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ABSTRACT

Altered A-to-I RNA editing has been widely observed
in many human cancers and some editing sites are
associated with drug sensitivity, implicating its ther-
apeutic potential. Increasing evidence has demon-
strated that a quantitative trait loci mapping ap-
proach is effective to understanding the genetic ba-
sis of RNA editing. We systematically performed
RNA editing quantitative trait loci (edQTL) analysis
in 33 human cancer types for >10 000 cancer sam-
ples and identified 320 029 edQTLs. We also iden-
tified 1688 ed-QTLs associated with patient overall
survival and 4672 ed-QTLs associated with GWAS
risk loci. Furthermore, we demonstrated the associ-
ations between RNA editing and >1000 anti-cancer
drug response with ∼3.5 million significant associa-
tions. We developed GPEdit (https://hanlab.uth.edu/
GPEdit/) to facilitate a global map of the genetic and
pharmacogenomic landscape of RNA editing. GPEdit
is a user-friendly and comprehensive database that
provides an opportunity for a better understanding of
the genetic impact and the effects on drug response
of RNA editing in cancers.

INTRODUCTION

RNA editing is a unique type of post-transcriptional mod-
ification that alters specific nucleotide sequences originated
from one organism’s genome. The major form of RNA edit-
ing in metazoans is Adenosine to Inosine (A-to-I), a pro-
cess that is catalyzed by the adenosine deaminase acting on
RNA (ADAR) enzymes (1,2). RNA editing, for its poten-
tial effects on transcript functions, has been associated with

human diseases such as neurological disorders (3) and car-
cinoma in multiple tissue types (4,5). Previously, the pan-
cancer A-to-I editome has been comprehensively profiled
using RNA-seq data (6), and the genome-wide altered A-
to-I RNA editing patterns are observed across multiple can-
cer types. Those RNA editing events identified in tumors
are contributing to transcript complexity, or could further
increase diversity at proteomic levels, that eventually affect
functions of cancer cells (7).

Previous works demonstrated that a quantitative trait loci
(QTL) mapping approach is effective to understand the ge-
netic basis of multiple molecular features in human can-
cers, e.g. gene expression, methylation, and alternative splic-
ing (8–10). Several studies have been prioritizing the signifi-
cance of RNA editing QTL (edQTL) in understanding rela-
tions between genetic variation and RNA editing functions
(11–14). In these studies, the cis-regulatory mechanism of
RNA editing patterns has been examined in animal mod-
els or normal human tissues. Genetic variants such as Sin-
gle Nucleotide Polymorphism (SNP) that potentially affect
RNA secondary structure are partially accounted for by
the altered editing frequency. In human cancers, we have
shown that RNA editing events are closely linked to clin-
ical information such as patient overall survival (6). More
importantly, some non-synonymous editing sites are associ-
ated with drug sensitivity, implicating a therapeutic role of
RNA editing as potential targets (6). In other human dis-
eases, RNA editing has been emerging as a biomarker in
predicting treatment outcomes such as adverse drug reac-
tions (15).

The significant impact of genetic variants on different
noncoding RNAs (16,17) and post-transcriptional regula-
tion are recognized recently (18). Furthermore, we previ-
ously demonstrated that RNA editing may impact on drug
response (6), but the associations between drug response
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Figure 1. Analytic pipeline for data processing in GPEdit. (A) The pipeline to identify edQTLs, including processing and quality control of genotype
data and RNA editing profiles, applying GLiMMPS model to identify edQTLs and crossmatch with survival information and GWAS catalogs. (B) The
pipeline to identify drug response associated RNA editing events, including patients’ drug response imputation and large-scale correlation tests. (C) GPEdit
database infrastructure.

and RNA editing across large number of cancer samples are
not investigated. Despite the importance of interpretation
of the genetic and pharmacological landscape of RNA edit-
ing in human cancers, there are no data resources that pro-
vide either edQTL information or drug sensitivity relations
of RNA editing on a large scale. To bridge this gap, we im-
plemented a computational pipeline to systematically iden-
tify edQTLs in 33 cancer types incorporating ∼10 000 tu-
mor samples from The Cancer Genome Atlas (TCGA). By
adopting an established approach (19), we also imputed the
drug response of TCGA patients from ∼1000 compounds
in Genomics of Drug Sensitivity in Cancer (GDSC) (20)
and Cancer Therapeutics Response Portal (CTRP) (21) and
investigated their associations with RNA editing. The data
were deposited into our newly developed database GPEdit
(genetic, pharmacogenomic landscape of A-to-I RNA edit-
ing in cancers, https://hanlab.uth.edu/GPEdit/).

