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ABSTRACT

MicroRNAs (miRs) are single-stranded RNAs of 18-25 nucleotides. These molecules regulate 
gene expression at the post-transcriptional level; several of these are differentially expressed 
in asthma as well as in viral acute respiratory infections (ARIs), the main triggers of acute 
asthma exacerbations. In recent years, miRs have been studied in order to discover drug 
targets as well as biomarkers for diagnosis, disease severity and prognosis. We describe 
recent findings on miR expression and function in asthma and their role in the regulation of 
viral ARIs, according to cell tissue specificity and asthma severity. By combining the above 
information, we identify miRs that may be important in virus-induced asthma exacerbations. 
This is the first attempt to link miR profiles of asthmatic patients and ARI-induced miRs, 
addressing the question of whether there might be a specific miR deficit in asthmatic subjects 
that make them more susceptible and/or reactive to infection.

Keywords: MicroRNAs; asthma; respiratory infections, virus; disease progression; 
inflammation

INTRODUCTION

MicroRNAs (miRs) are small non-coding RNAs that typically consist of 18-25 nucleotides. 
They act as dynamic post-transcriptional regulators of gene networks and play a crucial role in 
regulating various biological processes such as cell signaling, biochemical pathways, tissue and 
organ development, and more. The innate functions of immune cells and their proliferation in 
response to pathogenic stimuli are also under the regulatory influence of miRs.1

There are 2 different classes of miRs, the intracellular and the extracellular, classified 
according to their topographical identification. The expression of specific intracellular miRs 
has tissue- and disease-specific patterns and therefore has been extensively studied as both 
prognostic and diagnostic biomarkers.2 In addition, there are extracellular miRs (ex-miRs, 
circulating miR), contained in extracellular vesicles (exosomes, microvesicles and apoptotic 
bodies). The ex-miRs are present and stable in a diverse array of extracellular body fluids3 and 
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can be transferred between dendritic cells, from macrophages to epithelial cell lines, and 
between T cells and antigen-presenting cells in vitro and possibly in vivo.4

The importance of miRs in regulating normal intracellular functions is becoming increasingly 
clear as more miR targets are discovered and the molecular mechanisms underlying miR gene 
regulation become unravelled.5,6 Modulation of miR expression has been studied in vitro as well 
as in vivo and has been used to ascribe key roles for miRs in epithelial function.7-12 Emerging 
studies implicate specific miRs in controlling epithelial cell processes such as regulation of 
cellular differentiation, determination of epithelial cell fate (cell death and proliferation), 
initiation and regulation of anti-microbial immunity, fine-control of inflammatory responses 
and activation of intracellular signaling pathways.9-11,13,14 Such control of epithelial cell functions 
is likely vital to fine-tuning of the epithelial immune response against infection. The roles of 
miRs in normal lung development and respiratory diseases have been extensively reviewed,15-18 
including reviews on specific respiratory diseases such as asthma,19 chronic obstructive 
pulmonary disease,20 cystic fibrosis,21 idiopathic pulmonary fibrosis22 and lung cancer.23,24

Evidently, miRs are critical for lung development and for maintaining disease-free lungs.25-27 
Comparisons of normal lung tissue and tissue from asthmatic patients reveal significant 
differences in miR profiles and suggest that miRs serve as a regulatory layer in the 
pathogenesis of asthma. Asthma is a heterogeneous disorder involving many cell types, such 
as alveolar macrophages, smooth muscle cells, innate lymphoid cells, epithelial cells and 
mast cells, making it difficult to discern underlying molecular mechanisms of the disease. 
Similar heterogeneity is observed in asthma phenotypes and the variations are observed 
among studies may be related to asthma severity (mild, moderate and severe). The results 
of studies regarding miR expression on asthmatic versus normal epithelium are sometimes 
contradictory, depending on the clinical characterization of subjects, sample location (nasal 
cavity or bronchi) and sample type (biopsies, swabs, lavage, primary cells and cell lines).

Viral acute respiratory infections (ARIs) are the most common cause of acute respiratory 
symptoms and many of these infections are linked to asthma exacerbations, which are in 
turn responsible for a considerable proportion of the morbidity and all the asthma-related 
mortality. The immune response against respiratory viruses, such as human rhinovirus (RV), 
respiratory syncytial virus (RSV) and influenza virus (IFV), has been associated with altered 
expression of several miRs. Changes in the expression profile of miRs in epithelial cells may 
contribute to the pathogenesis of acute and chronic respiratory diseases.28 For viral ARIs, 
miRs are involved in both the up and down regulations of the innate immune response. In 
recent years, miRs have been studied in order to discover anti-viral ARI drug targets as well as 
biomarkers for diagnosis, severity and prognosis.29

In the context of this review, we summarize recent findings on miR expression and function 
in asthma, and their role in the regulation of viral ARIs. The literature on miRs involved 
in asthma and ARI's was reviewed according to cell tissue specificity, independently for 
epithelium (cell lines, primary epithelial cells nasal or bronchial, nasal washes, bronchial 
lavage and sputum), and peripheral blood mononuclear cells (PBMCs). As studies on miRs 
seem to play an emerging role in asthma, we differentiate miR profiles according to asthma 
severity (mild, moderate and severe), highlighting the heterogeneity of this disease. We 
also identify miRs that may be involved in virus-induced asthma exacerbation, separately 
reviewing the main virus implicated in exacerbations (RV, RSV and IFV).30 Finally, using the 
above information, we attempt to link the miR profiles of asthmatic patients and the miR 
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profiles that are induced by ARIs. The main goal/purpose of this linkage is to address the 
question of whether there might be a specific miR deficit in asthmatic subjects, making them 
more susceptible and/or reactive to ARIs.

