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A history of chaos theory

Christian Qestreicher, PhD

Whether every effect can be precisely linked to a given
cause or to a list of causes has been a matter of debate for
centuries, particularly during the 17th century, when
astronomers became capable of predicting the trajectories
of planets. Recent mathematical models applied to physics
have included the idea that given phenomena cannot be
predicted precisely, although they can be predicted to
some extent, in line with the chaos theory. Concepts such
as deterministic models, sensitivity to initial conditions,
strange attractors, and fractal dimensions are inherent to
the development of this theory. A few situations involving
normal or abnormal endogenous rhythms in biology have
been analyzed following the principles of chaos theory.
This is particularly the case with cardiac arrhythmias, but
less so with biological clocks and circadian rhythms.
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cience enables an interpretation of nature and,
in most cases, this is done on the basis of models, partic-
ularly mathematical ones. Thus, equations constructed
by the human brain are considered to be adequate rep-
resentations of reality, and this concordance between
thinking and the environment is a gift quite specific to
humanity.
Scientific theories are characterized by the fact that they
remain open to refutation through experimental studies,
while mathematical models are noncontradictory (in the
sense of mathematical logic) and deduced from a list of
axioms. Physicists, biologists, and medical researchers
have the mission of understanding whether events from
the world follow given mathematical laws or not. Indeed,
there are three successive steps in constructing such a
model: first the observation of the phenomenon, then its
translation into equations, then the solving of these equa-
tions. Obviously, researchers in biological sciences and in
medicine place emphasis on the first step, that of the
observation of the phenomena, in order to understand
components of a phenomenon, ie, to establish a body of
knowledge that could then be translated into models and
equations.
Chaos theory is a mathematical theory, and it is still in
development. It enables the description of a series of
phenomena from the field of dynamics, ie, that field of
physics concerning the effect of forces on the motion of
objects. The archetype of all theories of dynamics is that
of Newton, concerning celestial motions.
When employing mathematical theorems, one should
remain careful about whether their hypotheses are valid
within the frame of the questions considered. Among
such hypotheses in the domain of dynamics, a central one
is the continuity of time and space (ie, that an infinity of
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points exists between two points). This hypothesis, for
example, may be invalid in the cognitive neurosciences
of perception, where a finite time threshold often needs
to be considered.

This article presents the major historical steps in the
acquisition of knowledge in physics that led to chaos the-
ory. Since these steps were made in fields other than biol-
ogy or medicine, these will be referred to, in particular
astronomy. Some readers might not be familiar with
physics or mathematics; therefore explanations using the
language of equations have been kept to a minimum. It
is, however, necessary to use the appropriate terms and
concepts, and Table I provides a list of definitions accord-
ing to the concepts of physics.

The review is focused on those strictly deterministic
dynamic systems that present the peculiarity of being sen-
sitive to initial conditions, and, when they have a propri-
ety of recurrence, cannot be predicted over the long
term. Chaos theory has a few applications for modeling
endogenous biological rhythms such as heart rate, brain
functioning, and biological clocks.

The roots of modern science
Newton and causality

Johannes Kepler published the three laws of planetary
motion in his two books of 1609' and 1618,> and Galileo

Table I. Definitions of concepts related to the history of chaos theory.*

e Causality principle. Every effect has an antecedent, proximate cause.

¢ Determinism. A philosophical proposition that every event is physically determined by an unbroken chain of prior occurrences.

e Predictability. This refers to the degree that a correct forecast of a system'’s state can be made either qualitatively or quantita-
tively.

e Model. A pattern, plan, representation, or description designed to show the structure or workings of an object, system, or con-
cept.

¢ Dynamical system. A system that changes over time in both a causal and a deterministic manner, ie, its future depends only on
phenomena from its past and its present (causality) and each given initial condition will lead to only one given later state of
the system (determinism). Systems that are noisy or stochastic, in the sense of showing randomness, are not dynamical systems,
and the probability theory is the one to apply to their analysis.

* Phase space. An abstract space in which all possible states of a system are represented which, each possible state of the system
corresponding to one unique point in the phase space.

e Sensitivity to initial conditions. This is when a change in one variable has the consequence of an exponential change in the sys-
tem.

