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Abstract

Recent population-based1–4 and clinical studies5 have identified a range of factors associated with 

human gut microbiome variation. Murine quantitative trait loci6, human twin studies7 and 

microbiome genome-wide association studies (mGWAS)1,3,8–12 have provided evidence for 

genetic contributions to microbiome composition. Despite this, there is still poor overlap in genetic 

association across human studies. Using appropriate taxon-specific models along with support 

from independent cohorts, we show association between human host genotype and gut 

microbiome variation. We also suggest that interpretation of applied analyses using genetic 
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associations is complicated by the likely overlap between genetic contributions and heritable 

components of host environment. Using fecal derived 16S rRNA gene sequences and host 

genotype data from the Flemish Gut Flora Project (FGFP, n=2223) and two German cohorts 

(FoCus, n=950, PopGen n=717), we identify genetic associations involving multiple microbial 

traits (MTs). Two of these associations achieved a study-level p-value threshold of 1.57×10−10; an 

association between Ruminococcus and rs150018970 near RAPGEF1 on chromosome 9, and 

between Coprococcus and rs561177583 within LINC01787 on chromosome 1. Exploratory 

analysis was undertaken using 11 other genome-wide associations with strong evidence for 

association (p-value < 2.5×10−08) and a previously reported signal of association between 

rs4988235 (MCM6/LCT) and Bifidobacterium. Across these 14 SNPs there was evidence of signal 

overlap with other GWAS including those for age at menarche and cardiometabolic traits. 

Mendelian randomization (MR) analysis was able to estimate associations between MTs and 

disease (including Bifidobacterium and body composition), however in the absence of clear 

microbiome driven effects, caution is needed in interpretation. Overall, this work marks a growing 

catalog of genetic associations which will provide insight into the contribution of host genotype to 

gut microbiome. Despite this, the uncertain origin of association signals will likely complicate 

future work looking to dissect function or use associations for causal inference analysis.

Human host-microbiome mGWAS are still in their infancy and feature a paucity of overlap 

for even the most compelling signals across studies13. This is an observation influenced by 

environmental variables dominating microbial trait variation1 and the complications of 

variation in sample collection, storage conditions, DNA extraction method, PCR primers, 

and amplicon versus shotgun sequencing14. While recent advances are improving resolution 

and reliability of microbiome profiles15, inter-study analytical methodologies analyzing 

those profiles vary extensively (Table S1). Microbiota profiles, being the product of 

ecological sampling, are often zero-inflated with varying distributions across taxa. 

Consequently, variation in modeling, normalization procedures and choices of diversity 

indicators can greatly influence results across studies.

In an attempt to identify persistent signals of association between host genetic variation and 

human gut microbiome, we harmonized the analytical pipeline across three independent 

studies: an expanded release of the FGFP cohort (Flanders, Belgium; n=2,223) and two 

German cohorts (Food-Chain Plus11 (FoCus; n=950) and the PopGen16 cohort (n=717)). Of 

the initial 499 derived taxon abundances in FGFP (Table S2), 139, across all phylogenetic 

levels, met our analysis criteria and 92 were retained after identifying independent 

phenotypes (Methods; Fig. 1). Microbial taxa were described as relative abundance (AB) 

profiles and those with zero-inflated abundance distributions (67% or 62 of the 92 retained 

taxa) were described using a hurdle model11. That is, for taxa where more than 5% of 

individuals in FGFP had an abundance measurement of zero, we generated a presence/

absence (P/A) phenotype and a zero-truncated (all zero values set as missing) abundance 

(AB) phenotype. We note that absence does not indicate non-existence, but that a taxon is 

not observed under the current sequencing depth. A comparison of data preparation methods 

led to the choices above, as alternatives used previously1,7,11,12 failed to consistently account 

for skewness and categorical distributions across all outcomes in a GWAS context 

(Supplementary Fig. 1 and 2 and Supplementary Information: Distribution /model choice). 
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In addition, we computed the total taxa richness present within each sample (α-diversity), 

compositional variation between samples (β-diversity) and the different community 

composition types (enterotypes). A total of 95 continuous (92 AB + three α-diversity), 62 

binary (P/A), one multinomial (enterotype), and one multivariate (β-diversity) traits were 

carried forward to further analysis as microbial traits (MTs).

We first estimated the proportion of gut microbiota variation explained by genetic variation 

among individuals by estimating narrow sense genetic heritability (h2) for each AB, P/A, 

and α-diversity trait in FGFP (Methods). Heritability ranged from 0 to 0.47, with 13 of the 

157 continuous and binary MTs tested exhibiting non-zero estimates (likelihood ratio test p-

value < 0.05; Fig. 1; Table S3). Eight of the 13 MTs noted above are from the phylum 

Firmicutes, five of which are from the family Lachnospiraceae and two from 

Ruminococcaceae. The most heritable MT observed was genus Hespellia (h2 = 0.47, se = 

0.18) of family Lachnospiraceae, class Clostridia. Among the highly prevalent genera 

(present in >98.5% of samples), the most heritable were Dorea (h2 = 0.25, se = 0.14) and 

Anaerostipes (mean h2 = 0.23, se = 0.13), key short-chain fatty acids-producing and health-

associated genera17. Heritability estimates were also generated with log and box-cox 

transformed data to allow for comparison with previous work (Table S3). Heritability 

estimates derived from FGFP using other data transformations had Spearman’s rho 

correlation coefficients of 0.95 (rank normal transformation (RNT) vs log2) and 0.53 (RNT 

vs box-cox; Extended Data Fig. 1a and 1b). Inter-study correlation coefficients of 0.28 and 

0.23 were observed when comparing heritability estimates derived with similar data 

transformations7,9 (Extended Data Fig. 1c and 1d). The low values are likely driven by poor 

power when estimating heritability across studies, though with temporal, local and 

individual environments influencing MT variation, heritability estimates may be inflated or 

deflated. Larger and/or environmentally controlled designs will be required to increase the 

power and accuracy of MT heritability estimates.

Associations between genetic variants and specific MTs were identified by fitting linear (AB 

+ α-diversity; Fig. 2a), logistic (P/A; Fig. 2b), multinomial (enterotype), and multivariate (β-

diversity) regressions assuming an additive genetic model and accounting for genotype 

uncertainty (Methods). In addition, human autosomal copy number variations (CNVs) were 

tested for associations to MTs in the FGFP data set, but none yielded strong evidence of 

association (Table S4; Methods). All single nucleotide variants at an inclusive association 

Score test p-value threshold of <1×10-05 in the FGFP dataset (n=23,735) were taken forward 

into a targeted meta-analysis including two independent German cohorts. Three genera were 

not present in the German cohorts, a likely product of using a different hypervariable region 

of the 16S rRNA locus, limiting our meta-analysis to 153 MTs and 23,067 variants to 

analyze.