MIR EXPRESSION PROFILES IN THE EPITHELIUM OF 
MILD ASTHMATIC PATIENTS
The bronchial epithelium of mild asthmatics compared to healthy individuals has been 
shown to have up- and down-regulated miRs which are implicated in inflammation pathways, 
epithelium development and epithelial homeostasis (Table 1 and Supplementary Table S1).

In primary bronchial epithelial cells cultured at the air-liquid interface, a miR microarray 
was performed, showing higher expression of miR-let-7f, miR-181c and miR-487b, but lower 
expression of miR-203 in mild asthmatics compared to healthy controls. Molecular network 
analysis indicated that putative targets of these miRs were principally involved in regulating 
the expression of inflammatory pathway genes and was also used to identify a novel asthma-
associated gene.31 The miR-let-7 inhibits IL-13 expression, and silencing of miR-let-7 inhibits 
cytokine production and attenuates disease symptoms in an animal model of asthma.32 The 
miRs from this family (miR-let-7 and miR-let-7e) were down-regulated in nasal biopsies 
of asthmatic patients (with or without rhinitis).33 The members of the miR-181 group have 
been identified to be differentially expressed in asthmatics: miR-181b-5p has been reversely 
associated with eosinophilic asthma. Generally, miR-181b targets SPP1, which in turn 
regulates IL-13-induced proinflammatory cytokines IL1B and CCL11 expression.34 Also, the 
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Table 1. miRs up- or down-regulated in the epithelial cells of asthmatic subjects compared to healthy controls
Asthma profile miR Regulation in 

asthmatics
Role/pathway/target Reference

Mild let-7f ↑ - 31
Mild/severe let-7b ↓ - 40

let-7a ↓ Pathways: JAK-STAT signalling, cytokine network and inflammatory response 33,40
Mild let-7e ↓ - 33

miR-7-5p ↑ - 35
miR-155 ↓ Pathway: IL-13 pathway in human macrophages determining the M2 phenotype 33
miR-181c ↑ - 31

Severe miR-181b-5p ↓ Pathway: proinflammatory cytokines expression (IL-13, IL-1b, CCL11) 34
miR-19a ↑ Role: enhances cell proliferation of BEC in severe asthma 35,42

Mild miR-19b-3p ↑ - 35
Mild/severe miR-200b ↓ Pathway: CD4+ Th2 cell activation 40

miR-200c ↓ Pathway: CD4+ Th2 cell activation 40
Mild miR-34b-5p ↓ Pathway: ciliated cell differentiation 36

miR-34c-5p ↓ Pathway: ciliated cell differentiation 36
miR-34 ↓ Pathway: IGFBP-3 mediated autophagy activation 32
miR-449a ↓ Pathway: ciliated cell differentiation 36
miR-449b-5p ↓ Pathway: ciliated cell differentiation 36
miR-449 ↓ Pathways: differentiation of ciliated epithelial cells, IGFBP-3 mediated autophagy activation 32
miR-203a ↑ Role: repress MEF2C, a transcription factor, leading to decreased cellular proliferation 35
miR-3065-3p ↑ Role: repress MDGA1, a cell membrane anchor protein, resulting in suppression of cell-cell adhesion 35
miR-221-5p ↑ - 35

Severe miR-221-3p ↓ Target: CXCL17 in asthmatics and chemokine suppress CCL24 (eotaxin-2), CCL26 (eotaxin-3) and POSTN 44
miRNA-221 ↑ Target: SIRT1 reduction 43

Mild miRNA-203 ↓ Target: aquaporin gene AQP4 31
miR-487b ↑ - 31
miR-487a ↓ - 35

Th2, T helper 2.



top-ranked predicted target of the highly down-regulated miR-203 in asthmatic cells was the 
aquaporin gene AQP4.31 On the contrary, in bronchial biopsy specimens from of mild-moderate 
asthmatics, miR-203a was up-regulated. It is thus suggested that it may repress MEF2C, a 
transcription factor, leading to decreased cellular proliferation. In addition, up-regulated 
miR-3065-3p may repress MDGA1, a cell membrane anchor protein, resulting in suppression of 
cell-cell adhesion. It has been proposed that aberrant regulations of miR-203a-MEF2C and miR-
3065-3p-MDGA1 play important roles in airway epithelial homeostasis in asthma.35