¢ Integrable system. In mathematics, this refers to a system of differential equations for which solutions can be found. In
mechanics, this refer to a system that is quasiperiodic.

e Linear system. A system is said to be linear when the whole is exactly equal to the sum of its components.

e Attractor. A set to which a dynamical system evolves after a long enough time.

e Characteristic Lyapunov time. The characteristic time of a system is defined as the delay when changes from the initial point
are multiplied by 10 in the phase space.

¢ Feedback. A response to information, that either increases effects (positive feedback), or decreases them (negative feedback),
or induces a cyclic phenomenon.

e Self-similarity. This means that an object is composed of subunits and sub-subunits on multiple levels that (statistically) resem-
ble the structure of the whole object. However, in every day life, there are necessarily lower and upper boundaries over which
such self-similar behavior applies.

e Fractal. Is a geometrical object satisfying two criteria: self-similarity and fractional dimensionality.

¢ Fractal dimension. Let an object in a n-dimensions space be covered by the smallest number of open spheres of radius r. The
fractal dimension is log(N)/log(1/r) when r tends towards 0.

Table I. Definitions of concepts related to the history of chaos theory.*
*Some of the terms are used with different meanings in fields other than physics. For example, the adjective linear pharmacokinetics describes a body clearance of a con-
stant fraction per unit of time of the total amount of a substance in the body, while a nonlinear pharmacokinetics describes the elimination of a constant quantity of com-
pound per unit of time. Also, feedback is a well-known term in biology or medicine, while its use in physics is less familiar to nonphysicists.
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Galilei wrote, in 16233
Philosophy is written in this vast book, which continuously
lies open before our eyes (I mean the universe). But it can-
not be understood unless you have first learned to under-
stand the language and recognize the characters in which it
is written. It is written in the language of mathematics, and
the characters are triangles, circles, and other geometrical
figures.
The principle of causality (Table I), perhaps the most
basic of all principles of physics, is directly derived from
the philosophy of René Descartes in his 1641 Third
Meditation.* The principle of causality is nonrefutable,
ie, not confirmed by experience, since it is an axiom that
precedes experiences. For example, this principle is
accepted a priori in physics. In a simple form, it reads:
“Every effect has a cause.”
In 1687 Isaac Newton then consolidated the causality
principle by asserting that the two concepts of initial
conditions and law of motion had to be considered sep-
arately.” In order to calculate the planets' trajectories,
Newton simplified the model and assumed that each
planet was singly related to the sun, and his calculation
was concordant with Kepler’s laws.
Newton, having developed differential calculus and
written the gravitational law, can be seen as the
researcher who launched the development of classical
science, ie, physics up to the beginning of the 20th cen-
tury (before relativity and quantum mechanics).
Newton wrote his manuscript on differential calculus in
1669, but it remained unpublished by his publisher until
1711. Gottfried Wilhelm von Leibniz had another point
of view on this theme, and he published his book in
1684. A conflict occurred between the two men;
Newton took Leibniz to court, accusing him of having
stolen his ideas. Yet, later it was Leibniz' ideas that were
used. These steps in the acquisition of human knowl-
edge are described in Arthur Koestler’s books on
astronomy® and mentioned in science dictionaries.**

Laplace and determinism

Determinism is predictability based on scientific causal-
ity (Table I). One distinguishes schematically between
local and universal determinism. Local determinism con-
cerns a finite number of elements. A good illustration
would be ballistics, where the trajectory and the site of
impact of a projectile can be precisely predicted (on the
basis of the propulsive force of the powder, the angle of