Two variants showed evidence of association that exceeded a study-wide meta-analysis p-

value threshold of 1.57×10−10 (Table 1, Fig. 2c, Table S5, Extended Data Fig. 2). The 

strongest of these was between Ruminococcus (P/A) and rs150018970, an intergenic variant 

33 kilo-bases upstream the RAPGEF1 gene on chromosome 9. RAPGEF1 encodes a protein 

factor that transduces signals from G-protein-coupled receptors (GPCRs), which are likely 

involved in the regulation of the physiology of the gastrointestinal tract18. GPCRs detect 
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metabolites derived from commensal bacteria and have been proposed to be key mediators 

of host–microbial interactions18 Relative to homozygous reference allele individuals, 

heterozygous individuals were less likely to have Ruminococcus (OR=0.111, 95% 

CI=0.062-0.197, meta-analysis p-value=6.68×10-14), core members of the gut microbiota. 

The second association was Coprococcus (P/A) and rs561177583 on chromosome 1, sitting 

in the intron of the non-protein coding RNA LINC01787; with individuals heterozygous for 

the effect allele also being less likely to have Coprococcus in their sample (OR=0.161, 95% 

CI =0.09-0.28, meta-analysis p-value=1.10×10-10). Despite the strength of their association, 

heterogeneity between the studies for these effects was high and further investigation is 

required to confirm and characterize these signals (Extended Data Fig. 2).

Following stringent filters for lead association signals, we also examined the properties of 

results with strong evidence for reliability. Satisfying a GWAS evidence threshold meta-

analysis p-value < 2.5×10−08, 11 associations showed low heterogeneity in meta-analysis 

(Table 1, Fig. 2c, Table S5, Extended Data Fig. 2). These contained the butyrate-producing 

genus Butyricicoccus associated with an eQTL (in multiple tissues including brain, data 

from GTEx portal) for SLC5A11 on chromosome 16 (rs72770483, meta-analysis p-

value=5.54×10-10; Fig. 2f)19. SLC5A11 encodes a sodium-dependent myo-inositol/glucose 

cotransporter20, highly expressed in the brain and intestine, where it participates in appetite 

control and glycemic regulation21,22. Observations here suggest a role for Butyricicoccus in 

the formation of glycemic traits and is consistent with studies suggesting that butyrate-

producing bacteria are associated with blood glucose regulation23 and insulin sensitivity in 

mice24. Separately, P/A of Veillonella was associated with rs117338748 (meta-analysis p-

value=2.42×10-08; Fig. 2e) an eQTL for LIPC (in multiple tissues including thyroid, data 

from GTEx portal), which encodes the hepatic lipase enzyme involved in regulation of low-

density lipoproteins (LDLs) and the transport of high-density lipoproteins (HDLs)19. 

Bacteria of the genus Veillonella are typical lactate fermenters that produce acetate, a 

substrate for lipogensis25, and propionate, which inhibits lipid synthesis26. Using data from 

FGFP (Table S6) to test for association with LDL levels (Methods and Supplementary 

Information), we observed that presence of Veillonella was observationally associated with a 

decrease in LDL-cholesterol by 5.39mg/dL after accounting for sex, age and the top 10 

genetic principle components (F-test, p-value=5.99×10-04).

We assessed overlap with previously reported mGWAS for (1) equivalent SNP-to-MT 

associations and (2) the strongest association regardless of the MT in the FGFP mGWAS 

(Tables S7–S9). We found a strong association overlapping with two genetic variants 

reported previously7. Located on chromosome two, they are rs4988235 (MCM6/LCT) and 

rs6730157 (RAB3GAP1), 701 kilo-bases apart. Both variants are associated with 

Bifidobacterium abundance and located within a block of linkage disequilibrium (CEPH 

European : CEU r2 = 0.81)27. The association between rs4988235 and Bifidobacterium 
abundance is the only previously replicated mGWAS signal1,7,8,10–12. This association does 

not meet our study-wide or genome-wide threshold (meta-analysis β=-0.128, se=0.026, p-

value=1.34×10-06), but as the only association seen in multiple studies, it remains the most 

reliable host genetic contribution to MT7. To highlight regions that potentially contribute to 

multiple MTs, we additionally queried if previously reported variants (n = 5221,7,8,10–12) 

gave evidence of association with any MT. Of all results residing outside the LCT region, 
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five SNP-MT associations have p-values that survive Bonferroni correction in this targeted 

analysis (Score test p-value < 0.05/522; Supplementary Information)1.

We searched PhenoScanner V228 for previously identified associations across variants with 

strong evidence for reliability (Table 1) and for rs4988235 at the MCM6 locus (Tables S10 

and S11). Ten of those 14 variants have associations with other phenotypes at a p-value < 

1×10-5 (Bonferroni p-value = 0.05/5000 phenotypes in database). Two of those variants have 

associations with other phenotypic traits that surpassed a p-value threshold of 2.5×10-8. 

They are unclassified Firmicutes:rs11788336 associated with age at menarche (p-value = 

1.7×10-10) and Bifidobacterium:rs4988235 associated with total cholesterol (p-value 

=3.98×10-14), low density lipoprotein (p-value = 3.22×10-11), forced vital capacity 

(2.27×10-10), body fat percentage (1.10×10-9), and numerous other obesogenic traits. To 

expand this bioinformatics screen, we also identified gene expression and biological 

pathway enrichments for the 1,361 genes closest to sites with improved evidence of 

association in meta-analysis (+/- 250kb) using GENE2FUNC and integrated hypergeometric 

tests of the FUMA platform29 (Table S12). Gene expression enrichment (GTEx v7; 

Methods) was suggested for 30 tissues highlighted by brain (false discovery rate 

(FDR)=2.25×10-34), kidney (FDR=1.10×10-24), colon (FDR=4.42×10-15), stomach 

(FDR=7.62×10-14), and small intestine (FDR=2.44×10-05). Abundant enrichment was 

observed in the GWAS Catalog for 438 gene sets, including the top category obesity-related 

traits (FDR=1.12×10-31) and in addition, 137 Canonical Pathways showed evidence for 

enrichment (FDR < 0.05), Table S12).

Lastly, to explore the potential for associated microbiome variants to be used in causal 

inference methods30, we performed a series of analyses to examine the utility of signals in a 

causal analysis framework known as Mendelian randomization (MR). Eleven metabolic 

health, inflammatory and neurological traits were selected a priori for this analysis and 

variants with strong evidence for reliability (Table 1 and the replicated lactase persistence 

variant, rs4988235) where used as proxies for microbiome variation in two-sample, bi-

directional, MR analyses30 (Extended Data Fig. 3). Analyses were able to estimate 

relationships between 5 MTs and 7 outcomes (Table 2, Tables S13 and S14). Amongst other 

hypothesis generating results, the strongest evidence from this analysis suggests that a lower 

Bifidobacterium abundance increases waist circumference (β=0.149SD, se=0.0290, Wald 

test p-value=2.82×10-07) and body mass index (BMI) (β=0.124SD, se=0.027, Wald test p-

value=3.37×10-06) (Table 2, Table S13). However, other than analytical power and 

instrument strength, a complication of these analyses and potentially for all future MR 

analyses of this nature, is the likely impact of indirect or disease driven effects being 

upstream of microbiome variation. For example, each additional copy of the lactase 

persistent allele at rs4988235 is estimated to decrease Bifidobacterium abundance and as 

such, individuals liable to be lactase persistent have reduced Bifidobacterium abundance. 

