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Abstract: Although gene expression can vary extensively within and among populations, the genetic
basis of this variation and the evolutionary forces that maintain it are largely unknown. In Drosophila
melanogaster, a 49-bp insertion/deletion (indel) polymorphism in the Metallothionein A (MtnA) gene is
associated with variation in MtnA expression and oxidative stress tolerance. To better understand
the functional and evolutionary significance of this polymorphism, we investigated it in several
worldwide populations. In a German population, the deletion was present at a high and stable
frequency over multiple seasons and years, and was associated with increased MtnA expression.
There was, however, no evidence that the polymorphism was maintained by overdominant, seasonally
fluctuating, or sexually antagonistic selection. The deletion was rare in a population from the species’
ancestral range in sub-Saharan Africa and is likely the result of non-African admixture, suggesting
that it spread to high frequency following the species’ out-of-Africa expansion. Using data from
a North American population, we found that the deletion was associated with MtnA expression and
tolerance to oxidative stress induced by menadione sodium bisulfite. Our results are consistent with
the deletion being selectively favored in temperate populations due to the increased MtnA expression
and oxidative stress tolerance that it confers.

Keywords: gene expression; cis-regulation; deletion; indel; untranslated region; oxidative stress;
population genetics; Drosophila melanogaster

1. Introduction

The expansion of a species into new territories provides the opportunity for adaptation to novel
environmental conditions. Although such adaptation is of fundamental interest to evolutionary
biologists, the identification of locally adaptive traits, along with their underlying molecular and
genetic bases, has proven to be challenging. Given its well-understood genetics and experimental
tractability, Drosophila melanogaster has become a leading model organism for studying the molecular
basis of adaptation. These studies typically involve the comparison of DNA sequence and/or gene
expression variation between populations from the ancestral (sub-Saharan African) and derived
(cosmopolitan) species ranges [1–7], or among multiple populations spanning an environmental
gradient, such as a latitudinal cline [8–10]. Clinal variation has been detected for several types of genetic
polymorphism in D. melanogaster, including chromosomal inversions [9], allozymes [11,12], and single
nucleotide polymorphisms (SNPs) [13,14]. Moreover, some genetic variants show repeated oscillations
in frequency across seasons in temperate populations [15]. Collectively, these studies suggest that a
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considerable amount of genetic and expression variation may be maintained within D. melanogaster
due to local or seasonal adaptation, although detailed functional studies of the underlying causal
variants and how they exert their effects on a relevant organismal phenotype remain rare [16–21].

Global populations of D. melanogaster are polymorphic for a 49-bp deletion in the 3′ untranslated
region (UTR) of the Metallothionein A (MtnA) gene, as shown in Figure 1 [18,22,23]. This deletion
is present at high frequency (34–100%) in cosmopolitan populations but low frequency (0–8%)
in sub-Saharan Africa and is absent in other Drosophila species [18,23,24], suggesting that it is
a derived mutation that has spread to high frequency following the species’ out-of-Africa expansion.
Furthermore, the frequency of the deletion increases with distance from the equator in Europe,
North America, and Australia, which is consistent with adaptation to temperate environments [18].
The deletion is associated with increased MtnA expression and reporter gene experiments have
demonstrated that, in a common genetic background, the deletion causes an expression increase in
the range of 1.4 to 2.3-fold [18]. The deletion also is associated with increased tolerance to oxidative
stress in isofemale lines derived from Europe and Asia [18]. Taken together, these results suggest
a scenario in which the MtnA 3′ UTR deletion is selectively favored in temperate environments due to
the increased oxidative stress tolerance that it confers, which is mediated by higher MtnA expression
levels. The importance of oxidative stress as a selective factor in temperate populations is further
supported by studies of the Bari-Juvenile hormone epoxy hydrolase (Bari-Jheh) transposable element
insertion, which is present at high frequency in temperate regions and upregulates expression of the
Jheh genes, leading to increased oxidative stress tolerance [25,26]. In the case of MtnA, the 3′ UTR
deletion is presumably deleterious under some environmental conditions, which would explain why
it remains polymorphic within temperate populations, as well as its rarity in sub-Saharan Africa and
other tropical and sub-tropical regions.