shooting, the projectile mass, and the air resistance).
Local determinism raises no particular problem. In con-
trast, universal determinism, also called in French “déter-
minisme laplacien” remains problematic: how can one
consider the universe in its totality as a deterministic sys-
tem? Obviously, one cannot. The French philosopher
d’Holbach, coauthor of the Encyclopédie de Diderot et
d’Alembert, was the first to include, in chapter I'V of his
1770 book Le systéme de la nature," a deterministic state-
ment about the feasibility of calculating the effects of a
given cause.
In a whirlwind of dust, raised by elemental force, confused
as it appears to our eyes, in the most frightful tempest
excited by contrary winds, when the waves roll high as
mountains, there is not a single particle of dust, or drop of
water, that has been placed by chance, that has not a cause
for occupying the place where it is found; that does not, in
the most rigorous sense of the word, act after the manner in
which it ought to act; that is, according to its own peculiar
essence, and that of the beings from whom it receives this
communicated force. A geometrician exactly knew the dif-
ferent energies acting in each case, with the properties of the
particles moved, could demonstrate that after the causes
given, each particle acted precisely as it ought to act, and that
it could not have acted otherwise than it did.
However, it was the mathematician and astronomer
Pierre-Simon Laplace who most clearly stated the con-
cept of universal determinism shortly after d’"Holbach, in
1778
We ought then to regard the present state of the universe as
the effect of its anterior state and as the cause of the one
which is to follow. Given for one instant an intelligence
which could comprehend all the forces by which nature is
animated and the respective situation of the beings who
compose it—an intelligence sufficiently vast to submit these
data to analysis—it would embrace in the same formula the
motions of the greatest bodies of the universe and those of
the lightest atom; for it, nothing would be uncertain and the
future, as the past, would be present to its eyes.
Laplace is also famous for his exchange with Napoleon
asking about his work: “You have written this huge book
on the system of the world without once mentioning the
author of the universe.” To this Laplace responded: “Sire,
I had no need of that hypothesis.”" These words attest to
the self-confidence of this man.
The creativity of Laplace was tremendous. He demon-
strated that the totality of celestial body motions (at his
time, the sun and the planets) could be explained by the
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law of Newton, reducing the study of planets to a series
of differential equations.
Urbain Jean Joseph Le Verrier discovered the planet
Neptune in 1848, only through calculation and not
through astronomical observation. He then developed
further Laplace’s methods (by, for example, approximat-
ing solutions to equations of degree 7) and concluded™:
It therefore seems impossible to use the method of succes-
sive approximations to assert, by virtue of the terms of the
second approximation, whether the system comprising
Mercury, Venus, Earth, and Mars will be stable indefinitely.
It is to be hoped that geometricians, by integrating the dif-
ferential equations, will find a way to overcome this diffi-
culty, which may well just depend on form.
In the middle of the 19th century, it became clear that the
motion of gases was far more complex to calculate than
that of planets. This led James Clerk Maxwell and Ludwig
Boltzmann to found statistical physics. One of their main
postulates was the following: an isolated system in equi-
librium is to be found in all its accessible microstates with
equal probability. In 1859, Maxwell described the viscos-
ity of gases as a function of the distance between two col-
lisions of molecules and he formulated a law of distrib-
ution of velocities.
Boltzmann assumed that matter was formed of particles
(molecules, atoms) an unproven assumption at his time,
although Democrites had already suggested this more
than 2000 years previously. He postulated that these par-
ticles were in perpetual random motion. It is from these
considerations that Boltzmann gave a mathematical
expression to entropy. In physical terms, entropy is the
measure of the uniformity of the distribution of energy,
also viewed as the quantification of randomness in a sys-
tem. Since the particle motion in gases is unpredictable,
a probabilistic description is justified.
Changes over time within a system can be modelized
using the a priori of a continuous time and differential
equation(s), while the a priori of a discontinuous time is
often easier to solve mathematically, but the interesting
idea of discontinuous time is far from being accepted
today.

Birth of the chaos theory
Poincaré and phase space

With the work of Laplace, the past and the future of the
solar system could be calculated and the precision of
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this calculation depended on the capacity to know the
initial conditions of the system, a real challenge for
“geometricians,” as alluded to by d’Holbach and Le
Verrier. Henri Poincaré developed another point of
view,"” as follows: in order to study the evolution of a
physical system over time, one has to construct a model
based on a choice of laws of physics and to list the nec-
essary and sufficient parameters that characterize the
system (differential equations are often in the model).
One can define the state of the system at a given
moment, and the set of these system states is named
phase space (see Table I).
The phenomenon of sensitivity to initial conditions
(Table I) was discovered by Poincaré in his study of the
the n-body problem, then by Jacques Hadamard using
a mathematical model named geodesic flow, on a sur-
face with a nonpositive curvature, called Hadamard’s
billards. A century after Laplace, Poincaré indicated that
randomness and determinism become somewhat com-
patible because of the long-erm unpredictability.
A very small cause, which eludes us, determines a consid-
erable effect that we cannot fail to see, and so we say that
this effect is due to chance. If we knew exactly the laws of
nature and the state of the universe at the initial moment,
we could accurately predict the state of the same universe
at a subsequent moment. But even if the natural laws no
longer held any secrets for us, we could still only know the
state approximately. If this enables us to predict the suc-
ceeding state to the same approximation, that is all we
require, and we say that the phenomenon has been pre-
dicted, that it is governed by laws. But this is not always so,
and small differences in the initial conditions may generate
very large differences in the final phenomena. A small error
in the former will lead to an enormous error in the latter.
Prediction then becomes impossible, and we have a random
phenomenon.
This was the birth of chaos theory.

