each SM (represented by a distribution of 500

replicates) to each of 500 EM-based replicates, the test pre-

sented here identified the SMs sharing the same substitution

model with EMs as the best fitting model without a single

exception.

These preliminary observations indicated that the novel test

employed in this study was able to register an improvement in

model-data fit due to specification of the correct substitution

model component of the full evolutionary models under the

selected experimental setup. Having checked this aspect of

performance of the test, I proceeded to determine whether

the test had sufficient discriminatory power to show improve-

ment in model-data fit for the correct model tree topology.

Identification of the Correct Full Evolutionary Models

Simulated data sets for 150 full evolutionary models, including

10 distinct substitution model schemes, were iteratively com-

pared with each of the 30 EMs. In all cases, the lowest mean

test scores—estimated over 500 comparisons of each SM to

each of 500 replicates simulated under each EM—identified

the correct SMs without error. Had the test results been ran-

dom, the probability of obtaining such results (30 correct

identifications, each time out of 150 models) would have

been 1/15030 ¼ 5.2�10�66.

MS values were calculated that indicate the percentage of

times when a correct SM, sharing the same tree and substi-

tution model with EM, showed better fit to each of 500

replicates in comparison to any other distinct SM. The lowest

MS values for each EM obtained in these experiments (table 1)

ranged from 99% to 85% with the mean value 92%. Thus,
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the proposed test metric was also able to register the positive

influence of the correct tree topology and of the correct sub-

stitution model scheme onto model-data fit estimates.

Identification of the Correct Tree Topology

Each of the 30 EMs was iteratively compared with 10 SM sets

(300 comparisons in total). Each SM set included 15 full evo-

lutionary models sharing a distinct (correct or misspecified)

substitution model scheme. In all 300 experiments, the lowest

mean test scores—estimated over 500 comparisons of each

SM to each of 500 replicates simulated under each EM—

identified the SMs assuming correct tree topologies.

The MS values indicating the percentage of times when

each SM having correct or wrong substitution model compo-

nent which assumed the correct tree topology (a “preferred

SM”) showed better fit to each of 500 replicates simulated

under a distinct EM in comparison to any other SM assuming

the same substitution model scheme as the preferred SM

have been also computed in these experiments. The results

of these comparisons are presented in table 2. The MS values

in the table 2 show the worst measure of separation between

each preferred SM and any other SM which has the same

substitution model component and a wrong tree component

registered in these experiments.

The above results indicate that the proposed test run

employing default P-factor value of 10,000 was able to detect

an improvement in the model-data fit due to a correct tree

topology specification. This was indicated by the MS values

for each preferred model (shown in table 2) regardless of the

substitution model misspecification for all the models used in

the experiments. The chance of correct model tree compo-

nent identification for the models showing the highest level of

misfit was not much different compared with the models

exhibiting no substitution model misspecification (table 2).

The chance of identifying the correct model tree component

estimated at P-factor values set to 10,000 and 100,000 for a

subset of models were identical and very similar to the results

obtained employing a P-factor value ¼ 1,000 (table 3).

Comparisons were also made using GC test metric. In

these experiments, the MS values for the preferred models

obtained were generally low, and in many cases produced the

lowest possible value (zero) (table 4). This indicates that the

discriminatory power of the GC test was not sufficient to

reliably reveal the improvement in the model-data fit due to

the choice of the correct model tree topology, even in the

case in which the SM substitution model components were

correctly specified.

Testing Evolutionary Relationships among Mammals

The test identified as best-fitting to the empirical data set the

evolutionary model assuming the tree topology presented in

supplementary figure S2 (Supplementary Material online) as

cladogram 3. The topology corresponds to a tree (shown in

fig. 4) recovered under a CATþGTRþD model using

Phylobayes v. 3.3 program (Lartillot et al. 2009).

The tree topology supports the clade subtending

Atlantogenata as sister to the rest of the placental mammals

and the clade subtending tree shrew as sister to the rest of the

Euarchontoglires. This result was obtained with P-factor val-

ues (eq. 8) ranging in size by two orders of magnitude: 1,000,

10,000, and 100,000. The ranking of evolutionary models

under the test metric using the above P-factor values was

identical (in descending order of fit estimated for the evolu-

tionary models assuming full topological constraints shown in

supplementary fig. S2: 3, 4, 1, 2, 5, Supplementary Material

online). The model-data fit estimates (table 5) for each evolu-

tionary model obtained employing the above P-factor values

were very similar.

It should be noted that the worst assessment of model-

data fit was registered for the evolutionary model which as-

sumed model tree topology 5 supporting rodents as sisters to

the rest of the placental mammals. The placement of rodents

at the base of the eutherian subtree is considered a classical

example of LBA (Churakov et al. 2010; Goremykin et al.

2010).

Discussion

Using data to test a model which is assumed to describe its

generation is an important principle in statistical analysis.

Absolute model-data fit assessment showing how well simu-

lated data fit the observed can be used to quantify model

strengths and weaknesses and can be used as a guide for

model improvement. However, absolute tests of data model

fit are rarely used in the field of phylogenetics. This is arguably

so because the task of identification of the correct evolution-

ary tree, which is fundamental for the discipline, is reportedly

difficult to accomplish using previous model-data fit indica-

tors. Concerns about their discriminatory power were raised

more than a decade ago (Foster 2004; Waddell et al. 2009;

Ripplinger and Sullivan 2010) yet no method of model-data fit

assessment, able to reliably discriminate phylogenetic hypoth-

eses assuming different trees, has been forthcoming.