Figure 1. Diagram of the 49-bp insertion/deletion (indel) polymorphism in the 3’ untranslated
region (UTR) of the D. melanogaster Metallothionein A (MtnA) gene (Chromosome 3R, coordinates
9,783,407–9,784,370). Exons are shown as boxes, with the coding regions in black and the UTRs in
white. The red triangle indicates the site of the indel polymorphism, with the DNA sequences of the
deletion (blue) and non-deletion (green) variants shown above.

In the current study, we determine the frequency of the MtnA 3′ UTR insertion/deletion (indel)
polymorphism in a large sample of wild-caught flies of both sexes from a temperate European
population (Munich, Germany) across seasons and years. This allows us to test for potential forms
of balancing selection, such as seasonally fluctuating selection, overdominant selection, or sexual
antagonism, which could be involved in the maintenance of this polymorphism. We further examine
the effect of the deletion on MtnA expression in nearly-isogenic lines derived from this population.
We also use publicly available data to test for associations between the deletion, MtnA expression,
and oxidative stress tolerance in a large North American population sample. Finally, by re-analyzing
genome sequence data from a sub-Saharan African population, we determine the frequency of the
deletion in the ancestral species range and test whether it is consistent with ancient standing variation
or more recent admixture with non-African flies.
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2. Materials and Methods

2.1. Fly Collection and Maintenance

In 2016 and 2017, wild D. melanogaster were collected twice per year (late June and early September)
in Munich, Germany using traps with banana-yeast bait. After collection, the flies were transferred to
individual 35 ml vials containing cornmeal-yeast-molasses medium. To ensure that the wild-caught
flies were D. melanogaster and not the closely related D. simulans, the species identity of all collected
males was confirmed by visual inspection of the genitalia under a dissecting microscope. A subset
of the wild-caught females (50–60 females per collection) was allowed to lay eggs in the vial and
the species identity was confirmed from their male offspring using the above method. We did not
detect D. simulans in any of the collections. All of the original wild-caught flies from each season were
preserved for later genotyping by freezing at –80 ◦C.

Two isofemale lines (designated here as M9 and M12) collected in Munich in 2014 [27] were found
to be polymorphic for the MtnA 3’ UTR deletion by genotyping individual offspring (see Section 2.2).
These stocks were maintained with random mating for 50–60 generations in order to homogenize
the genomic background, then individual males and females were genotyped and mated to generate
new inbred lines homozygous for either the insertion or deletion allele. From each of the two original
isofemale lines, three replicate insertion and deletion lines were established. These lines were used
to test the effect of the indel polymorphism on MtnA expression in a nearly-isogenic background.
All stocks were maintained on cornmeal-yeast-molasses medium at 21 ◦C and a 14 hour light/10 hour
dark cycle.

2.2. Detection of the MtnA Deletion in Wild-Caught Flies

The MtnA genotype of individual flies was determined following the method of Catalán et
al. [18]. Briefly, genomic DNA was extracted from individual flies according to the MasterPure
Complete DNA and RNA purification kit (Epicenter, Madison, WI, USA) protocol. PCR was performed
using the primers 5’-GCCGCAGACCAATTGATTA-3’ and 5’-TTCTTTCCAGGATGCAAATG-3’,
which amplify fragments of 254 bp (deletion) or 303 bp (non-deletion), or the primers
5’-GCCGCAGACCAATTGATTA-3’ and 5’-TTCTTTCCAGGATGCAAATG-3’, which amplify
fragments of 485 bp (deletion) or 534 bp (non-deletion). The thermal cycling conditions were as
follows: denaturation at 98 ◦C for 30 sec, 35 cycles of 98 ◦C for 5 sec, and 60 ◦C for 10 sec, and extension
at 72 ◦C for 2 min. Following PCR, the genotype was determined from the banding pattern on a 1.5%
agarose electrophoresis gel.