Kolmogorov and the statistics of dynamical systems

Andrei Nicolaievitch Kolmogorov is surely one of the
most important mathematicians of the 20th century, his
name being associated with the probability theory, tur-
bulence, information theory, and topology, among other
achievements. When Kolmogorov, in 1954, revisited
the work of Poincaré (before Jiirgen K. Moser in 1962,
and Vladimimir Igorevitch Arnold in 1963), he showed
further that a quasiperiodic regular motion can persist
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in an integrable system (Table I) even when a slight
perturbation is introduced into the system. This is
known as the KAM (Kolmogorov-Arnold-Moser) the-
orem which indicates limits to integrability. The the-
orem also describes a progressive transition towards
chaos: within an integrable system, all trajectories are
regular, quasiperiodic; introducing a slight perturbation
one still has a probability of 1 to observe a quasiperi-
odic behavior (within a point chosen arbitrarily in the
phase space). When a more significant perturbation is
introduced, the probability of a quasiperiodic behavior
decreases and an increasing proportion of trajectories
becomes chaotic, until a completely chaotic behavior is
reached. In terms of physics, in complete chaos, the
remaining constant of motion is only energy and the
motion is called ergodic. Kolmogorov led the Russian
school of mathematics towards research on the statis-
tics of dynamical complex system called the ergodic
theory."

In a linear system (Table I), the sum of causes produces
a corresponding sum of effects and it suffices to add the
behavior of each component to deduce the behavior of
the whole system. Phenomena such as a ball trajectory,
the growth of a flower, or the efficiency of an engine
can be described according to linear equations. In such
cases, small modifications lead to small effects, while
important modifications lead to large effects (a neces-
sary condition for reductionism).

The nonlinear equations concern specifically discon-
tinuous phenomena such as explosions, sudden breaks
in materials, or tornados. Although they share some
universal characteristics, nonlinear solutions tend to be
individual and peculiar. In contrast to regular curves
from linear equations, the graphic representation of
nonlinear equations shows breaks, loops, recursions -
all kinds of turbulences. Using nonlinear models, on can
identify critical points in the system at which a minute
modification can have a disproportionate effect (a suf-
ficient condition for holism).

The above observations from the field of physics have
been applied in other fields, in the following manner:
in the terms of reductionism, the whole can be analyzed
by studying each of its constituents, while in holism, the
whole is more than the sum of its constituents, and
therefore cannot be deduced from its parts. When
should one analyze rhythmic phenomena with reduc-
tionist versus holistic models? This is a question that
one can ask in the field of chronobiology.

Rebirth of chaos theory
Lorenz and the butterfly effect

Edward Lorenz, from the Massachusetts Institute of
Technology (MIT) is the official discoverer of chaos the-
ory. He first observed the phenomenon as early as 1961
and, as a matter of irony, he discovered by chance what
would be called later the chaos theory, in 1963," while
making calculations with uncontrolled approximations
aiming at predicting the weather. The anecdote is of
interest: making the same calculation rounding with 3-
digit rather than 6-digit numbers did not provide the
same solutions; indeed, in nonlinear systems, multiplica-
tions during iterative processes amplify differences in an
exponential manner. By the way, this occurs when using
computers, due to the limitation of these machines which
truncate numbers, and therefore the accuracy of calcula-
tions.

Lorenz considered, as did many mathematicians of his
time, that a small variation at the start of a calculation
would induce a small difference in the result, of the order
of magnitude of the initial variation. This was obviously
not the case, and all scientists are now familiar with this
fact. In order to explain how important sensitivity the to
initial conditions was, Philip Merilees, the meteorologist
who organized the 1972 conference session where
Lorenz presented his result, chose himself the title of
Lorenz’s talk, a title that became famous: “Predictability:
does the flap of a butterfly’s wing in Brazil set off a tor-
nado in Texas?” " This title has been cited and modified
in many articles, as humorously reviewed by Nicolas
Witkowski. Lorenz had rediscovered the chaotic behav-
ior of a nonlinear system, that of the weather, but the
term chaos theory was only later given to the phenome-
non by the mathematician James A. Yorke, in 1975.*
Lorenz also gave a graphic description of his findings
using his computer. The figure that appeared was his sec-
ond discovery: the attractors.