This association could be the product of a direct effect of rs4988235 on Bifidobacterium 
abundance, however it could equally reflect a reverse effect where a host environment 

matching an ability to metabolize lactose alters microbiome profile. Consequently, using 

rs4988235 as a proxy marker for Bifidobacterium to generate estimates of causal effect(s) 

may be providing information about Bifidobacterium effects, but could equally be reporting 

on the impact of variation in dietary habits. Indeed, the prominence of host environmental 

Hughes et al. Page 5

Nat Microbiol. Author manuscript; available in PMC 2021 March 29.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



effects in host mGWAS (exemplified by the abundant overlap with GWAS catalog traits - 

Table S11 and S12), may be a common theme observed in genetic signals and ultimately the 

most parsimonious explanation for apparently causal effects in naïve MR analysis.

Using a targeted meta-analysis framework, including the largest cross-sectional study with 

host genetics and microbiome data available, combined with distinct modeling of different 

MTs, we have detected evidence for host genetic associations to the gut microbiome. While 

environmental effects are likely to preside over host genetics as source of variation, this 

work illustrates that, even in the presence of unavoidable study-based heterogeneity, 

standardized and appropriate analytical protocols allow signal detection. We note that this 

study is limited to genus-level microbiome traits and that host-microbial interaction signals 

might be more pertinent at species or strain levels, but strain-level GWAS require much 

larger population sizes and metagenomic sequencing. Additionally, we have shown that 

associated loci can be deployed in frameworks designed to explore function and causality in 

otherwise observational associations between MTs and human phenotypes. To that end, 

future large-scale meta-analyses will likely advance this type of endeavor by providing 

larger catalogues of genetic variants associated with microbiome, however this approach is 

unlikely to be straightforward. It appears likely that signals captured in this type of mGWAS 

reflect a microbial footprint of disease or behavior and this complexity will need to be 

accounted for in future analyses aiming to use human genetics to target causal effects of the 

gut microbiome31. Despite this, with a further expanded catalog of reliable loci contributing 

to microbiome variation, there will be greater insight into the contribution of host genotype 

to gut microbiome variation and better understanding of the relationship between gut 

microbiota, host molecular biology and disease.

Methods

Study recruitment and sample collection

Individuals from the Flanders region of Belgium were recruited into the Flemish Gut Flora 

Project (FGFP) through public announcements in print and social media through the FGFP 

website (www.vib.be/darmflora), from January 2013 onwards. Volunteers provided informed 

consent by mail and FGFP procedures were approved by the medical ethics committee of the 

University of Brussels/Brussels University Hospital (approval 143201215505, 5/12/2012). A 

declaration concerning the FGFP privacy policy was submitted to the Belgian Commission 

for the Protection of Privacy. Additional information on the age, sex, height, weight BMI, 

waist hip ratio, and low-density lipoprotein distributions for FGFP cohort samples are 

provided in Supplementary Information (Table S6, Supplementary Fig. 3).

FGFP samples and data was collected as in Falony et al 4. In short, stool samples were 

collected between June 2013 and April 2016 by mail. Sampling kits were sent to volunteers’ 

home addresses and upon collection samples were stored at −18°C locally, cooled during 

delivery and again stored at −18°C upon arrival at a collection point until long-term storage 

was possible at −80°C at the research facility. A medical questionnaire was completed by 

each volunteers’ general practitioner (GP). The GPs also took new measurements of 

volunteers’ height, weight, hip and waist circumference, in addition to blood pressure and an 

eight-hour fasted blood sample.
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Fecal DNA was extracted from the frozen fecal samples using the PowerMicrobiome RNA 

Isolation Kit (MOBIO Laboratories Inc.) following manufacturer’s instructions, with the 

addition of a heating step (10min at 90°C) after vortexing/bead beating to increase DNA 

yield, and with the exclusion of DNA removal steps (steps 12 to 16 in the protocol). Further 

information on recruitment, sampling and DNA extraction can be found in Falony et al 4.

Sequencing and microbiome data processing

For 2482 FGFP individuals, the V4 region of the 16S rRNA gene was amplified using the 

515F/806R primer pair (GTGYCAGCMGCCGCGGTAA and 

GGACTACNVGGGTWTCTAAT, respectively), modified to contain a barcode sequence 

between each primer and the Illumina adaptor sequences to produce dual-barcoded 

libraries32. Size selection was performed using Agencourt AMPure to remove fragments 

below 200 bases. Sequencing was carried out on the Illumina HiSeq platform at the VIB 

Nucleomics core laboratory (Leuven, Belgium) with 500 cycles (sequencing kit HiSeq-

Rapid SBS kit, version 2), producing 2x 250bp paired-end sequencing reads. After de-

multiplexing with sdm as part of the LotuS pipeline33 without allowing for mismatches, 

fastq sequences were further analyzed per sample using DADA2 pipeline (v. 1.6)15. In brief, 

after inspecting quality, sequences were trimmed to remove the primers and the first 10 

bases after the primer, keeping only 200 bases and 130 for the R1 and R2 files, respectively. 

After merging paired sequences and removing chimeras, compositional matrices for each 

taxonomical level were carried out using the Ribosomal Database Project (RDP) training set 

‘rdp_train_set_16’. Each sample was randomly down-sampled, also known as a rarefaction 

step, reducing the microbiome to a size of 10,000 reads. Classifications with low confidence 

at the genus level (<0.8) were organized in an arbitrary taxon of “unclassified_group”.

Microbiome trait preparation

The DADA2 pipeline yielded count data for 499 taxa across five levels of the microbiota 

phylogeny from phylum to genus (Extended Data Fig. 4a and 4b). Quality control on an 

individual level was performed by constructing an initial multi-dimensional scaling plot 

using Bray Curtis distances derived from the vegdist() function of the vegan package, and 

the argument method=”bray”, followed by a Kruskal’s nMDS using the function isoMDS() 

from the MASS package using rarefaction data from genera level counts. Two individual 

samples were identified as outliers in their genus-level microbiome profiles in this analysis 

(Supplementary Fig. 4), with the outlier cut-off set at greater than or less than five standard 

deviations (SDs) from the population mean of both nMDS axes. These two individuals were 

removed from all subsequent analysis including all association analyses.

α- and β-diversity statistics were estimated using the rarefaction data for all 288 genera level 

taxa counts. The α-diversity statistics used are (1) the number of genera observed, defined as 

the number of non-zero counts observed across all genus-level taxa, (2) Shannon diversity as 

calculated with the function diversity() in the vegan package, using the arguments index = 

“shannon”, MARGIN = 1, base = exp(1), and finally (3) Chao diversity estimated using the 

estimateR() function in the vegan package. β-diversity was estimated using a two-axis non-

metric multidimensional scaling (nMDS) analysis using the function metaMDS() from the 

vegan package and the arguments, distance = “bray”, k=2, try=20, trymax=50, and 
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trace=FALSE. The stress of the nMDS was 0.209 (Extended Data Fig. 4c). Enterotyping (or 

community typing) based on Dirichlet multinomial mixtures (DMM) as previously 

described34 was performed using the DirichletMultinomial package in R. This analysis was 

performed on the FGFP-genus-level relative abundance matrix rarefied to 10,000 reads 

(Extended Data Fig. 4c).