Another genome wide profiling study of bronchial epithelial brushings also revealed 4 
members of the miR-34/449 family (miR-34b-5p, miR-34c-5p, miR-449a, and miR-449b-5p) 
that were significantly suppressed in asthma.36 The miR-34/449 family is closely associated 
with regulation of epithelial cell proliferation and differentiation. Specifically, miR-449 is 
essential in regulating airway ciliated cells by targeting NOTCH1.37 Notch signaling triggers 
airway mucous metaplasia and inhibits alveolar development (ciliated cells).38 The low level 
of miR-449 in epithelial cells of asthmatics may therefore shift the fate of these cells toward 
more mucous production. One salient finding is that the members of the miR-34/449 family 
are highly repressed in vivo in asthma and repressed in vitro by IL-13 exposure, and that this 
repression persists despite corticosteroid treatment.36

Another miR which has been repeatedly associated with asthma and is involved in the 
regulation of allergic inflammation is miR-155. It is down-regulated in nasal biopsy 
specimens from asthmatics compared to healthy individuals and its expression in nasal 
mucosa in long-term asthmatics was similar in subjects with or without concomitant 
Ars.33 The miR-155 plays an important role in host defence and in the function of B and T 
lymphocytes, is down-regulated in asthmatic bronchial epithelial cells compared to cells 
from healthy donors, independent of asthma severity.39, 40 Plasma miR-155 levels are elevated 
in severe asthmatics when compared to non-asthmatics or mild-to-moderate asthmatics. 
The increased plasma miR-155 levels were also observed in asthmatics with cockroach allergy 
compared to controls, through regulation of the ROS-COX-2 gene axis that is related to 
cockroach allergen-induced oxidative stress.41

EPITHELIAL MIR EXPRESSION PROFILES IN SEVERE 
ASTHMA
The bronchial epithelium is considered a key player in coordinating airway wall remodeling. 
In mild asthma, the epithelium is damaged, and fails to proliferate and repair, whereas in 
severe asthma, the epithelium is highly proliferative and thicker. Differences occur in the 
expression profiles of miRs in relation to asthma severity (Supplementary Table S1).

In the epithelium of severe asthmatics, miR-19a had higher expression when compared 
to cells from mild asthmatics and healthy controls, and these levels were not restored by 
corticosteroids. Functional studies suggested that miR-19a enhances cell proliferation of 
BEC in severe asthma through targeting the TGF-β receptor 2 mRNA. Moreover, repressed 
expression of miR-19a increased SMAD3 phosphorylation through TGF-β receptor 2 signaling 
and abrogated bronchial epithelial cell proliferation. This study uncovered a new regulatory 
pathway involving miR-19a that is critical to the severe phenotype of asthma and indicated 
that down-regulating miR-19a expression could be explored as a potential new therapy to 
modulate epithelium repair in asthma.42
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Compared to healthy controls, miR-221 expression was significantly increased in bronchial 
epithelial cells from severe asthmatic subjects. In addition, miR-221 seems to be involved 
in airway epithelial injury by targeting SIRT1 mRNA, which regulates cell growth, cell 
differentiation, aging, energy metabolism and, importantly, inflammation.43 Furthermore, 
in the sputum of patients with eosinophilic asthma miR-221-3p was increased. Functional 
experiments have indicated that miR-221-3p suppresses anti-inflammatory cytokine (C-X-C 
motif ) ligand 17 (CXCL17) expression and enhances CCL24, CCL26 and POSTN expression 
via the p38 MAPK pathway. Airway overexpression of miR-221-3p, in exacerbated airway 
eosinophilic inflammation, suppressed CXCL17 expression and enhanced CCL24, CCL26 and 
POSTN in house dust mite-challenged mice.44

Bronchoalveolar lavage of moderate-severe asthmatic patients revealed that miR-200b and 
miR-200c were significantly reduced in asthmatic patients compared to healthy controls. 
The reduction was validated in 2 independent models of allergen-induced allergic airway 
inflammation and further demonstrated to be inversely correlated with asthma severity as 
well as increased IL-33 production in asthmatic patients. In addition, the miR-200b and miR-
200c binding sites in the 3' UTR of IL-33 mRNA were identified by bioinformatics analysis 
and reporter gene assay. Experimental assays showed that while inhibition of endogenous 
miR-200b and miR200c increased, the IL-33 expression was increased in lung epithelial 
cells. Exogenous administration of miR-200b to lungs of mice with allergic inflammation 
resulted in a decrease in IL-33 levels and resolution of airway inflammation phenotypes. 
In conclusion, miR-200b and miR-200c regulate the expression of IL-33, thus playing a 
potentially basic role in asthma.40

Last but not least, Let-7a, a miR extensively reviewed for its role in mild asthma, showed 
reduced expression in bronchial biopsy specimens from severe asthmatics compared to mild 
asthmatics.40, 45 The pathways of differentially expressed miRs are JAK-STAT signaling, cytokine/
chemokine signaling pathway, ciliated cell differentiation, cell proliferation, CD4+ T helper 2 
(Th2) cell activation and cell adhesion molecules pathway (Table 1). It is worthy to mention that 
many of the above differentially expressed miRs in asthmatic epithelium are implicated directly 
or indirectly with the IL-13 pathway, a pleiotropic Th2 cytokine that has been shown to be 
central to the pathogenesis of asthma.46 In summary, miRs may be sensitive markers for chronic 
inflammation in the airway epithelium due to their different patterns of expression according to 
asthma severity and may prove useful for phenotyping these patients.33