Ruelle and strange attractors

The Belgian physicist David Ruelle studied this figure
and he coined the term strange attractors in 1971.2 The
clearly recognizable trajectories in the phase space never
cut through one another, but they seemed to form cycles
that are not exactly concentric, not exactly on the same
plan. It is also Ruelle who developed the thermodynamic
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formalism.” The strange attractor is a representation of
a chaotic system in a specific phase space, but attractors
are found in many dynamical systems that are nonchaotic.
There are four types of attractors. Figure 1 describes
these types: fixed point, limit-cycle, limit-torus, and
strange attractor.

According to Newton’s laws, we can describe perfectly
the future trajectories of our planet. However, these laws
may be wrong at the dimension of the universe, because
they concern only the solar system and exclude all other
astronomical parameters. Then, while the earth is indeed
to be found repetitively at similar locations in relation to
the sun, these locations will ultimately describe a figure,
ie, the strange attractor of the solar system.

A chaotic system leads to amplification of initial dis-

Figure 1a: Figure 1b :

Figure 1c:

Figure 1d :

Figure 1. a. Fixed point: a point that a system evolves towards, such as
the final states of a damped pendulum.
b. Limit cycle: a periodic orbit of the system that is isolated.
Examples include the swings of a pendulum clock and the heart-
beat while resting.
c. Limit-torus: there may be more than one frequency in the
periodic trajectory of the system through the state of a limit
cycle. If two of these frequencies form an irrational ratio, the
trajectory is no longer closed, and the limit cycle becomes a limit torus.
d. Strange attractor: it characterizes the behavior of chaotic sys-
tems in a phase space. The dynamics of satellites in the solar
system is an example. This figure shows a plot of Lorenz’s
attractor.

tances in the phase space; two trajectories that are ini-
tially at a distance D will be at a distance of 10 times the
value of D after a delay of once the value of characteris-
tic Lyapunov time (7Table I). If the characteristic
Lyapunov time of a system is short, then the system will
amplify its changes rapidly and be more chaotic.
However, this amplification of distances is restricted by
the limits of the universe; from a given state, the amplifi-
cation of the system has to come to an end. It is within
the amplification of small distances that certain mathe-
maticians, physicists, or philosophers consider that one can
find randomness. The solar system characteristic Lyapunov
time is evaluated to be in the order of 10 000 000 years.
The terms of negative and positive feedback (Table I)
concern interactions that are respectively regulations
and amplifications. An example of negative feedback is
the regulation of heat in houses, through interactions of
heating apparatus and a thermostat. Biology created
negative feedback long ago, and the domain of
endocrinology is replete with such interactions. An
example of positive feedback would be the Larsen
effect, when a microphone is placed to close to a loud-
speaker. In biology, positive feedbacks are operative,
although seemingly less frequent, and they can convey a
risk of amplification. Negative and positive feedback
mechanisms are ubiquitous in living systems, in ecology,
in daily life psychology, as well as in mathematics. A
feedback does not greatly influence a linear system,
while it can induce major changes in a nonlinear system.
Thus, feedback participates in the frontiers between
order and chaos.

The golden age of chaos theory
Feigenbaum and the logistic map

Mitchell Jay Feigenbaum proposed the scenario called
period doubling to describe the transition between a reg-
ular dynamics and chaos. His proposal was based on the
logistic map introduced by the biologist Robert M. May
in 1976.%** While so far there have been no equations this
text, I will make an exception to the rule of explaining
physics without writing equations, and give here a rather
simple example. The logistic map is a function of the seg-
ment [0,1] within itself defined by:

X1 = an(l_ Xn)

where n =0, 1, ... describes the discrete time, the single
dynamical variable, and 0<r<4 is a parameter. The
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Figure 2. The horizontal axis shows the values of the parameter r while
the vertical axis shows the possible long-term values of x.
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Figure 3. The Mandelbrot set, a point c is colored black if it belongs to the
set, and white if not.

Figure 4. The first four interations of the Koch snowflake.

dynamic of this function presents very different behav-
iors depending on the value of the parameter r:

For 0<r<3, the system has a fixed point attractor that
becomes unstable when r=3.