For association analysis, we retained any taxa that met two criteria - (1) make up ≥5% of the 

reads for at least 1 individual and (2) have ≥15% of individuals with non-zero data 

(Extended Data Fig. 5a; Tables S15 and S16). In total, 139 taxa across all phylogenetic 

levels met these criteria. However, given that lower phylogenetic level count data can be 

exactly, or very close to, the same as count data at higher phylogenetic levels, we wanted to 

eliminate any statistical redundancies in the mGWAS. As such, we estimated Pearson 

correlation coefficients among all taxa, and any taxa pair with a correlation coefficient 

greater than 0.985 had the higher taxon level removed from association analyses. Seventy-

three of the taxa exhibited such a correlation with at least one other taxa (Extended Data 

Figs. 5b and 5c). After removing higher-level taxa, 92 taxa remained for association 

analyses. The FGFP data set was used to identify these 92 taxa.

Given the ecological, observational count nature of 16S data, many individuals contain zero 

counts for some taxa. As such, a common feature of this data is zero-inflation, which can 

prove problematic for data transformation and linear modeling (Supplementary Fig. 1 and 

2). To account for this possibility, we identified those taxa that should go through a two-step 

hurdle analysis that includes a presence/absence (P/A) association analysis and a zero-

truncated abundance (AB) mGWAS. To do so, the proportion of individuals that were zero 

(absent) for each taxon was estimated, and those with greater than 5% zeros were pushed 

through the hurdle analysis. First, all non-zero counts were turned into 1’s for the binary P/A 

mGWAS and second, all zero counts were turned into NAs for the zero-truncated AB 

mGWAS. Sixty-two of the 92 retained taxa fit these criteria and were processed in this 

manner. The other 30 MTs were treated as simple abundance phenotypes and also denoted 

as AB. We note that the outcome of this procedure of course is a variety of different sample 

sizes in both the zero-truncated abundance phenotypes and between the number of absent 

individuals in P/A traits among taxa. This is an outcome that will introduce variability in 

power among the mGWAS performed here. Again, we note that only the FGFP data set was 

used to identify model type for each taxon.

In preparation for the association analysis, each abundance phenotype was rank normal 

transformed using the rntransform() function from the GenABEL35 package and fit to a 

multivariate linear model, using the function lm() from the stats package, with the following 

covariates: the extraction type (drill or cut), the extraction year, the aliquot year (for 16S 

rRNA sequencing), the person performing the aliquot, the library preparation plate, genotype 

derived principle components 1-10, genotype predicted sex, and age. Residuals from this 

model were extracted using the function residuals() from the stats package and used in 

univariate linear modeling in the association analysis with genotypes, details below. Shapiro-

Wilk W statistics for the raw and residualized data distributions can be found in Tables S17–

S18. Analysis and preparation of the microbial trait data was carried out in R version 3.4.1 

“Single Candle”36.
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Observational analysis

To identify biological phenotypes that may be influenced by gut microbiome variation in the 

FGFP data set (generalized) linear models, as described above, where fit with age, sex, and 

the top ten principle components as covariates along with each of the microbial traits (MT) 

analysed in the GWAS (results not included, but available on request). Human phenotypes 

include blood lipids, glycemic traits, anthropomorphic traits, diet and Bristol stool score. To 

identify laboratory batch variables that may have influenced 16S microbiome variation, we 

set all available variables as dependent variables in univariate analysis, with each MT set as 

the response variable to identify those that should be included as covariates in the GWAS. 

Batch variables that exhibited independent effects on at least one MT are the extraction type 

(drill or cut), the extraction year, the aliquot year (for 16S rRNA sequencing), the person 

performing the aliquot, and the library preparation plate. Further information and results 

from these analyses can be found in Supplementary Information (Supplementary Fig. 5).

Genotyping

A total of 2646 FGFP individuals were processed on two different arrays - the Human Core 

Exome v1.0 (N = 576 samples) and the Human Core Exome v1.1 (N = 2112 samples), 

which included repeat measurements. Allele calling was performed using GenomeStudio 

v2.0.4 following manufacturers default recommendations. While running GenomeStudio 

Log R Ratio (LRR) and B Allele Frequency (BAF) statistics were also extracted for copy 

number variant (CNV) calling with PennCNV37. Unmapped and duplicate positions were 

removed, and the two batches were merged into a single data set resulting in 545,535 

overlapping markers.

Variant quality control (QC) steps included the removal of unmapped variants (n = 777), 

duplicated sites (n = 6899), variants with >5% missingness (n = 3445), those with Hardy-

Weinberg equilibrium deviations p-values < 1×10-05 - after accounting for relatedness (n = 

404), those with ambiguous alleles (n = 12,095), and those that are tri-allelic or allele flip 

errors (n = 1026). A total of 509,886 variants remained after QC. Sample QC included a 

cross check between genetically predicted sex and available sex information (117 

mismatches), removal of array failed samples (n = 5), samples with >5% variant missingness 

(n = 53), samples with heterozygosity ± three SDs from the population mean estimate (n = 

33), the removal of cryptically related (relatedness > 0.025) samples (n = 262) using the 

function in rel-cutoff in plink 1.938, and those with genotypic discordance among replicates 

(n = 8). Data was then merged with that from phase three of the 1000 Genomes Project to 

identify those individuals exhibiting ancestry components from populations outside of 

Western Europe (n = 34), using principal component analysis (PCA, Supplementary Fig. 6). 

After QC 2293 individuals remained (Supplementary Fig. 7), 2257 of which were retained 

given the availability of microbiome data.

FGFP genotype data was phased using SHAPEIT339 and imputed with IMPUTE240 using 

UK10K and all 1000 Genome Project phase 3 samples as the reference panel41. Following 

imputation the 39,168,681 SNPs were filtered to retain only those sites with a minor allele 

frequency greater than or equal to 1% and with an imputation quality score (INFO) greater 

than or equal to 0.3, as estimated with qctool v2.0 -snp-stats (www.well.ox.ac.uk/~gav/
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qctool). In total 7,711,310 SNPs were retained for the FGFP mGWAS. A flowchart of this 

genotyping quality control steps is available in Extended Data Fig. 6a.

To acquire insertion deletion variants, the data was also phased and imputed to Genome of 

Netherlands reference panel using Impute2 v2.3.042. All indels were isolated from this 

imputed data set and run in addition to the imputation data set from above.

Copy number variants (CNVs) were called with PennCNV v1.0.437 using the perl script 

detect_cnv.pl. Cleaning was performed with the perl script clean_cnv.pl, and filtered with the 

script filter_cnv.pl using the flags --numsnp 5 --length 250 -qclrrsd 0.35 -qcnumcnv 716. 

Unique CNVs were defined by unique base pair start and stop locations. In total 35,020 

unique CNVs were identified across the FGFP sample; 949 CNVs were shared across 1% or 

more individuals. Global CNV burden was estimated for each individual as the number of 

CNVs that do not equal the copy number count of 2. Insertions (>2) and deletions (<2) were 

treated the same. Regional CNV burden was calculated in sliding windows of 200 kilo-bases 

and estimated following the same rules as for global burden estimation.