2.3. Quantitative Reverse Transcription PCR

For each biological replicate, total RNA was extracted from the heads of 10 males (aged 4–6
days) following the MasterPure Complete DNA and RNA purification kit (Epicenter) protocol,
including DNase I digestion. We focused on male heads, as this sex and tissue combination
showed a consistent effect of the MtnA 3’ UTR deletion on reporter gene expression in a previous
study [18]. For each sample, 650 ng of total RNA was used for cDNA synthesis with SuperScript III
reverse transcriptase (Invitrogen, Carlsbad, CA, USA) and random hexamer primers following the
manufacturer’s protocol. Residual RNA was removed by incubating with RNase H (New England
BioLabs, Ipswich, MA, USA). Quantitative PCR was carried out with 25 ng of cDNA per reaction
and SsoAdvanced Universal SYBR Green Supermix (Bio-Rad, Hercules, CA, USA) according to
the manufacturer’s guidelines. The following MtnA primers, which amplify a cDNA fragment
of 93 bp were used: 5’-GCACTTGCAGTCAGATCC -3’ and 5’- TCAATCAAGATGCCTTGCC-3’.
For each sample, the ribosomal protein gene RpL32 was also amplified as a reference using the
primers 5’-AGCATACAGGCCCAAGATCG-3’ and 5’-AGCATACAGGCCCAAGATCG-3’, which
amplify a fragment of 113 bp [28]. The following cycling conditions were used: 95 ◦C for 30 sec,
35 cycles of 95 ◦C for 10 sec, and 63 ◦C for 30 sec. Amplification products were quantified using a
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CFX96 real-time thermal cycler (Bio-Rad). For each nearly-isogenic background (M9 or M12) and
genotype (deletion or non-deletion), 25–28 biological replicates were performed, each with two
technical replicates (i.e., starting from the same cDNA). To compare MtnA expression among samples,
the ∆∆Ct method was used, with RpL32 as the reference [29]. The effect of the deletion on expression
was tested using a two-factor ANOVA (background and genotype) as implemented in R [30].

2.4. Detection of the MtnA Deletion using Genome Sequence Data

Raw genomic sequence reads (150 bp, paired-end) of 193 D. melanogaster lines collected in
Siavonga, Zambia [31–33] and 17 lines collected in Kafue National Park, Zambia [34] were downloaded
from the NCBI sequence read archive (SRA; accession numbers SRP006733 and PRJNA329555,
respectively). For each line, 150 bp, paired-end reads were generated from haploid embryos [35]. Thus,
we expect to detect only one allele per line. The reads were mapped to a reference file containing
sequences of both the deletion and non-deletion alleles of the MtnA 3’ UTR using NextGenMap [36].
The deletion reference sequence consisted of 90 bp (49 bp before and 41 bp after the deletion site),
while the non-deletion reference sequence contained the same 90 bp, plus an additional 49 bp at the
deletion site. To determine the MtnA genotype, we required that reads mapping to one of the two
reference sequences overlap for at least 15 bp on either side of the deletion site. With this approach,
we could unambiguously classify the MtnA allele of 209 out of 210 lines. For one of the Siavonga
lines, there was a single read matching the deletion reference and 18 reads matching the non-deletion
reference. This line was excluded from further analysis.

Raw genomic reads of 185 lines from Raleigh, North Carolina, USA were downloaded from the
SRA (accession PRJNA36679). These lines represent the Drosophila Genetic Reference Panel (DGRP)
and are maintained as highly inbred lines that have been used for multiple studies of quantitative
morphological, physiological, behavioral, and gene expression traits [37,38]. The sequences were
a mixture of single-end and paired-end reads and ranged in length from 45 to 126 bp. To determine the
MtnA genotype of each line, we used the mapping procedure described above, but due to the shorter
read lengths, required a minimum overlap of only 8 bp on either side of the deletion site. With this
approach, we could classify the MtnA allele of 163 lines (at least 95% of all reads mapping to one allele).
The remaining 22 lines had reads mapping to both the deletion and non-deletion references, with the
minor allele at a frequency greater than 5%. Because sequencing was performed using DNA extracted
from a pooled sample of 500–1000 flies per line [37,38], it is possible that this ambiguity was caused by
residual polymorphism segregating within some of the DGRP lines. These lines were excluded from
further analysis.