MIRS PROFILES IN PBMCS OF PATIENTS WITH ASTHMA

Cells derived from peripheral blood include key cellular components in allergic inflammation 
and asthma. Several studies have compared the expression pattern of PBMC-derived miRs 
between asthmatic and healthy individuals (Table 2 and Supplementary Table S2). CD14+ 
and CD16+ intermediate monocytes were found to be increased in patients with bronchial 
asthma and were also found to express high levels of miR-124. The miR-124 serves as a 
regulator of the M2 polarization and its overexpression in asthmatic macrophages resulted 
in down-regulation of a number of M1 markers, such as MHC class II and CD86, as well as in 
up-regulation of M2 markers such as Fizz1 and Arg1.47 In another study, miR-145 from CD4+ 
T cells was found up-regulated in asthmatics compared to healthy controls, and RUNX3 
expression was found to be suppressed in these patients, suggesting that there is a negative 
correlation between miR-145 and RUNX3.48 Up-regulation of miR-221 and miR-485-3p has 
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been reported in children with asthma compared to healthy controls, together with down-
regulated Spred-2, which is the predicted target of these miRs.49 Recently, studies have used 
CD4+ T cells from bronchoalveolar lavage and from PBMCs of steroid-naive and steroid-
using asthmatics and compared them to healthy individuals. Additionally, miR-19a was 
up-regulated in all asthmatic patients compared to healthy individuals; this miR promoted 
TH2 cytokine production and amplified inflammatory signaling by directly targeting inositol 
phosphatase PTEN, the signalling inhibitor SOCS1 and the deubiquitinase A20.50

IL-22- and IL-17-positive T cells were sorted from PBMCs of patients with bronchial asthma 
and compared to healthy controls. The increased expression of miR-323-3p and reduced 
expression of miR-93, miR-181a, miR-26a and miR-874 were detected in IL-22-producing T 
cells. The differentially expressed miRs were proposed to play a role in the proliferation, 
differentiation and effector functions of T cells. Further analysis showed that miR-323-3p 
acts in a negative feedback loop to control the production of IL-22 in IL-22/IL-17-producing T 
cells and might thus impact the T cell responses in asthma.51 The 3 miRs, miR-15a, miR-15b, 
miR-20a — from CD4+ T cells binding to 3' UTR of VEGFA were also found down-regulated 
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Table 2. miRs up- and down-regulated in PBMCs from asthmatic subjects compared to healthy controls
Asthma profile miR Regulation in 

asthmatics
Role/pathway/target Reference

Severe miR-155 ↑ Role: associated with the expression of the Th2 cytokines IL-5 and IL-13 55
Pathway: allergic inflammation in T-cells

miR-126 ↑ Target: increased IL-4, reduced IFN-γ 57
miR-192 ↓ Pathway: activation of Tfh cells 58

Target: CXCR5
Mild miR-145 ↑ Target: RUNX3 expression in asthma patients 48

miR-323-3p ↑ Role: up-regulated in IL-22-producing T cells 51
miR-93 ↓ Pathways: leukocyte activation/extrinsic apoptotic signalling pathway/MAPK signalling pathway/

cytokine production
51

miR-181a ↓ - 51
miR-26a ↓ Pathways: regulation of cell proliferation/MAPK cascade/Wnt signalling pathway 51
miR-874 ↓ Pathways: response to cytokine stimulus/immune effector process/T-cell activation/ Apoptotic 

signalling pathway/MAPK signalling pathway/TNF signalling pathway/TNF signalling pathway
51

miR-323-3p ↑ Role: down-regulated in IL-22- and IL-17-double-positive T-cells 51
Target: IL-22 reduction

miR-19a ↑ Role: promotes Th2 cytokine production 50
Targets: PTEN, SOCS1, deubiquitinase A20

miR-15a ↓ Pathway: angiogenic or fibrotic processes 52
Target: VEGFA

miR-15b ↓ Target: VEGFA 52
miR-20a ↓ Target: VEGFA 52

Severe miR-28-5p ↓ - 59
miR-146a ↓ Pathway: vitamin D pathway 59
miR-146b ↓ Pathway: vitamin D pathway 59

Mild miR-21-5p ↑ Role: predicted to inhibit differential responses to HDM 56
miR-98 ↑ Target: TSP1 reduction 61
miR-19a ↓ - 53
miR-19b ↓ - 53
miR-221 ↑ Target: Spred-2 49
miR-485-3p ↑ - 49
miR-625-5p ↓ Pathways: Inflammatory cytokine 49

Targets: CBL, PPARGC1B, ESR3
Mild/severe miR-192 ↓ Pathway: cell cycle regulation of blood cells 62
Severe miR-29c ↓ Target: B7-H3 60

Pathway: Th cell differentiation
Mild miR-124 ↑ Role: regulator of the M2 polarization in various subsets of monocytes cells 47
PBMC, peripheral blood mononuclear cell; Tfh, T follicular helper; Th, T helper.



in paediatric atopic asthmatics, while their target demonstrated increased levels.52 T cells 
derived from bronchial biopsy samples of mild asthmatics showed decreased levels of miR-
125b, miR-19a, miR-19b and miR-106b, and exhibited decreased airway-specific expression 
compared to healthy controls.53