Pour 3<r<3,57..., the function has a periodic orbit as
attractor, of a period of 2" where n is an integer that tends
towards infinity when r tends towards 3,57...

When r=3,57..., the function then has a Feigenbaum frac-
tal attractor.

When over the value of r=4, the function goes out of the
interval [0,1] (Figure 2).

This function of a simple beauty, in the eyes of mathe-
maticians I should add, has numerous applications, for
example, for the calculation of populations taking into
account only the initial number of subjects and their
growth parameter r (as birth rate). When food is abun-
dant, the population increases, but then the quantity of
food for each individual decreases and the long-term sit-
uation cannot easily be predicted.

Mandelbrot and fractal dimensions

In 1973, Benoit Mandelbrot, who first worked in eco-
nomics, wrote an article about new forms of randomness
in science.” He listed situations where, in contrast to the
classical paradigm, incidents do not compensate for each
other, but are additive, and where statistical predictions
become invalid. He described his theory in a book,”
where he presented what is now known as the
Mandelbrot set. This is a fractal defined as the set of
points c from the complex plane for which the recurring
series defined by z_,, = z * + ¢, with the condition z, = 0,
remains bounded (Figure 3).

A characteristic of fractals is the repetition of similar
forms at different levels of observation (theoretically at
all levels of observation). Thus, a part of a cloud looks
like the complete cloud, or a rock looks like a mountain.
Fractal forms in living species are for example, a cauli-
flower or the bronchial tree, where the parts are the
image of the whole. A simple mathematical example of a
fractal is the so-called Koch curve, or Koch snowflake.?
Starting with a segment of a straight line, one substitutes
the two sides of an equilateral triangle to the central third
of the line. This is then repeated for each of the smaller
segments obtained. At each substitution, the total length
of the figure increased by 4/3, and within 90 substitutions,
from a 1-meter segment, one obtains the distance from
the earth to the sun (Figure 4).
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Fractal objects have the following fundamental property:
the finite (in the case of the Koch snowflake, a portion of
the surface) can be associated with the infinite (the
length of the line). A second fundamental property of
fractal objects, clearly found in snowflakes, is that of self-
similarity, meaning that parts are identical to the whole,
at each scaling step.

A few years later, Mandelbrot discovered fractal geom-
etry and found that Lorenz’s attractor was a fractal fig-
ure, as are the majority of strange attractors. He defined
fractal dimension (7able I). Mandelbrot quotes, as illus-
tration of this new sort of randomness, the French coast
of Brittany; its length depends on the scale at which it is
measured, and has a fractal dimension between 1 and 2.
This coast is neither a one-dimensional nor a two-dimen-
sional object. For comparison the dimension of Koch
snowflake is 1.26, that of Lorenz’s attractor is around
2.06, and that of the bifurcations of Feigenbaum is
around 0.45.

Thom, Prigogine, and determinism again

René Thom is the author of catastrophe theory.” This the-
ory is akin to chaos theory, but it was constructed from
the study of singularities, ie, continuous actions that pro-
duce discontinuous results. Catastrophe theory is inter-
esting in that it places much emphasis on explanation
rather than measurement. Thom was at the origin of a
renewed debate on the issue of determinism. In a 1980
article “Stop chance, silence the noise,” that was then
received with much controversy, he said:
I'd like to say straight away that this fascination with ran-
domness above all bears witness to an unscientific attitude.
It is also to a large degree the result of a certain mental con-
fusion, which is forgivable in authors with a literary train-
ing, but hard to excuse in scientists experienced in the rig-
ors of rational enquiry. What in fact is randomness? Only a
purely negative definition can be given: a random process
cannot be simulated by any mechanism or described by any
formalism. Asserting that "chance exists" is tantamount to
the ontological position that there are natural phenomena
that we will never be able to describe, nor therefore to
understand.
Ilya Prigogine, author of a theory of dissipative structures
in thermodynamics, considers that the universe is neither
totally deterministic nor totally stochastic.* He speaks of
a generalization of dynamics at the level of statistics that
has no equivalent in terms of trajectories. Initial condi-

tions can no longer be assimilated to a point in the phase
space, but they correspond to a region described by a
probability distribution. It is a nonlocal description, a new
paradigm.