The discriminatory power of model-data fit indicators

strongly depends on which aspects of the data are used to

compare models. Here, I tested how well test statistics derived

from distributions of characters in observed and simulated

data were able to detect phylogenetic signal due to treelike

divergence of sequences.

In the experiments performed here, the estimator based on

the multinomial likelihood failed to reliably identify the correct

model trees under the easiest conditions (assuming availability

of the correct empirical model and no substitution model

scheme misspecification). The evolutionary models selected

by the GC test as the most adequate included wrong model

trees as their components in the vast majority of analyses
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(table 4). These observations indicate that multinomial

likelihood-based statistic derived from the frequencies of site

patterns is poorly suited to detect tree-based phylogenetic

signal in the multiple sequence alignments. Since the phylo-

genetic information contained in the patterns themselves is

irrelevant for multinomial likelihood inference, the GC test

statistic does not capture the data properties which are rele-

vant for tree building.

The main advantage of the novel test of model-data fit

proposed here over the GC test is its accuracy. However,

for its successful application certain conditions should be

fulfilled. The test presented here was designed to enable dis-

crimination of the distinct, fully specified evolutionary models.

Each such model should assume a fixed parameter combina-

tion and a fully resolved tree with fixed branch lengths. In

order to allow for meaningful model comparison among

the evolutionary hypotheses, all model parameters should as-

sume values registered at the ML optimum under each evo-

lutionary model specification. Also, the test accuracy observed

in comparison of explicitly postulated models was partially

due to the fact that the multiple sequence alignments com-

pared (represented by replicates) had no alignment errors.

When the observed alignment contains character states not

predicted by DNA substitution models, these must be re-

moved before the method can be used for model evaluation.

In this case, a necessary data preparation step might include,

in any combination, removal of corresponding sequences

and/or removal of sites. The preferred trimming scheme

should be selected by an analyst to fit the purpose of the

study prior to analysis.

Under such conditions the novel estimator has shown an

ability to identify the correct evolutionary models. The prob-

ability that this result can be explained by a tolerance of the

experimental setup to a random error was small (5.2�10�66).

Under the conditions studied, this test statistic identified

the correct model tree in cases where the substitution model

was correctly specified and also misspecified. The ability to

identify the true tree topology within broad margins of model

FIG. 4.—The phylogenetic relationships among the taxa in empirical data set supported by the test. Shown is a tree recovered with the help of

Phylobayes under CATþGTRþD model. The PP support values for the branches marked with diamonds were low (<0.6). Other PP support values were equal

to 1. The branch lengths are represented by a scale bar (bottom left).

Table 5

The Test Values Obtained in Comparison of the Empirical Data Set
to Full Evolutionary Models Assuming GTR-Based Model with across
Sites Rate Heterogeneity Modeled via FreeRate Model (Soubrier
et al. 2012) as a Substitution Model Component

P 5 1,000 P 5 10,000 P 5 100,000

Cladogram 3 247.145 247.164 247.314

Cladogram 4 268.513 268.360 268.512

Cladogram 1 288.913 289.138 289.279

Cladogram 2 305.501 305.355 305.566

Cladogram 5 791.953 791.952 792.194

NOTE.—Each test value shown in the table was obtained for the evolutionary
model assuming model tree topology shown in the leftmost column employing P-
factor value (eq. 8) shown above the corresponding column of values. Tree topolo-
gies of five full topological constraints used in these experiments (as shown in the
leftmost column) are presented in supplementary figure S2, Supplementary Material
online.
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misspecification observed here is encouraging that correct

identification of the best-fitting evolutionary model is possible

when the correct model is unknown (as might be the case

with biological data). Some degree of model misfit is unavoid-

able when substitution process in biological data is modeled.

Nevertheless the robustness of the test’s results in the pres-

ence of model misspecification does not remove the require-

ment for realistic SM substitution models in the analyses of

the biological data. When EM is unknown or implicit the tree

representing the preferred evolutionary hypothesis should be

selected as a component of the best-fitting SM.

The discriminatory power of the test reported here encour-

ages the application of the novel test for hypothesis testing in

phylogenetics. Given the rarity with which assessment of ab-

solute model-data fit are currently employed in the field, its

introduction into the mainstream phylogenetic practice would

help to diminish the gap between a large number of phylo-

genetic relationships claimed to be correctly resolved and the

ancillary indicators (bootstrap support, posterior probability

support, and recovery of congruent trees with different meth-

ods) often used to corroborate such claims. I hope that the

observations made in this study can help to develop more

realistic substitution models and to help with efforts to test

and more reliably reconstruct the Tree of Life.

Concluding, I would like to mention that the results

obtained here in analyses involving empirical data support

Atlantogenata as the basal-most clade among placental

mammals and sister group relationship between tree shrews

(Tupaia) and the rest of Euarchontoglires. The former phylo-

genetic relationship has often been recovered in recent stud-

ies (e.g., Song et al. 2012; Morgan et al. 2013; Tarver et al.

2016). The latter relationship has been recently recovered by

Tarver et al. (2016) based on a data set comprising microRNA

genes and in coalescent analyses presented by Mason et al.

(2016).

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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