Furthermore, 3 novel miRs, miR-22-3p, miR-513a-5p and miR-625-5p, were found to be 
significantly down-regulated in children with dust mite-induced asthma compared to 
controls, whereas the transcript levels of Cbl proto-oncogene, E3 ubiquitin protein ligase 
(CBL), peroxisome proliferator-activated receptor gamma, coactivator 1 beta (PPARGC1B) 
and estrogen receptor 1 (ESR1) that are targeted by these miRNAs were increased. These 
miRs may play a role in the regulation of the immune response and inflammatory cytokine 
pathways.54 In another study, miR-155 was up-regulated in CD4+ T cells from dust mite-
allergic asthmatics, compared to allergic rhinitis and non-asthmatic individuals. It was also 
found that miR-155 is differentially expressed in allergic T cells exposed to dust mite extract, 
and it is inhibited by glucocorticoids. miR-155 is positively associated with the expression of 
the TH2 cytokines (IL-5 and IL-13) and thus contributes to allergic inflammation in T cells 
and could be an anti-inflammatory target of steroids.55 It has been indicated that miR-21-5p 
from PBMC of dust mite sensitized (HDM) atopics with current asthma are up-regulated and 
inhibit differential responses to HDM in asthmatics versus non-sensitized controls.56

EXPRESSION PATTERNS OF MIRS FROM PBMCS IN 
ACUTE AND SEVERE ASTHMA
In PBMC from children with acute asthma, circulating miR-126 levels, the percentages of 
interleukin IL-4 levels, and Th17 cells were significantly higher than those in the control group, 
whereas the percentages of iIFN-γ levels and the CD4 + CD25 + Treg cells were significantly 
lower.57 In another acute asthma study, miR-192 was down-regulated and it was shown that 
it blocks the activation pathway of T follicular helper cells by targeting CXCR5.58 Three miRs 
miR-28-5p, miR-146a, miR-146b has been documented to be down-regulated in severe asthma 
associated with the activation of circulating CD8+ T cells, but not CD4+ T cells.59

In a recent study, miR-29c which was down-regulated in asthmatics has been found to bind 
directly to plasma B7-H3 molecules up-regulated. The miR-29c regulates Th2/Th17-cell 
differentiation and transfection with anti-miR-29c into macrophages enhanced ROR-γt and 
GATA-3 expression in co-cultured CD4+ T cells, and increase levels of IL-4 and IL-17 in the 
cell supernatants.60

Collectively, miRs are differentially expressed in PBMCs of asthmatic subjects and appear to 
be involved in basic allergic inflammatory and immune response pathways (Table 2). Their 
role in promoting Th2 cytokine production and regulating M2 polarization in various subsets 
of monocytes render them key players in asthma.

VIRUS-INDUCED MIRS IN THE AIRWAY EPITHELIUM

ARIs are the most common cause of acute respiratory symptoms (e.g., flu and bronchitis), 
and these infections have been linked to the exacerbation of symptoms in chronic respiratory 
diseases, most notably asthma.
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 The host innate immune response is the first line of defence against all pathogens. A 
large variety of cells, including epithelial cells, dendritic cells, granulocytes, monocytes, 
macrophages and natural killer cells, play distinct roles in controlling infection.

Several miRs are induced during viral infection, modulating the function of each of these cell 
types (Table 3, Supplementary Table S3). Expression of miRs during respiratory infections is 
gaining attention in recent studies due to their potential in antiviral treatment.63

RV

RV is the main cause of upper respiratory tract infections in children and adults, and 
it predominantly infects the epithelial cells of the respiratory tract.64,65 RVs are single-
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Table 3. miRs up- or down-regulated in epithelial cells of asthmatic subjects compared to healthy controls after virus infection (RV, RSV and IFV)
Virus type miR Regulation in 

asthmatics
Role/pathway/target Reference

RV miR-155 ↑ Pathways: Akt, TGF-β, MAPK, STAT3, immune polarization, epithelial remodeling 69
miR-128 ↑ Pathways: apoptosis, cancer, inflammation 69

Targets: BMI1, BAX
miR-630 ↑ - 69
miR-302d-3p ↑ - 69
miR-320e ↑ - 69
miR-612 ↑ - 69
miR-23b ↑ Pathways: cancer, inflammation 28

Targets: SPRY2
RSV let-7c-5p ↓ Targets: HSP-70, p21 75

miR-221 ↓ Targets: HSP-70, p21 94
miR-29a ↑ Target: IFNAR1 78
miR-24 ↓ Pathways: TGF-β, cell cycle arrest 79
miR-29c ↓ Pathways: NF-κB signaling, Th1 polarization, proliferation of myeloid cells, dendritic cell maturation 95
miR-27b ↓ - 95
miR-155 ↑ - 95
let-7d ↑ - 95
let-7b ↑ Pathways: NF-κB pathway 74
let-7i ↑ - 74
miR-30b ↑ - 74
miR-198 ↓ Targets: CCND1, DYRK2, ELF4, CCL7, SOCS3 77
let-7f ↑ - 77
miR-24 ↑ - 77
miR-339-5p ↑ - 73
miR-45 ↑ - 96
miR-574 ↑ - 96
miR-744 ↑ - 84,96
miR-124a ↑ Role: down-regulates virus replication 84
miR-542-5p ↑ Role: down-regulates virus replication 97
miR-346 ↑ Role: down-regulates virus replication 97
miR-452 ↑ Role: down-regulates virus replication 97
miR-128a ↑ Role: down-regulates virus replication 97