DATA COLLECTION AND PROCESSING

TCGA genotype data pre-processing

TCGA level 2 genotype data from Affymetrix SNP Array
6.0 were downloaded from the Genomic Data Commons
data portal (GDC; https://gdc.cancer.gov) (Figure 1A). As
described in our previous publications (9,22), autosomal
variants imputation helps to increase power for QTL dis-
covery. We used IMPUTE2 (22) along with 1000 genome

Phase 3 as a reference panel to perform the two steps of
pre-phasing and autosomal variants imputation. Following
quality control criteria were considered to exclude SNPs af-
ter imputation: (i) imputation score INFO < 0.4; (ii) minor
allele frequency (MAF) < 0.05; (iii) SNP missing rate ≥0.05
for best-guessed genotypes with posterior probability ≥0.9
and (iv) Hardy–Weinberg equilibrium P-value < 1 × 10–6.

Profiling of pan-cancer A-to-I RNA editing

We have previously developed a computational pipeline to
characterize A-to-I RNA editing profiles in 17 TCGA can-
cer types following a RADAR reference panel (23) of ∼1.4
million A-to-I RNA editing sites (6). Here, we expanded
our data collection to 33 cancer types following an up-
dated reference panel of ∼4.5 million sites (24). We down-
loaded RNA-seq BAM files of 10 179 patient tumor sam-
ples from the GDC data portal. For sequence quality con-
trol, we only considered A-to-I RNA editing sites with at
least 10 high-quality reads (base quality score ≥ 30) cov-
ered with at least two high-quality reads supporting the edit-
ing events (25). We further selected editing sites with edit-
ing frequency (edited reads / covered reads) significantly
greater than 0.1% (binomial test with false discover rate
controlled at 5%) (25) for the following edQTL analysis.
We also excluded editing sites overlapping with variates an-
notated in dbSNP (version 138) and TCGA MC3 somatic
mutations (26). To ensure sufficient editing frequency varia-
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Table 1. Data Summary of edQTLs for each cancer type in GPEdit

Cancer type #Sample #Editing events #edQTLs
#Survival associated

edQTLs
#GWAS associated

edQTLs #Editing drug pairs

ACC 79 5906 776 4 22 9
BLCA 408 22 535 7800 69 133 187 275
BRCA 1092 52 158 15 668 20 235 228 675
CESC 304 19 290 7046 49 99 47 386
CHOL 37 9 383 2075 8 36 0
COAD 456 20 355 6910 4 97 78 557
DLBC 48 6 931 1569 16 18 0
ESCA 164 95 264 39 244 243 575 42 208
GBM 149 27 316 7794 0 113 72 277
HNSC 501 16 371 6098 24 112 85 168
KICH 66 12 841 3 238 8 42 60
KIRC 530 43 326 17 793 37 267 192 376
KIRP 289 26 742 11 499 145 144 73 399
LAML 151 46 633 9815 30 142 1512
LGG 455 25 314 9042 44 123 339 182
LIHC 371 19 884 7495 68 101 75 823
LUAD 515 32 510 13 504 40 199 38 679
LUSC 501 33 142 12 936 47 204 25 923
MESO 86 10 573 2747 20 44 55
OV 389 69 877 18 314 16 263 30 375
PAAD 177 16 505 5974 26 100 30 162
PCPG 179 15 267 5182 86 67 21 983
PRAD 496 25 321 10 643 109 139 148 336
READ 167 11 630 3842 11 60 340
SARC 259 19 277 6794 62 86 40 870
SKCM 468 22 969 6519 71 94 98 009
STAD 380 100 755 41 832 161 607 37 285
TGCT 150 16 689 5 372 133 67 511 418
THCA 502 26 644 10 304 95 152 395 504
THYM 119 16 027 5251 12 80 658 619
UCEC 555 28 222 12 103 21 161 4794
UCS 56 11 231 3339 1 76 81
UVM 80 7239 1511 8 14 14 671

tions among cancer patients, a filter of a minimum 10% dif-
ference between the editing frequency of the 90% quantile
and the 10% quantile across all tumor samples was imple-
mented (14).