Turing and self-organization

The mathematician Alan Turing, famous for his work on
cybernetics and artificial intelligence, showed that the
synergy between reaction and diffusion could lead to
spontaneous modes of concentrations.”” He proposed
that such mechanisms might explain the occurrence of
structured rules in the ontogenesis of living species. A
morphogen is a substance participating in reactions gen-
erating forms. Morphogens (growth factors, transcription
factors, or other endogenous compounds) influence in a
spatial and temporal manner, the expression of series of
genes; this influence is very precise, possibly because
morphogens are rapidly synthesized, but diffuse more
slowly, and this discrepancy would lead to periodical
maximal values of concentration. This model proposed
by Turing enables to explain several phenomena: sta-
tionary structures, oscillations, chemical waves.

The phenomenon of spontaneous exchange of informa-
tion was used by biologists such as Meinhartdt and
Gierer® in their explanation of the periodic structure of
leaves. This kind of self-organized chemical reactions
could also explain the emergence of the zebra skin or a
quantity of biological phenomena that illustrate self-
organizing structures.

Discussion

Poincaré showed that some dynamical nonlinear systems
had unpredictable behaviors. A century later, determin-
istic chaos, or the chaos theory, is much debated.
Biologists, economists, specialists in social sciences, and
researchers in medicine call themselves chaoticists.
Moreover, debates on the chaos theory are no longer lim-
ited to groups of scientists having an extended know-
ledge in mathematics, but is widely found through the
media, with participation from philosophers, psychoana-
lysts, journalists, or movie makers. This suggests that the
concepts of chaos theory find some resonance in present
social and philosophical preoccupations.

A superficial analysis might lead to the conclusion that
the success of the chaos theory has only a semantic origin:
the term deterministic chaos being constructed as an oxy-
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moron, as are the successful terms of “virtual reality” or
“artificial intelligence.” Moreover, terms such as equilib-
rium, unpredictability, and strange attractors that are at
the core of the chaos theory, can easily be used in many
other contexts and meanings.

Some researchers in the field of social sciences even pro-
pose that the chaos theory offers a revolutionary new
paradigm, away from the materialistic utopia, and that
social system should be maintained at the edge of chaos,
between too much and too little authoritarian control.
This comment concerns politics rather than physics.
The specificity of present time physics, with entropy,
chaos, and fractal dimensions, confers reality to phe-
nomena as we can perceive and measure them, and it
somehow invalidates the idea of a fundamental, or true,
reality that might be explained by an elegant model. The
use of such models entails too many simplifications, and
may lead for instance to the reversibility of time that is
imposed by the mathematical structure of mechanics.
The initial conditions of the universe with mass, charge
of particles, size of atoms, fundamental forces, speed of
light, combination of carbon and oxygen, and many oth-
ers happened to be organized in such a way that life
could appear, and with it consciousness. This could sug-
gest that the destiny of the universe is not towards an
inevitable and generalized chaos. On the contrary, this
destiny might be oriented towards complexity.

Chaos theory and medicine

Many discoveries in medicine can be seen as indications
that organs function in a linear and deterministic man-
ner, and that the causality principle applies to normal or
abnormal physiology: for example, pressure increases
when arteries constrict, and obstruction of an artery from
the heart leads to angina pectoris. In chronobiology,
destruction of the suprachiasmatic nucleus alters circa-
dian rhythms, and genetic crossing of insects strains with
different circadian clock gene modifies the period of cir-
cadian rhythms in a predictable manner, etc.

These obvious findings are numerous and they might
hide, to some extent, the fact that bodily functions and
their temporal coordination are probably under laws that
are inherently complex. Indeed, living species are capable
of increasing their complexity, to organize orderly func-
tions from disorder (in terms of physics, not medicine),
and they do this without external informational input.
Thus, living species exhibit some complex chaotic systems.

However, in order to confirm this, it is necessary to have
access to a huge number of data points; only then does it
become possible to describe a biological phenomenon in
its phase space and to study its evolution over time, using
the methods of nonlinear dynamic systems. These meth-
ods have shed light on a few aspects of organ functioning,
in particular the cardiovascular system** and the brain,”*
but also the respiratory system.**

Indeed, the cardiac rhythm is sensitive to initial condi-
tions and to the fractal dimension of its attractor, and it
was found that when the heart rate becomes highly reg-
ular, the heart is less capable of adaptation to demands,
and that this condition predisposes to arrhythmias and
myocardial infarction. This chaotic behavior of the car-
diac rhythm raises the essential question of the role of
chaos in biology in general. In fact, the cardiac system
could not function without chaos, since the power of self-
organization participates in the capacity of the heart to
adapt to physiological demands.