Heritability

Chip-based heritability was estimated for each microbiome presence/absence (62) 

abundance (92) and α-diversity metric (3) phenotype used in the association analysis, using 

the GCTA-GREML restricted maximum likelihood (REML) method, and a single genetic 

relationship matrix (GRM) as implemented in GCTA version 1.91.1beta43. The GREML 

power calculator was used to estimate the power to detect genetic covariation in the FGFP 

data set (Extended Data Fig. 7)44. For the abundance phenotypes, the residualized data used 

in the association analyses were used in the estimation of heritability. For binary phenotypes, 

the same covariates, mentioned above, were fit to the trait by GCTA. To produce the genetic 

relationship matrix (GRM) for running GCTA, we first identified all genotypes with an info 

(imputation quality) score greater than or equal to 0.9, a minor allele frequency greater than 

0.05, and not deviating from Hardy-Weinberg equilibrium. Genotype probability score data 

was converted to hard call plink format data using qctools. SNP variation was linkage 

disequilibrium pruned using plink2 and the flag --indep-pairwise 50 5 0.45. Finally, the 

GRM was constructed using GCTA and the flags --grm-cutoff 0.025 --make-grm. In 

addition, for a more direct comparison with previously published studies7, we also 

performed box-cox transformations of the abundance phenotypes and regressed out our 

covariates.

Primary FGFP association analysis

Following genotype and microbiome QC, 2257 individuals remained, and 2223 remained 

after accounting for data missingness among covariates. All microbiome α-diversity, 

abundance and presence/absence associations analyses were performed using 

snptest.2.5.045. All abundance traits were regressed on covariates (the aliquoting procedure, 

the extraction year, the aliquot year (for 16S rRNA sequencing), the person performing the 

aliquot, the library preparation plate, genotype derived principle components 1-10, genotype 

predicted sex, and age) and residuals were regressed on genotype probability data in a 

univariate fashion, assuming an additive genetic model and using the missing data likelihood 
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score test in snptest (snptest flags: -frequentist 1 -method score and -use_raw_phenotypes). 

Presence/absence mGWAS were performed using the same covariates as those described 

above for abundance traits in a multivariate analysis again using the same snptest settings. 

These primary analyses were performed as a first pass signal detection step in order to 

determine signals to take forward for meta-analysis and to confirm the ability of score 

analyses to effectively rank the expectation–maximization (em) method (Supplementary Fig. 

8). Association analyses for enterotype were run using a multinomial logistic regression for 

categorical traits as employed by snptest.2.5.4-beta3 and the flags -frequentist add -method 

newml and setting the -baseline_phenotype to “Bacteroides1”. Finally, associations for β-

diversity (a two axis MDS) were run using a bespoke R script and the function manova() 

from the stats package, in a multivariate analysis using the same covariates stated above and 

genotype dosages as derived by qctool v2.0. A flow chart of the mGWAS is provided in 

Extended Data Fig. 6b.

Data preparation in German cohorts

The FoCus11 and PopGen16 cohorts were genotyped using the Illumina Omni Express + 

Exome array and the Affymetrix Genome-Wide Human SNP Array 6.0, respectively. 

Genotyping QC and imputation in these two cohorts were performed following protocols 

defined here: https://github.com/alexa-kur/miQTL_cookbook#chapter-2-genotype-

imputation. SNPs where filtered as a MAF of 0.01 and an INFO score of 0.3, as was done in 

the FGFP cohort. Microbiome census data for the Kiel based cohorts, targeting the 16S V1-

V2 regions, was generated as described previously11. Data processing was performed using 

DADA215 modified for V1-V2 (https://github.com/mruehlemann/rep-cookbook/blob/master/

scripts/Seq_dada2_V12_Kiel.R) following the same standardized workflow described in the 

above Microbiome trait preparation section. α- and β-diversity metrics, enterotypes, and 

abundance measures for association analysis were calculated as previously indicated. Three 

genera, Escherichia Shigella, Hespellia, and Methanobrevibacter were not present in the 

FoCus or PopGen cohorts (Supplementary Fig. 9). As such, in all three instances, their P/A 

and zero-truncated AB MTs were not available for association and inclusion in the meta-

analysis. Association analyses were carried out as described below.

Meta-analysis

For the purposes of the meta-analysis, all outcomes were defined as described above in the 

“Primary FGFP association analysis” section, however, the expectation–maximization (em) 

method was used, rather than the score method, to account for genotype uncertainty and 

given the performance of “score” at low allele frequency and phenotype/trait group size 

(Supplementary Information).

The meta analyses were performed using the inverse-variance fixed effects method (method 

1) as implemented in the software package META46. The imputation quality threshold for 

each SNP was set at 0.3. To identify loci or unique genomic regions defined by shared 

linkage disequilibrium, we clumped all meta-supported markers using plink, the flag –clump 

and the p-values derived from the em meta-analysis. A locus or index tags was only 

identified if their meta-analysis p-value was < 0.0001.
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Beta estimations (genotypic effects) for P/A traits are defined as an increase in the log odds 

ratio for each additional effect allele. For AB traits, beta is defined as a change in SD units 

for each effect allele carried. The study-wide p-value threshold was defined as a Bonferroni 

correction assuming 2 million independent genetic association tests across 159 mGWAS 

(0.05 / (2×1006 × 159) = 1.57×10-10).

Phylogenetic analysis

Representative 16S rRNA gene sequences of all the genera identified were retrieved from 

the RDP database. Multiple sequence alignments were performed for all taxa and for genera 

included in the GWAS analyses using MUSCLE v.3.847. The alignments were used to build 

maximum likelihood trees using FastTree v2.1.048 with default parameters. iTOL49 was 

used for visualizing the trees with corresponding metadata, including the number of loci, 

prevalence of the MT, abundance of the MT and heritability of the AB and P/A trait(s) (Fig. 

1 and Table S3).

Functional annotation and enrichment

Annotation of variants of interest was carried out with the biomaRt R package50 with 

additional linkage disequilibrium based annotation and enrichment analysis with DEPICT51. 

When using biomaRt, we referenced the (feb2014.archive.ensembl.org) Ensembl 75 archive 

for GRCh37/hg19 coordinates and identified all genes and the closest gene within 250 kilo-

bases up- and down-stream of each polymorphism. Given that DEPICT utilizes pre-

computed LD structure from genotypes derived from 1000 Genomes Project Phase 1 CEU, 

GBR and TSI and HapMap Project release 2 and 3 CEU data, a substantial proportion of our 

SNPs of interest were not represented. As such, we identified tag SNPs for our SNPs that are 

also present in the DEPICT data set, when possible. To do so, we extracted dosage data for 

all variants +/- 200kb of our variant, using qctools, and then computing r2 using a bespoke R 

script. We kept all variants with an r2 > 0.2 with our SNP of interest and then queried if any 

of those tag SNPs existed in the DEPICT data. If more than one was present, we kept the 

one with the highest r2 value. Subsequently, the list of reference SNP identifiers (rs-ids) 

composed of our SNPs of interest, when they existed in the DEPICT data, or alternatively 

tag SNPs, when they were present, were run through the DEPICT framework. Each MTs 

was run individually using FGFP variants associated at a threshold of 1×10-5. Results from 

these analyses, gene enrichment, tissue enrichment, and gene priority are available in Table 

S19, S20, S21, respectively.

The Gene-Tissue Expression portal (gtexportal.org) was used to determine if associated 

variants, specifically discussed in the text, were also expression quantitative trait loci 

(gtexportal.org).