2.5. Detection of Non-African Admixture

To investigate whether the presence of the MtnA 3’ UTR deletion in the Zambian population was
better explained by ancestral polymorphism or more recent non-African admixture, we constructed
a neighbor-joining tree for a 15 kb region surrounding MtnA using 20 Zambian sequences (five of
which contained the deletion) and 20 sequences from Lyon, France [32,33]. Only aligned nucleotides
were considered for tree construction (i.e., indels were excluded) using MEGA 7.0.26 [39]. Node
support was assessed by doing 1000 bootstrap iterations [40]. The tree was rooted using the reference
sequences of D. sechellia and D. simulans as outgroups [41] and edited using the R package APE 5.2 [42].

2.6. Analysis of MtnA expression and oxidative stress tolerance in DGRP lines

Whole-genome expression data for 185 DGRP lines and oxidative stress tolerance data for
167 DGRP lines were downloaded from the DGRP2 website [43]. Gene expression was measured in
two replicates per sex using Affymetrix Drosophila 2.0R Tiling Arrays [44]. Oxidative stress tolerance
was measured as survival in hours on two separate oxidative stress-inducing agents: paraquat and
menadione sodium bisulfite (MSB), a water-soluble derivative of menadione [45]. DGRP lines with
only one reported MtnA expression replicate in either sex were excluded from all analyses and only
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lines with both MtnA expression and oxidative stress data were included in the oxidative stress analysis.
This resulted in a total of 161 lines for the MtnA expression analysis and 146 lines for the oxidative
stress tolerance analysis. Differences in MtnA expression between deletion and non-deletion lines were
tested using a Student’s t test. The association between oxidative stress tolerance and MtnA expression
was assessed using Spearman’s rank correlation. The association between MtnA 3’ UTR genotype
and survival on each oxidative stress-inducing agent was tested using a Cox proportional hazards
model [46] with sex, genotype, and line as factors as implemented in the “survival” package [47] in
R [30].

3. Results

3.1. The Deletion is Present at a Stable, High Frequency in a European Population

Based on a sample of 11 isofemale lines collected in 2005, Catalán et al. [18] estimated the MtnA
3’ UTR deletion frequency in a population from Munich, Germany to be 0.91 with a 95% confidence
interval (CI) of 0.73–0.98. In order to refine this estimate and determine if the deletion frequency
varies across years or seasons, or between males and females, we collected and genotyped wild
D. melanogaster from Munich twice per year (late June and early September) in 2016 and 2017. In total,
we genotyped 510 wild-caught flies (1020 chromosomes) and found the MtnA deletion frequency to
be 0.91 with a 95% CI of 0.89–0.92, which did not differ significantly from the 2005 estimate (Fisher
exact test, P = 0.99). Thus, the deletion frequency has remained remarkably stable for more than
a decade. Similarly, the deletion frequency did not differ between 2016 and 2017, or between the June
and September collection of each year (Fisher exact test, P > 0.65 in each year) as shown in Table 1.
There was also no difference in the frequency of the deletion between males and females (P > 0.36 in
each season) as shown in Table 1. Thus, there was no evidence for seasonally fluctuating selection or
sexually antagonistic selection acting on the indel polymorphism.

Because we genotyped wild-caught flies, we were also able to compare genotype and allele
frequencies and test for departures from Hardy–Weinberg equilibrium (HWE), which might be
indicative of overdominant selection (heterozygote advantage). In all cases, the genotype frequencies
were consistent with the allele frequencies and there were no significant differences from the
expectations of HWE, as shown in Table 2, suggesting that overdominant selection does not play a role
in maintaining the indel polymorphism.