Dynamical models of the brain are also a domain of
research, notably into the artifical neural networks. There
is, however, a risk linked to self-reference stating that we
try to understand the brain using our brains, a somewhat
problematic circular approach.” However, it might be
that the functional assembly of many researchers' brains
could in itself lead to more that the sum of the con-
stituents of a model brain.

Brain disorders are accompanied by measurable changes
in the electroencephalogram (EEG), most obvious in a
series of epileptic fits, where high-amplitude synchro-
nized waves are observed. The various types of EEG pat-
terns present different attractors and different fractal
dimensions. When a healthy person stands with his or her
eyes open, the EEG shows low-amplitude high-requency
alpha waves, and the corresponding attractor has a high
dimension. When the eyes are shut, EEG wave amplitude
increases, frequency decreases, and the corresponding
fractal dimension is lower. It is small during slow-wave
sleep, and even more so during an epileptic fit or a coma.
Thus one can conclude that the cognitive power, defined
as the capacity to perceive and analyze information, par-
allels the fractal dimension of the EEG.* In rabbits, elec-
trophysiological measurements in the olfactory lobe
show chaotic behavior when the animal is in a resting
condition, while the presentation of odors leads to dif-
ferent patterns of electrical neuronal activity, less chaotic
and nearly periodic.”

Arnold Mandell was the first psychiatrist to combine
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abstract mathematical models and quantitative experi-
mental finding in an effort to approach clinical questions,
for example that of the structure of personality.* Others
are now applying models of a sequentially altered archi-
tecture to describe psychiatric disorders. For example, it
was proposed that schizophrenia was characterized by
nonlinear phenomena alternating with pure randomness
in the brain function architecture, a proposal in line with
the early theoretical work of Prigogine.”*

Finally, mathematical models have been used to describe
biological rhythms and to explore the biological clocks
functional rules, eg, to explore how biological clocks
interact.** The success of the chaos theory seems to be,
in my impression, due to epistemology: the fact that a
phenomenon obeying deterministic laws could be unpre-
dictable can be seen as a sign of the defeat of the causal-
ity principle. In several cases, this conclusion seems to
apply to chronobiology. 1

Una historia acerca de la teoria del caos

Por centurias el hecho que cada efecto se pueda
relacionar con precision a una causa determinada
0 a una lista de causas, ha sido tema de debate, en
especial durante el siglo XVII cuando los astrono-
mos fueron capaces de predecir la trayectoria de los
planetas. La aplicacion reciente de modelos mate-
madticos a la fisica ha incorporado la idea que deter-
minados fendmenos no pueden predecirse con pre-
cision; sin embargo, de alguna forma si se pueden
predecir de acuerdo con la teoria del caos. Los con-
ceptos de modelos deterministas, sensibilidad a las
condiciones iniciales, atractores extrafos y dimen-
siones fractales son esenciales para el desarrollo de
esta teoria. En biologia son pocas las situaciones
que incluyendo ritmos enddgenos normales o anor-
males, se hayan analizado segun los principios de la
teoria del caos. Esto ha ocurrido principalmente con
las arritmias cardiacas, pero en menor medida con
los relojes bioldgicos y los ritmos circadianos.

Un historique de la théorie du chaos

Décider si chaque effet est lié ou non précisément
a une cause donnée ou a une liste de causes a été
I'objet de débat pendant des siécles, notamment au
cours du XVII siecle, lorsque les astronomes ont été
capables de prévoir les trajectoires des planétes. Des
modéles mathématiques récents appliqués a la phy-
sique retiennent I'idée qu’un phénoméne donné ne
peut étre prévu exactement, bien qu’il puisse I'étre
dans une certaine mesure, en accord avec la théo-
rie du chaos. Des concepts tels que les modéles
déterministes, la sensibilité aux conditions initiales,
les attracteurs étranges et les dimensions fractales
sont inhérents a cette théorie. Quelques situations
concernant les rythmes endogénes normaux ou
anormaux en biologie ont été analysées suivant les
principes de la théorie du chaos. C'est surtout le cas
des arythmies cardiaques, mais moins celui des hor-
loges biologiques.
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