IFV miR-29c ↑ Pathways: NF-κB signalling, inflammation 60,63,98
Targets: BCL2L2

miR-146a ↑ Pathways: Toll-like receptor pathway, innate immune response, cytokine production and apoptosis 92
miR-181c ↑ - 98
miR-141 ↑ Targets: CXCL12, TGFB2, CRLF3, IFNAR1 91
miR-210 ↑ - 91
miR-324 ↑ - 79
miR-663 ↑ - 79

RV, rhinovirus; RSV, respiratory syncytial virus; IFV, influenza virus.



stranded RNA viruses with icosahedral capsids and belong to the Picornaviridae family.66,67 
Bioinformatics software has been useful in predicting in silico whether certain miRs have 
viral sequences as targets, increasing or decreasing the viral replication rate.68 miR-128 and 
miR-155 were identified as possible regulators of the innate immune response against RV1B, 
since they target the RV genome. It has been demonstrated that gene silencing of these miRs 
increases RV replication by up to 50%.39 The potential biological relevance of the airway 
secretion of miR-155 using in silico models derived from gene datasets of experimental in vivo 
human RV infection confirmed that hsa-miR-155 targetome is an overrepresented pathway 
in the upper airways of individuals infected with RV. The secretory miRs from nasal washes 
of RV-infected children, identified that miR-630, miR-302d-3p, miR-320e and miR-612 are 
differentially expressed during infection. Then, an in vitro airway epithelium model using 
apical secretions from differentiated primary human bronchial epithelial cells (HBECs) 
verified miR-155 as the main change in the baseline miRNAome during RV infection in young 
children.69 Finally, miR-23b seems to be indirectly involved in the immune response against 
RV by down-regulating LPR5 and VLDLR transmembrane receptor expression.28

RSV

RSV contains a single strand of negative polarity70 that codes for 11 proteins (NS1, NS2, N, P, 
M, SH, G, F, M2-1, M2-2 and L) and it belongs to the Paramyxoviridae family.71 RSV is a common 
human pathogen that causes symptoms similar to those found in the common cold in adults 
and children. It generally affects the lower respiratory tract and is the respiratory virus most 
frequently isolated from infants hospitalized for bronchiolitis.72

RSV infection down-regulate, miR-221 expression in HBEC culture73,74 and in HEp2 cell line.75 
Another study suggested that RSV up-regulates the NGF-TrKA axis in human airways by 
silencing miR-221 expression and favors viral replication by interfering with the apoptotic 
death of infected cells.76

Other studies have determined that RSV induces miR expression in at least 2 different ways. 
First, in human monocyte-derived dendritic cells (MDDCs) and HBECs, the induction of 
let-7b and let-7i, respectively, is dependent on IFN-β.74 Secondly, in HBECs, miR-30b is 
induced independently of IFN, but dependently on NF-κB.74 expression of miR-30b and let-7i 
increases after 48 hours of RSV infection of HBECs in culture. Overexpression of miR-30b 
and let-7i is observed in normal HBEC line cultures infected with RSV that lack NS1 and 
NS2 proteins. NS1 and NS2 proteins may antagonize the up-regulation of let-7i and miR30b 
expression by inhibiting the production of type I IFNs and other cytokines involved in miRNA 
transcription.73 Also, miR let-7 is important for the induction of host genes during viral 
infection. In another study, it has been evidenced that the G protein of RSV increases the 
expression of let-7f which acts against CCND1 and DYRK2, allowing cell cycle to arrest in G1 
and favoring viral replication.77

Among the miRs that appear to be deregulated during RSV infection are miR-27a, miR-339-
5p, miR-453 and miR-574, which are all overexpressed.73

The miR-29a can directly target IFNAR1 3' UTR and down-regulate IFNAR1 expression. Also, 
RSV NS1 suppresses IFNAR1 expression at both RNA and protein levels in the human lung 
adenocarcinoma cell line A549. These results suggest that miR-29a up-regulated during 
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RSV infection is a negative regulator of IFNAR1 and is critical for RSV NS1-induced virus 
replication.78 RSV NS1 interacts with KLF6 and modulates miR-24 expression and TGF-β, 
which facilitates RSV replication.79 There are 8 mimics that display a > 75% reduction in both 
RSV strains: miR-124a, miR-542-5p, miR-744, miR-155, miR-346, miR-452, miR-128a and 
miR-28. Of these, miR-155 has been well documented to regulate innate immunity, enhancing 
IFN-inducible gene expression.80,81