Table 1. Frequency of the MtnA 3’ UTR deletion across seasons and sexes.

Collection Nfemale Freqfemale (95% CI) Nmale Freqmale (95% CI)

June 2016 224 0.906 (0.860–0.941) 164 0.902 (0.846–0.943)
Sept 2016 192 0.927 (0.881–0.960) 94 0.894 (0.813–0.948)
June 2017 144 0.903 (0.842–0.946) 174 0.902 (0.848–0.942)
Sept 2017 176 0.909 (0.857–0.947) 60 0.933 (0.838–0.982)

N = number of chromosomes; CI = confidence interval. MtnA: Metallothionein A; UTR: untranslated region.

Table 2. Genotype counts of the MtnA 3’ UTR indel polymorphism.

Collection Del/Del Del/Non Non/Non PHWE

June 2016 160 31 3 0.731
Sept 2016 120 22 1 0.999
June 2017 131 25 3 0.653
Sept 2017 99 18 1 0.999

All 510 96 8 0.338

Del = deletion allele; Non = non-deletion allele; PHWE = P-value of a chi-squared test (observed vs. expected) of
Hardy–Weinberg equilibrium.
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3.2. The Deletion Leads to Higher MtnA Expression in a Common, European Background

To test the effect of the 3’ UTR deletion on MtnA expression in a common genetic background,
we generated nearly-isogenic lines homozygous for the deletion or non-deletion alleles within the
genetic backgrounds of two isofemale lines from Munich, Germany (designated as M9 and M12).
Expression was measured in male heads by quantitative reverse transcription PCR (qRT-PCR). Within
each of these backgrounds, the deletion lines had significantly higher MtnA expression than the
non-deletion lines, as shown in Figure 2. The difference in expression was greater in the M12
background (1.85-fold) than in the M9 background (1.20-fold), which might be attributable to variation
at other loci segregating between these two backgrounds. However, we did not detect a significant
interaction between background and genotype in our analysis (two-factor ANOVA, P = 0.29).

Figure 2. Effect of the indel polymorphism on MtnA expression in nearly-isogenic lines within two
genetic backgrounds (M12 and M9) derived from Munich, Germany. Expression was measured in male
heads by qRT-PCR using the ribosomal protein gene RpL32 as a reference. Differences in expression
were tested with a two-factor ANOVA. **P < 0.01, ***P < 0.005.

3.3. Association of the Deletion with MtnA Expression and Oxidative Stress Tolerance in a North American
Population

In order to determine the effect of the indel polymorphism on MtnA expression in a North
American population, we used genomic and transcriptomic data from the DGRP [37,38]. By re-mapping
genomic sequence reads, we were able to determine the MtnA indel genotype of 161 DGRP lines
for which expression data from whole males and females were available [44]. Of these 161 lines,
112 contained the MtnA 3’ UTR deletion. In both sexes, MtnA expression was significantly higher in
the deletion lines than in the non-deletion lines, as shown in Figure 3A. The deletion was associated
with a 1.33-fold increase in MtnA expression in females, and a 1.40-fold increase in males. In females,
the indel polymorphism accounted for 7.96% of the overall MtnA expression variance, while in males
it accounted for 22.75%. On average, MtnA expression was 1.67-fold higher in males than in females,
which is consistent with previous reports of this gene having male-biased expression [48].

It was previously shown that the MtnA 3’ UTR deletion was associated with increased oxidative
stress tolerance in isofemale lines from Europe and Asia [18]. To test for an association in the DGRP
lines, we used data from Weber et al. [45], who measured survival on two oxidative stress-inducing
agents (paraquat and MSB). MtnA expression was significantly correlated with survival on MSB,
as shown in Figure 3B, but not paraquat, as shown in Figure 3C. Additionally, the presence of the
deletion was significantly associated with longer survival on MSB, as shown in Figure 3D, but not
paraquat, as shown in Figure 3E. Thus, increased MtnA expression and the presence of the 3’ UTR
deletion, which is associated with increased MtnA expression, are both associated with increased
tolerance to oxidative stress induced by MSB but not paraquat. Consistent with the male-biased
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expression of MtnA, sex had a highly significant effect on survival on MSB, with males surviving
longer than females, as shown in Figure 3D.