When evaluating enrichment for all meta-supported variants as a unit, we extracted the 

closest gene (within +/- 250kb) for each variant and used GENE2FUNC (http://

fuma.ctglab.nl/), and its integrated hypergeometric test, to identify tissue and pathways 

functional enriched, as reported in Table S12. The background set of genes, included in 

hypergeometric test, was 19,283 protein coding genes. The default parameter of 

GEN2FUNC in the FUMA platform29.
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All microbial traits analyzed were also analyzed under the GARFIELD52 framework for 

identification of regulatory and tissue enrichments. This analysis uses the complete GWAS 

data set of a trait, so pooling data from multiple traits, as done above, was not carried out. 

Further, the FGFP results only were used in these analyses. The results of these analyses are 

available in Table S22.

Finally, variants with associations that met our study-wide and genome-wide confidence 

thresholds as well as those that may be deemed as replicated from other studies were passed 

through PhenoScanner V2, an online platform to screen for genotype-to-phenotype 

associations, expression quantitative loci, and methylation quantitative loci from previously 

published genome-wide -omics association analysis28. All of these results are provided in 

Table S11.

Applied analyses

We undertook two-sample, bi-directional Mendelian randomization30 analyses to estimate 

potentially causal relationships between gut MTs and 11 metabolic health, inflammatory and 

neurological traits. These were selected a priori as they have all been repeatedly been 

associated with variation in the gut microbiome and have been the focus of credible and 

accessible GWAS studies. They include waist circumference, waist-hip ratio, BMI, and type 

2 diabetes; Crohn’s disease, inflammatory bowel disease, ulcerative colitis and rheumatoid 

arthritis; and Alzheimer’s disease, Parkinson’s disease and major depressive disorder.

MR analyses interrogating the role of the gut microbiome on each of these outcomes were 

restricted to the gut MTs that had the greatest evidence of a host-genetic contribution - 

where independent meta-derived genetic variants reaching a genome-wide threshold of 

p<2.5×10-08 were used as “instruments”. In order to assess causality in relationships from 

microbiome to outcome, summary statistics for these genetic variants were obtained from 

publicly available genome-wide summary-level data for the 11 metabolic health, 

inflammatory and neurological traits. For analyses assessing causality in relationships from 

each trait to microbiome, independent genetic variants reaching a genome-wide threshold of 

p<5×10-08 in each respective GWAS were used as “instruments” for the relevant trait. 

Summary statistics were obtained from the current mGWAS meta-analysis.

Once all summary-level data was obtained, causal effect estimates were derived using the 

inverse variance weighted (IVW)53 method (or the Wald ratio, if only 1 genetic variant was 

available) alongside sensitivity analyses including the weighted median53, weighted mode54 

and MR-Egger55 tests (if ≥3 genetic variants were available). All exploratory MR analyses 

were conducted using the TwoSampleMR package (https://github.com/MRCIEU/

TwoSampleMR) in R version 3.4.1 with RStudio, created and provided by MR-Base 

(www.mrbase.org/)56, a large-scale database of GWAS summary-level data and automated 

pipeline for two-sample MR analyses. Summary-level GWAS results for the 11 selected 

metabolic health, inflammatory and neurological traits were obtained from the following 

publications (indicated with pubmed ID): waist circumference and waist-to-hip ratio 

(25673412); BMI (25673413); type 2 diabetes (22885922); Crohn’s disease, inflammatory 

bowel disease and ulcerative colitis (26192919); rheumatoid arthritis (24390342); 
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Alzheimer’s disease (24162737), Parkinson’s disease (19915575) and major depressive 

disorder (22472876).

In analyses interrogating the impact of each continuous (AB) MT on each outcome, effect 

estimates represent the SD change for continuous outcomes (waist circumference, waist-to-

hip ratio and BMI) or risk ratio for binary outcomes (type 2 diabetes, Crohn’s disease, 

inflammatory bowel disease, ulcerative colitis, Alzheimer’s disease, major depressive 

disorder, Parkinson’s disease and rheumatoid arthritis) for a SD unit of AB MT phenotype. 

For analyses interrogating the impact of each binary (P/A) MT on each outcome, effect 

estimates represent the SD change for continuous outcomes or risk ratio for binary outcomes 

for a doubling of the genetic liability to presence (vs. absence) of each P/A MT phenotype. 

Results reaching a p-value threshold of (p<0.05) are presented (Table 2).

Inter-study catalog

A catalog of previously published associations was compiled starting from the work of 

Rothschild et al1, and includes Blekham et al8, Davenport et al9, Bonder et al10, Goodrich et 

al7, Turpin et al12, and Wang et al11. Data are available in Tables S1, S7, and S8 

(Supplementary Figs. 10 and 11).
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Extended Data

Extended Data Fig. 1. Variability in heritability.
Scatter plots of heritability estimates in the FGFP data set derived from rank normal, box-

cox and log2 transformed abundance data (a,b); and estimates between the FGFP data and 

those previously published (c,d). (a) The plot compares rank normal transformed (x-axis) 

data to box-cox transformed data (y-axis). (b) The plot compares rank normal transformed 

(x-axis) data to log2 transformed data (y-axis). (c) The plot compares box-cox transformed 

data from FGFP (x-axis) and Goodrich et al. (y-axis). (d) The plot compares FGFP rank 
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normal transformed data (x-axis) to the quantile-quantile normalized data of Davenport et al. 

(y-axis). The color of each point indicates a measure of average abundance in FGFP, and the 

size of each dot illustrates the prevalence for each taxon. The red line is a loess curve fit 

through the data. Confidence intervals of the fitted curve is shaded in grey. An estimate of 

the Spearman’s rho correlation coefficient between the data points is provided in the sub-

title of each plot, along with its’ two-sided p-value. Sample size and heritability estimates 

can be found in Table S3.

Extended Data Fig. 2. Effect estimates for top hits
A forest plot of beta (effect) point estimates (blue dots) and standard errors (horizontal bars) 

for each of the genome-wide significant SNP-microbial trait (MT) associations. Each of the 

three cohorts used in the meta-analysis are represented in each MT plot along with an 

estimate of heterogeneity (I2) across cohorts; found in the lower left corner of each plot. The 

vertical bar indicates zero on the effect- or x-axis. Sample sizes for each microbial trait and 

data used to generate this plot can be found in Table S5.
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Extended Data Fig. 3. Mendelian randomization framework
(a) the causal effect of a microbial trait on a disease, whereby any invalidation of the 

exclusion restriction criteria implies a pleiotropic association between the genetic variant 

and the disease independent of the microbial trait, (b) the genetic variant seemingly 

associated with the microbial trait is predominantly associated with the disease, which in 

turn effects the microbial trait (i.e., reverse causation) and (c) the genetic variant is 

associated with an external variable that is independently associated with the microbial trait 

and outcome.
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Extended Data Fig. 4. FGFP DADA2 data summaries
Rank ordered mean percent abundance (a) and prevalence (b) for each observed phylum, in 

the FGFP cohort. Prevalence is defined as the proportion of individuals in the cohort 

containing a rarefaction read assigned to a taxon, in this instance a phylum. Data for this plot 

can be found in Table S3. (c) A scatter plot of the nMDS, β-diversity for the quality-

controlled FGFP cohort. Individuals are colored by their defined enterotype, and boxplots 

illustrating the enterotype structure across the two nMDS (β-diversity) axes are presented. 