Although this miR has antiviral properties, there are other miRs that may inhibit viral 
infection without stimulating an interferon response. The importance of p38 MAPK in RSV 
infection has previously been established, with p38 MAPK inhibitors causing a significant 
decrease in RSV replication.82 However, the role of downstream MK2 (MAPK activated 
protein kinase 2) is less clear, as studies have also shown that RSV sequesters phosphorylated 
p38 MAPK into cytoplasmic inclusion bodies upon infection, which might suggest that 
suppression of downstream kinases would be advantageous for the virus.83 Therefore, an 
analysis of the potential antiviral properties of direct MK2 suppression in RSV infection 
was conducted to determine whether this pathway could be responsible for a portion of the 
antiviral effects shown by miR-744, miR-124a and miR-24.84

IFV

IFV is a single-stranded RNA virus belonging to the Orthomyxoviridae family, in which there 
are 3 types: A, B and C. Type A (influenza A/IFV-A) viruses are subclassified according 
to the 2 proteins present on their surface, hemagglutinin and neuraminidase (H and N, 
respectively).85 There are 16 different types of hemagglutinin and 9 types of neuraminidase 
currently known.86, 87 The subtypes of IFV with the current highest circulation are influenza 
A (H1N1 or H3N2) and influenza B.88 Influenza is an acute and contagious viral respiratory 
disease characterized by fever, headache, myalgia, coryza, sore throat and coughing.89 IFV-A 
has a preference for the upper respiratory tract, but in severe cases it may affect the lower 
respiratory tract (lungs and bronchioles).90

There are many studies describing miR expression profiles after IFV-A infection, with some 
variability possibly due to differences in strains, cell line type, infection time points or 
experimental procedure (Table 3). An interesting study compared miR profiles after infection 
with 2 different strains of IFV-A (H1N1 and H5N1), at 4 time points after exposure (3, 6, 8 
and 24 hours). Similar changes in miR profiles were observed in both strains. However, 
the magnitude of induction occurring in H1N1 infection was much lower than that in 
H5N1 infection. Moreover, there were many differences among time points, suggesting the 
importance of the time.

Among the listed profiles of differentially up-regulated miRs, miR-141, miR-181c, miR-210, 
miR29b, miR-324-5p and miR-663 were up-regulated at 3-hour post-infection with subtype 
H5 as compared to non-infected control cells. At this time point, only miR-141 was also found 
to be slightly induced by the H1 subtype. These findings indicate the importance of strain 
specificity effect in miR profiles and the time-dependent biological phenomenon. Evidently, 
miR-141 which is more highly induced by H5N1 than by H1N1 has an ability to suppress the 
expression of cytokine transforming growth factor (TGF-β2). This was supported by the 
observation that the inhibitory effect could be reversed by its antagonist. TGF-β2 can act 
as both an immunosuppressive agent and a potent proinflammatory molecule through its 
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ability to attract and regulate inflammatory molecules. A previous report has shown that only 
seasonal influenza H1N1 (but not the other avian influenza subtypes) induces a persistent 
expression of TGF-β2. It can be speculated that the modulation of TGF-β2 expression by 
different influenza subtypes via miR-141 might be a critical step to determining the outcome 
of either normal or excessive inflammation progression.91

Results from 2 independent studies propose a functional role of miR-146a in influenza 
infection. The first study used miR global profiling in A549 cells infected by either H1N1 
or H3N2. The only up-regulated miR in response to influenza infection was miR-146a. The 
functional analysis revealed 8 distinct biological processes strongly associated with these 
interactants: Toll-like receptor (TLR) pathway, innate immune response, cytokine production 
and apoptosis. Using a reporter assay and specific anti-miR-146a inhibitor, it was confirmed 
that infection increased the endogenous miR-146a promoter activity and that inhibition 
of miR-146a significantly increased viral propagation.92 The second study also supports 
that miR-146a reduces type I interferon responses by decreasing IFNB and IFN-stimulated 
gene (ISG) expression. IFN levels and IFV replication, regulated by miR-146a inhibitor, was 
partially reversed by depletion of IFNAR 1 or 2. Another significant finding was that miR-146a 
directly targets tumor necrosis factor receptor association factor 6 (TRAF6), which is involved 
in the production of type I IFN, and TRAF6, with overexpression reversing the replication-
promoting effect of miR-146a on IAV. In vivo, inhibition of miR-146a alleviated IFV-induced 
mice lung injury and promoted survival rates by promoting type I antiviral activities. In 
conclusion, down-regulation of miR-146a inhibits IFV replication by enhancing type I IFN 
response through its target gene TRAF6 in vitro and in vivo, suggesting that miR-146a might be 
a potential therapeutic target 93.

Concluding the main findings the different virus infections of epithelial cells, it is noted 
that there are miRs directly binding to viruses and miRs acting indirectly through regulation 
of anti-inflammatory pathways (NF-κB, interferons, TGF-β and TLR pathway). It is also 
observed that different respiratory viruses (RV, RSV and IFV) induce different miR profiles in 
epithelial cells which are the main niche of virus propagation.