Identification of edQTLs

To emphasize the cis-regulatory role of detected edQTLs,
only SNPs within 200 kb of editing sites were included in
our analysis (14). To test the associations between SNPs
and A-to-I RNA editing frequencies, we adopted a gen-
eralized linear mixed model GLiMMPS (27), which was
applied in edQTL analysis (14). For each editing site, the
edQTL was defined as the closest SNP with the most
significant GLiMMPS P-value. For edQTLs identified in
each cancer type, false discover rate (FDR) was controlled
as <0.01.

Identification of edQTLs associated with survival and GWAS
risk loci

EdQTLs were further examined against patients’ overall
survival time. For each edQTL, tumor samples were classi-
fied into three groups by their genotypes and log-rank tests
were performed on them to examine the significance of the
overall survival time difference among groups. Within each
cancer type, an edQTL with FDR <0.1 was defined as sur-
vival associated edQTL. Kaplan-Meier (KM) curves were
used to visualize the differences between groups.

Genome-wide association studies (GWASs) have been
contributing to understanding relations between genetic
risk loci and complex diseases (28). Here, we downloaded
available risk tag SNPs from the NHGRI-EBI GWAS
catalog (http://www.ebi.ac.uk/gwas/, access on Septem-
ber 2020) (29). GWAS linkage disequilibrium (LD) re-
gions of these risk tags SNPs were obtained from
the SNAP database (https://data.broadinstitute.org/mpg/
snpsnap) (30). The European (EUR) population in the
1000G Phase 3 dataset was selected with LD cut-off R2 over
0.5. EdQTLs overlapped with GWAS tag SNPs were de-
fined as GWAS associated edQTLs.

Identification of drug response associated editing events

Recent studies demonstrated the significance of evaluat-
ing the drug response in patient samples (31,32). In this
study, we adopted a previously established approach to
impute the drug response of TCGA patient samples (id-
was, https://osf.io/yatu3/) (19) and expanded to ∼1000 anti-
cancer drugs available in other drug response data resources
such as GDSC2 and CTRP (20,21). For each cancer type,
we used the ‘rcorr’ function in the ‘Hmisc’ package to per-
form a large-scale Spearman Correlation test between RNA
editing and drug response. We set a minimum of 50 sam-
ples of paired RNA editing frequency and imputed drug re-
sponse. Editing-drug pairs with absolute Spearman Corre-
lation over 0.3 and FDR <0.01 were considered as a signif-
icant association.

http://www.ebi.ac.uk/gwas/
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Figure 2. Overview of the GPEdit database. (A) Four functional modules are provided in GPEdit. (B) Query web interface in the ‘edQTL’ module. (C)
An example of query return table of the ‘edQTL’ module. (D) Examples of query return tables from the ‘Survival-edQTL’ module (upper panel), ‘GWAS-
edQTL’ module (middle panel), and ‘Drug Response’ module (lower panel). (E) An example of a box plot visualizing one edQTL. (F) An example of
Kaplan-Meier plot visualizing one survival associated edQTL.
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DATABASE CONTENT AND USAGE

Data summary

In the GPEdit data portal, we performed a comprehen-
sive edQTL analysis across 33 TCGA cancer types to un-
derstand the genetic basis of the cis-regulatory mechanism
in human cancers (Table 1). The total number of edQTLs
detected in 33 cancer types was 320 029, of which around
10% edQTLs (31,842) were detected in more than one can-
cer type. The numbers of edQTLs identified in each can-
cer type were ranging 776 in Adrenocortical Carcinoma
(ACC) to 41 832 in Stomach Adenocarcinoma (STAD). The
power of QTL detection increases with cohort samples size
(Rs = 0.73, P = 1.19 × 10–6), which is consistent with our
previous pan-cancer QTL studies (10,16). The total number
of survival-associated edQTLs is 1,688, of which the high-
est is 243 in Esophageal Carcinoma (ESCA) and the lowest
is zero in Glioblastoma multiforme (GBM) (Table 1). A to-
tal of 4672 GWAS-associated edQTLs were found, of which
the highest is 607 in STAD and the lowest is 14 in Uveal
Melanoma (UVM). We identified a total of 3 481 011 signif-
icant associations between drug response and editing events
in 31 cancer types with sample size over 50. The number of
significant pairs of associations ranged from nine in ACC
to 658 619 in Thymoma (THYM) (Table 1).