The stress level, of forcing the individual level data into two axes, in the nMDS analysis is 
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presented in the lower right-hand corner of the scatter plot. Dashed lines are equidistant 

guidelines. Each box plot presents the mean, first and third quantiles, and 95% confidence 

intervals of the data distribution. The sample sizes for each enterotype class is Bact1 = 793, 

Rum = 660, Bact2 = 418, Prev = 388, as presented in Table S2.

Extended Data Fig. 5. Selection of taxa for mGWAS analysis
(a) Clustering dendrogram of 139 mGWAS taxa meeting criteria for analysis in mGWAS. 

The red horizontal line (0.015) represents the level at which we defined clades or clusters 

statistically redundant taxa, of which the lowest taxonomic level taxa was retained for 

analysis. Data used to generate this plot can be found in Table S2.

(b) Correlation structure among 139 mGWAS taxa. A Spearman’s correlation plot of the 139 

mGWAS worthy taxa. The color key scales from −1 to 1 and indicates the estimated 

Spearman’s rho correlation coefficient. The 139 taxa are clustered into eight squares, 

denoting the best eight clusters in the data. Eight was chosen for illustration purposes 

because there are eight phyla in the data. However, the clustered data does not necessarily 

conform to the eight phyla. Data used to generate this plot can be found in Table S2.

(c) Association between abundance and prevalence in 16S DAD2 data. A scatter plot 

illustrating the relationship between average abundance and prevalence in the FGFP cohort. 

Taxon retained for analysis in the mGWAS are colored in blue, while those that did not meet 

our analysis criteria are colored in red. The size of each taxon dot represents the number of 

individuals in the FGFP dataset in which that taxon made up at least 5% of the data or had 
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500 rarefaction reads. Dashed blue lines represent the prevalence floor (horizontal) and 

average abundance = 40 (vertical). The grey curve is a loess best fitting curve. Data used to 

generate this plot can be found in Table S3.

Extended Data Fig. 6. Flowcharts for genotyping and mGWAS
(a) Flowchart on the genotyping and quality control steps taken to prepare the FGFP data for 

the mGWAS. (b) Flowchart for 16S DADA2 MT data preparation, FGFP mGWAS and 

targeted meta-analysis.
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Extended Data Fig. 7. GCTA-GREML power estimates
GCTA-GREML (genome wide complex trait analysis – genomic-relatedness-based 

restricted maximum-likelihood) genetic (co)variation power estimates. The plot on the left 

illustrates the relationship between the power (y-axis) to accurately quantify narrow sense 

heritability (x-axis) for varying sampling sizes (from 300 to 2100). The plot on the right 

illustrates the same relationship but for presence/absence microbial traits, where the number 

of presence and absence individuals is balanced.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Code Availability

The full analysis pipeline is available at https://github.com/kul-fgfpgwas/rep-cookbook and 

includes four parts: (i) microbiome processing; (ii) genotype quality control and imputation; 

(iii) genome-wide association analysis and (iv) phylogenetic analysis.
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Data availability

All microbiome GWAS summary statistics are available online at the University of Bristol 

data repository, data.bris, at https://doi.org/10.5523/bris.22bqn399f9i432q56gt3wfhzlc. 

FGFP rarefaction count and transformed microbial trait data can be found in Supplementary 

Table 2. FGFP genotype data and host metadata from this study are not open but are 

available in accordance and in consent with ethical permission through managed access 

subject to a data use agreement with the Flemish Gut Flora Project and organised via 

Principal Investigator Jeroen Raes. The process of enquiry for data access is outlined as 

follows: Upon data request by email to jeroen.raes@kuleuven.be, the FGFP data access 

committee will evaluate access permission, which will be granted upon signature of a data 

use agreement between the governing legal entities. This is outlined on the study website 

http://www.raeslab.org/companion/fgfp-gwas/. Raw 16S data is available at the European 

Genome/Phenome Archive (https://ega-archive.org) under accession number 

EGAS00001004420. The datasets from Universitätsklinikums Schleswig-Holstein are 

available by application through their biobank (https://www.uksh.de/p2n/).
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Figure 1. MT-associated loci and heritability.
Maximum likelihood phylogenetic tree of gut microbial genera used in association analysis. 

Circle sizes along the branches and nodes of the tree indicate the number of loci observed to 

be associated to microbial traits at that genus, family, order, class, or phylum levels. Core 

genera, as defined by Falony et al 4, are starred. Bootstrap values over 60 are shown on 

branches. The length of the scale bar represents nucleotide substitutions per site. For 

illustrative purposes the number of associated loci, greater than 10 were set to the size 10, 

those larger than 100 were set to size 15. Bar plots on the right describe the prevalence (or 

proportional sample size n, where a prevalence of 1 = 2257) and the standardized mean 

abundance of the bacterial genera in the FGFP population, and the estimated heritability 

(bars represent standard errors, point estimates are in white; arrows identify those 

observations determined to be different from zero given a two-sided GCTA-GREML 

likelihood ratio test p-value less than 0.05) of AB and P/A traits. All summary statistics, 

sample sizes, and p-values illustrated here can be found in Table S3.
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Figure 2. Genomic variants associated with microbial traits.
Manhattan plots illustrating negative log10 two-sided (a) F-test or (b) chi-squared p-values 

derived from the FGFP cohort Score test association analysis for (a) rank normal 

transformed (RNT) abundances and (b) presence/absence (Hurdle Binary) states. The 

genome-wide threshold is indicated by the horizontal dashed line. (c) Manhattan plot for our 

targeted meta-analysis derived from Expectation-Maximization (em) parameter estimates. 

Sites that did not exhibit consistent effect estimates in meta-analysis are shaded in grey, 

while those sites that had a smaller two-sided inverse-variance fixed-effect meta-p-value 
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than the FGFP (em) p-value are colored in blue and red for P/A (HB) and RNT (AB) traits, 

respectively. Loci that achieved study-wide significance are highlighted by a blue tower, 

while those exceeding the genome-wide threshold are in shaded in grey. Dashed lines 

indicate the study-level (black), conventional genome-wide (grey), and target-meta analysis 

(red) thresholds of 1.57×10−10, 2.5×10−8, and 1×10-5, respectively. LocusZoom plots of 

association results using the FGFP derived two-sided chi-squared (HB) or F-test (RNT) p-

values for three top SNPs that achieved the conventional genome-wide level p-value in the 

meta-analysis (d-f). The LD estimates are color coded (D′ ≥0.3 to >0.4 in purple) and 

recombination rate is indicated by the blue lines and the z-axis. The proximal genes to the 

top SNPs are indicated in the bottom panel. Genotype to microbial trait structure for the 

tagged variant at each locus is illustrated in the insert, with (f) illustrating a boxplot 

(identifying the mean, first and third quartiles and the 95% confidence intervals) of taxon 

abundance by genotypic state (homozygous non-effect allele (0), heterozygous (1), or 

homozygous effect allele (2)), while (d) and (e) inserts illustrate bar plots of the proportion 

of individuals in each genotypic state where the taxon is absent (red) or present (blue) in 

each of the observed genotypic states. Genotypic state sample sizes are (d) n0=1113, 

n1=927, n2=219, (e) n0=2177, n1=82, (f) n0=1948, n1=292, n2=19. Data used to generate 

these plots can be found on data.bris https://doi.org/10.5523/

bris.22bqn399f9i432q56gt3wfhzlc) and Table S2.
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Table 1
Meta-supported genetic variants.