Figure 3. MtnA expression and oxidative stress tolerance in Drosophila Genetic Reference Panel (DGRP)
lines. (A) MtnA expression in deletion (Del) and non-deletion (Non) lines in females (F) and males (M).
Significance was assessed using a t-test. ***P < 0.005. Expression is reported as the log2 relative signal
intensity from Affymetrix microarrays. (B,C). Correlation between MtnA expression and survival on
menadione sodium bisulfite (MSB) (panel B) and paraquat (panel C). Significance was assessed with
Spearman’s rank correlation. Female data points are shown in dark blue and male data points in light
blue. A linear regression line is shown in black. (D,E). Survival of DGRP lines on MSB (panel D) and
paraquat (panel E). Significance was assessed using a Cox proportional hazards model with sex, MtnA
indel variant, and isofemale line as factors. (A,D,E). Female deletion lines are shown in dark blue, male
deletion lines in light blue, female non-deletion lines in dark green, and male non-deletion lines in
light green.

3.4. The Deletion is Rare in Sub-Saharan Africa and is a Result of European Admixture

Catalán et al. [18] genotyped 10 isofemale lines collected in Siavonga, Zambia and found the
MtnA 3’ UTR deletion to be present in a heterozygous state in one line, leading to a frequency estimate
of 0.05 (95% CI = 0.01–0.24) and suggesting that the deletion may reflect standing variation present in
the ancestral population of D. melanogaster. To further investigate this possibility, we determined the
MtnA genotype of 192 isofemale lines from the Siavonga population using publicly available genome
sequence data generated from haploid embryos [32,33]. The deletion was found to be present in five
of the genomes, leading to a frequency estimate of 0.026 (95% CI = 0.009–0.060). However, three of
the five deletion lines were previously flagged by Lack et al. [32] as showing evidence of non-African
admixture within a region of chromosome arm 3R that includes the MtnA locus. Thus, it is possible that
the presence of the deletion in sub-Saharan Africa is the result of recent admixture and not ancestral
variation. To test this, we used SNP data from the MtnA region to determine the relationship among
the Zambian lines with and without the deletion, as well as with a sample of lines from Europe (Lyon,
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France). Our results indicated that the Zambian lines with the deletion clustered together with the
French lines, while all the Siavonga lines lacking the deletion clustered together in a separate, divergent
clade, as shown in Figure 4. Thus, the presence of the deletion in the Zambian population appears to
be the result of recent non-African admixture. Consistent with this interpretation, the deletion was not
found in a population from a wild African environment (Kafue National Park, Zambia), although only
17 genomes are currently available from this population [34].

Figure 4. Neighbor-joining tree of the 15 kb region surrounding the MtnA gene for 20 Zambian and
20 French sequences. The Zambian sequences containing the MtnA 3’ UTR deletion (blue) cluster
together with the French sequences (black) with 100% bootstrap support, which is consistent with
recent admixture in this region of the genome. The tree was rooted using D. sechellia and D. simulans
as outgroups.

4. Discussion

By genotyping wild-caught D. melanogaster from a European population and re-analyzing publicly
available genomic data from an African and a North American population, we were able to gain
a better functional and population genetic understanding of the MtnA 3’ UTR indel polymorphism.
Consistent with a previous study [18], we find that the deletion allele is present at high frequency
in cosmopolitan populations, but low frequency within sub-Saharan Africa. In the few sub-Saharan
African lines that had the deletion, it was embedded within a genomic region sharing high sequence
similarity with European lines, as shown in Figure 4. Thus, the deletion is unlikely to represent
standing genetic variation in the ancestral population, but instead a new mutation that increased
in frequency following the species’ out-of-Africa migration. In a German population, the deletion
appears to have remained at a remarkably stable frequency of approximately 90% for over a decade.
However, despite its stable frequency and clinal distribution across continents, we found no evidence
for balancing selection acting on the indel polymorphism in this population. The deletion did not
vary significantly in frequency across years or seasons, or between the sexes, as shown in Table 1.
Thus, there was no evidence for seasonally fluctuating or sexually antagonistic selection acting on
this polymorphism. Similarly, we did not detect an excess of heterozygotes, as would be expected for
overdominant selection, as shown in Table 2.