Web design and interface

GPEdit data portal was constructed based on Django
framework with Bootstrap as front-end web interface and
SQLite as a back-end database tool (Figure 1C) (33). Var-
ious JavaScript libraries such as ‘DataTable’ were used in
the web interface. R with ‘ggplot2’ package was used to pro-
duce figures that were deposited in GPEdit. GPEdit is freely
available at (https://hanlab.uth.edu/GPEdit).

There are four function modules available (Figure 2A)
in GPEdit for data query: (i) ‘edQTL’ for querying iden-
tified edQTLs; (ii) ‘Survival-edQTL’ for querying edQTLs
that have significant associations with patients’ survival; (iii)
‘GWAS-edQTL’ for querying edQTLs that may link with
SNPs that annotated in GWAS studies and (iv) ‘Drug Re-
sponse’ for querying significant drug associated RNA edit-
ing events. The GPEdit also provides query function by can-
cer types on its home page.

Within each query function module, queries be
made using a set of user-defined criteria such as
SNP id (e.g. rs11024008), a specific genomic location
(e.g. chr1:150000000-160000000), or the gene symbol (e.g.,
ADAR) adjacent to RNA editing sites (Figure 2B). For
example, in the ‘edQTL’ module, when a user chose the
query option by ‘Adjacent Gene Symbol’ and type in
‘ADAR’. The text box would automatically match and
autofill with available gene symbols for convenience. After
clicking the ‘Query’ button, a table with query returns
would appear, and results matched with ‘ADAR’ would be
listed in the table (Figure 2C). For example, the table shows
two edQTLs that are associated with the same RNA editing
sites located at the 3’UTR region of the gene ADAR.

For other modules, making a query is similar to the
‘edQTL’ module, while the query options could be differ-

ent. For example, the ‘GWAS-edQTL’ module has an ad-
ditional ‘Linkage disequilibrium’ cutoff choosing option.
The query returns are also different among modules (Fig-
ure 2D). Some modules provide a data visualization op-
tion in the query returns table. For instance, the ‘edQTL’
module provides a box plot to visualize edQTLs’ impact
on RNA editing frequencies among cancer samples (Fig-
ure 2E) and the ‘Survival-edQTL’ provides a Kaplan-Meier
plot (KM plot) to visualize edQTLs’ association with pa-
tient’s survival (Figure 2F). The box plot in Figure 2E shows
an edQTL rs1127309 is significantly associated with RNA
editing frequencies of an editing site located at the 3’UTR
region of the gene ADAR. The KM plot in Figure 2F shows
that an edQTL rs11167680 is significantly associated with
patients’ survival using the Log-rank test (P < 0.0001), and
the risk table is listed below the KM plot.

Additionally, all the query return tables are searchable
and can be downloaded in ‘Microsoft Excel’ compatible for-
mat. All the visualization plots can be saved in ‘png’ format
as well as in ‘pdf’ format. A detailed tutorial of GPEdit can
be found on the ‘Document’ page.

SUMMARY AND FUTURE DIRECTIONS

We systematically investigated the genetic and pharmacoge-
nomic basis of A-to-I RNA editing events in 33 human
cancers. We constructed a user-friendly database, GPEdit,
for users to query, browse and download edQTLs. Huge
amounts of vector diagrams of edQTL box plots and KM
plots are provided. GPEdit could serve as an important re-
source for human cancer genetics and provide opportuni-
ties to bridge the knowledge gap from variants in sequence
to RNA editing. In addition, GPEdit provides the associa-
tions between RNA editing and >1000 anti-cancer drugs
thus contributing to understanding the functional effects
of RNA editing on drug response. Cancer Genomics is an
explosively growing field in recent years (33–37), with the
great effort from several large-scale consortiums, including
TCGA, International Cancer Genome Consortium (38), as
well as many other studies with a significant amount of data.
We will periodically survey newly released cancer data re-
sources with a considerable number of samples with match-
ing genotype data, expression data, and drug response data.
We will update GPEdit accordingly and maintain it as a use-
ful resource for the research community.

DATA AVAILABILITY

GPEdit is a data resource portal that is freely available at
(https://hanlab.uth.edu/GPEdit). Analytic codes for RNA
editing calling and edQTL detection are available at GitHub
site (https://github.com/hr1912/GPEdit).
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