Taxon Model rsID SNP ID Chromosome Position 
(bp) EAF β se p-value N Q hetP I2 Closest 

gene

G_Ruminococcus P/A rs150018970 9:134648925_G_A 9 134,648,925 0.010 0.111 0.294 6.68×10-14 3890 10.763 0.005 81.417 RAPGEF1

G_Coprococcus P/A rs561177583 1:96741622_G_A 1 96,741,622 0.012 0.161 0.283 1.10×10-10 3890 22.036 0.000 90.924 NA

G_Butyricicoccus AB rs55808472 16:24931691_G_A 16 24,931,691 0.073 0.257 0.041
5.54 

x10-10 3890 1.248 0.536 0.000 ARHGAP17

F_Sutterellaceae P/A rs4494297 11:44145588_G_T 11 44,145,588 0.011 0.144 0.314
6.80 

x10-10 3890 3.478 0.176 42.497 EXT2

G_Dialister P/A rs7118902 11:121440231_G_A 11 121,440,231 0.306 0.734 0.053
4.14 

x10-09 3890 0.684 0.710 0.000 SORL1

G_u_F_Porphyromonadaceae AB rs35980751 13:96011248_G_T 13 96,011,248 0.259 0.196 0.034
5.07 

x10-09 2094 1.090 0.580 0.000 ABCC4

G_Parabacteroides AB rs13207588 6:41519430_G_A 6 41,519,430 0.229 -0.180 0.031
6.89 

x10-09 3890 5.120 0.077 60.938 FOXP4

G_u_F_Erysipelotrichaceae P/A rs6733298 2:56450856_A_G 2 56,450,856 0.891 1.640 0.085
6.91 

x10-09 3890 1.739 0.419 0.000 CCDC85A

C_Gammaproteobacteria AB rs116865000 15:95639861_G_A 15 95,639,861 0.025 0.555 0.096
8.41 

x10-09 3213 1.847 0.397 0.000 NA

G_u_P_Firmicutes AB rs11788336 9:111688387_T_C 9 111,688,387 0.273 -0.143 0.025
1.66 

x10-08 3485 5.388 0.068 62.882 IKBKAP

G_u_P_Firmicutes P/A rs34656657 6:16613223_G_A 6 16,613,223 0.022 0.294 0.218
1.82 

x10-08 3890 2.845 0.241 29.710 ATXN1

G_u_O_Bacteroidales P/A rs116135844 4:168179343_G_A 4 168,179,343 0.043 2.109 0.134
2.32 

x10-08 3890 1.969 0.374 0.000 SPOCK3

G_Veillonella P/A rs117338748 15:58714239_G_A 15 58,714,239 0.019 2.887 0.190
2.42 

x10-08 3890 2.109 0.348 5.178 LIPC

Genetic variants, representing LD-tagged loci, associated with 16S gut microbiome phenotypes at a meta-p-value smaller than 2.5×10-08. 
Presented are the microbial taxa, the trait model type - abundance (AB) or presence/absence (P/A) - the reference SNP identifier (rsID), the SNP ID 
composed of chromosome, base pair (build hg19), alternative allele and effect allele, chromosome, position (bp), the effect allele frequency (EAF), 
the meta estimated effect size (β; presented as odds ratios for P/A, and in SD units of change for AB outcomes), standard error (se, in log(OR) scale 
for P/A outcomes), two-sided inverse variance fixed effect meta p-value, meta-sample size (N), Cochran’s Q heterogeneity statistic (Q), the 
heterogeneity p-value (hetP), the proportion of variation among studies due to heterogeneity (I2) and the physically closest gene (+/- 250kb). P, C, 
O, F, G preceding taxa names indicate the classification levels phylum, class, order, family and genus, while u indicates unclassified. Genetic 
variants are sorted by significance (p-value), with the top two surpassing the study-wide meta-analysis p-value shaded in blue. Taxon names include 
abbreviated taxonomic levels, where “G” represents genus, “F” family, “O” order, “P” phylum, and “u” unclassified.
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Table 2
Bi-directional Mendelian Randomization.

Exposure model Outcome nSNP MR 
method beta se p-value

MT -> disease

G_Dialister P/A Alzheimer’s disease* 1 Wald ratio 0.810 0.055 1.35×10-04

G_Butyricicoccus AB Inflammatory bowel 
disease* 1 Wald ratio 0.748 0.126 2.17×10-02

G_u_P_Firmicutes AB Waist circumference 1 Wald ratio 0.070 0.033 3.34×10-02

G_Butyricicoccus AB Alzheimer’s disease* 1 Wald ratio 0.790 0.116 4.17×10-02

G_u_F_Erysipelotrichaceae P/A Type 2 diabetes* 1 Wald ratio 0.906 0.049 4.48×10-02

G_Dialister P/A Major depressive 
disorder* 1 Wald ratio 1.160 0.074 4.63×10-02

G_Bifidobacterium AB Waist circumference 1 Wald ratio -0.149 0.029 2.82×10-07

G_Bifidobacterium AB Body mass index 1 Wald ratio -0.123 0.027 3.37×10-06

G_Bifidobacterium AB Waist-to-hip ratio 1 Wald ratio -0.060 0.029 3.74×10-02

Disease -> MT

Alzheimer’s disease P/A G_Dialister* 5 IVW 1.809 0.239 1.33×10-02

Parkinson’s disease P/A G_u_P_Firmicutes* 1 Wald ratio 0.386 0.391 1.47×10-02

Type 2 diabetes P/A G_u_P_Firmicutes* 10 IVW 0.636 0.195 2.02×10-02

Crohn’s disease P/A G_u_P_Firmicutes* 21 IVW 0.813 0.092 2.46×10-02

Parkinson’s disease AB G_Bifidobacterium 1 Wald ratio 0.225 0.107 3.46×10-02

Results from bi-directional Mendelian randomization analysis querying causal relationships between microbial traits (MTs) on each trait and each 
trait on MTs. The exposure identifies the independent variable in the analysis, while the outcome is the dependent variable. Presented are the trait 
model type - abundance (AB) or presence/absence (P/A) and the number of SNPs used as “instruments” for the exposure (nSNP). Primary MR 
results were limited to two MR models, namely the inverse variance weighted (IVW) and Wald ratio methods. All other models were considered 
sensitivity analysis and can be found in Table S13. The beta, se, and p-value provide the effect estimate (risk ratios for binary outcomes (*) and SD 
units of change for continuous outcomes), standard errors (in log(OR) scale for binary outcomes), and uncorrected two-sided model p-values for 
that analysis, respectively. Analyses were restricted to those MTs found in Table 1, with rank normalized Bifidobacterium (shaded in grey) as an 
addition. Sample sizes for each previously published GWAS disease trait can be found in Table S14.
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