The above findings suggest that the MtnA indel polymorphism has been subjected to a more
complex form of selection. One possibility is that the polymorphism affects a fitness component
other than viability, which could not be detected by measuring allele frequencies in adult flies, even
with large sample sizes. Another possibility is that the deletion is consistently favored by positive
selection in the German population but remains polymorphic in this population due to repeated
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migration of flies from more tropical populations where the deletion is at intermediate frequency
(45–65%) [18] and may be under balancing selection. A third possibility is that MtnA is just one of many
loci involved in polygenic adaptation. In a scenario where multiple genetic variants of small effect
influence a selected trait, alleles may rise in frequency rapidly, but then level off at an intermediate
frequency without going to fixation in the population [49]. Our functional analyses are consistent with
this interpretation: the two traits we investigated, gene expression and oxidative stress tolerance, both
showed evidence of being influenced by variation at multiple loci. In terms of MtnA gene expression,
the use of nearly-isogenic lines allowed us to determine the effect of the indel polymorphism while
minimizing the contribution of other variants across the genome. This indicated that the magnitude
of the effect of the indel polymorphism differed depending on the genomic background, as shown
in Figure 2. Furthermore, among the DGRP lines, the indel explained only 8–23% of the observed
MtnA expression variation. Similarly, oxidative stress tolerance is influenced by many loci: 154
SNP loci showed a significant association with survival on MSB in a previous study of the DGRP
lines [45]. The MtnA gene was not among the candidates influencing MSB tolerance in the previous
study. However, that study focused only on SNP markers and, thus, did not consider the MtnA
indel polymorphism, which does not show strong linkage to SNPs in this region of the genome [18].
The previous study also found susceptibility to oxidative stress to be sexually dimorphic, with many
variants displaying sexually antagonistic effects [45]. While we found evidence that the magnitude
of the effect of the indel polymorphism on both MtnA expression and oxidative stress tolerance was
sex-dependent, as shown in Figure 3, the response was in the same direction in males and females,
suggesting that the polymorphism has a concordant effect on fitness in both sexes. This is in agreement
with there being no evidence for sexual antagonism influencing the frequency of the polymorphism in
adult flies, as shown in Table 1.

Catalán et al. [18] found that increased MtnA expression, as well as the presence of the MtnA 3’
UTR deletion, was associated with increased survival in the presence of hydrogen peroxide, a reactive
oxygen species (ROS). While ROS are natural products of metabolism and serve important functions in
the cell, high levels, which can be introduced by environmental factors such as UV light or toxins, lead
to oxidative stress. Organisms cope with oxidative stress through the induction of antioxidant or free
radical scavenger genes, as well as other mechanisms such as apoptosis and cell cycle arrest [50,51].
Thus, it is unsurprising that previous studies found that the transcriptional response to oxidative
stress depends on the stress-inducing agent [50,52,53] and that genes associated with oxidative stress
tolerance are typically specific to the agent of induction [45]. This is thought to be a product of the
different mechanisms of action these agents employ that result in toxicity [45]. Our results provide
insight into the mechanism through which MtnA expression improves oxidative stress tolerance.
We found that increased MtnA expression, as well as the MtnA deletion allele, is associated with
increased tolerance to MSB, but not paraquat, as shown in Figure 3. While paraquat toxicity is primarily
driven by redox cycling, MSB toxicity primarily occurs through other reactions with biomolecules
unrelated to superoxide formation [54]. It has been suggested that metallothioneins may play a role as
scavengers of free radicals in the oxidative stress response [55], which is in line with our findings.
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