VIRUS-INDUCED MIRS PROFILES IN PBMCS

RSV-infected children showed miR-26b expression and low TLR4 mRNA level in PBMCs. In 
vitro, miR-26b mimic markedly down-regulated TLR4 mRNA/protein expression and IFNB/
CCL5 concentrations, while miR-26b inhibitor up-regulated these levels. Therefore, RSV 
infection inhibits TLR4 signaling via up-regulation of miR-26b, which provides a potential 
therapeutic target for preventing and treating RSV infection.99 In whole blood samples from 
RSV-infected infants, it was found that miR-106b-5p, miR-20b-5p, and miR-342-3p were 
upregulated with RSV infection, while miR-320e, miR-320d, miR-877-5p, miR-122-5p and 
miR-92b-5p were down-regulated. Pathway analysis indicated that the dysregulated miRs 
were involved in inflammatory and immune responses, including Wnt, TGF-β, insulin, and T 
and B cell receptor signaling. These results demonstrate that RSV infection is associated with 
a distinct miR fingerprint, inducing inflammatory responses in infants.100

In a previous study, miR-650 is identified as a novel pattern recognition receptor-responsive 
miR which is down-regulated upon stimulation of primary MDDCs, with a variety of different 
microbe-associated molecular patterns related to IFV. A comprehensive target search using 
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in silico analysis, transcriptional profiling and reporter assays reveals that miR-650 regulates 
several well-known interferon-stimulated genes, including IFIT2 and MXA.101

It has been demonstrated that miR-451a is abundant in human serum extracellular vesicles. 
The presence of the latter miR in blood-circulating extracellular vesicles affects the innate 
immune responses of macrophages and dendritic cells to inactivated whole-virus vaccines 
against influenza.102 Interestingly, this miR has also been found to be up-regulated in murine 
dendritic cells when exposed to live IFV-A.103 Another study has evidenced that miR-26b is 
down-regulated in human macrophages in response to both H1N1 and H5N1 infection at 1, 
3 and 6 hours post-infection. Other miRs have been shown to respond to only 1 strain of IFV 
infection; compared to mock infection, miR-3123 was up-regulated after H1N1 infection and 
down-regulated after H5N1 infection at 6 hours post-infection.104 A previous study based 
on human macrophages identifies that miR-342-5p is coupled to the antiviral IFN response 
via the IFN-induced transcription factor, IRF1. Interestingly, this study shows miR-342-5p 
targets mevalonate-sterol biosynthesis using a multi-hit mechanism suppressing the pathway 
at different functional levels: transcriptionally via SREBF2, post-transcriptionally via miR-33 
and enzymatically via IDI1 and SC4MOL. These results reveal a previously unrecognized 
mechanism by which IFN may regulate the sterol pathway. The sterol pathway is known 
to be an integral part of the macrophage IFN antiviral response, and it is shown that miR-
342-5p exerts broad antiviral effects against multiple, unrelated pathogenic viruses such as 
Cytomegalovirus and H1N1.105

The studies of miRs induced by PBMCs (or different subpopulations) are limited until now. A 
limited number of miRs induced by RSV and IFV infection in PBMCs are reported, involving 
regulation of inflammatory and immune response pathways (Table 4). Further studies are 
needed to elucidate the role of miRs in these cell populations.

CONCLUSIONS

To date, only 2 publications have described the differential expression patterns of miRs in 
asthmatic patients after viral infection. The first one showed that the expression of TLR7, 
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Table 4. miRs are up- and down-regulated in PBMCs of asthmatic subjects compared to healthy controls after virus infection (RSV and IFV)
Virus type miR Regulation in 

asthmatics
Role/pathway/target Reference

RSV miR-320e ↓ Pathways: inflammatory, immune response, Wnt, TGF-β, insulin, and T- and B-cell receptor signalling 100
miR-320d ↓ - 100
miR-877-5p ↓ - 100
miR-122-5p ↓ - 100
miR-92b-5p ↓ - 100
miR-106b-5p ↑ - 100
miR-20b-5p ↑ - 100
miR-342-3p ↑ - 100
miR-26b ↑ Target: TLR4, IFN-β, CCL5 99

IFV miR-26a ↓ Target: IFN-α/β 106
miR-650 ↓ Pathway: innate immunity 101

Target: IFIT2, MXA
miR-451a ↑ Pathway: type I IFN 102

Target: IL-6
miR-3123 ↑ - 104
miR-342-5p ↑ Pathway: sterol biosynthesis 105

PBMC, peripheral blood mononuclear cell; RSV, respiratory syncytial virus; IFV, influenza virus.



a crucial pattern-recognition receptor that responses to single-stranded RNA viruses, is 
significantly reduced in alveolar macrophages from patients with severe asthma in association 
with aberrant expression of miR-150, miR-152 and miR-375. Blocking the expression of these 
miRs can restore TLR7 expression and augment the expression of IFN responses to RV. These 
miRs represent a potential therapeutic target in this experimental setting.107

Many studies suggest that the expression pattern of miR-20a, 132 and 22 is similar in primary 
bronchial epithelial cells cultured in monolayer and differentiated air liquid interface 
conditions, which was not affected by asthma.39,108,109 When cells were cultured at air-liquid 
interface conditions and infected by H1N1 for 24 hours, the kinetics of miR-22 expression was 
different in asthmatics compared to non-asthmatics.108 The increased expression of miR-22 
after IFV infection was associated with the suppression of CD147 mRNA, HDAC4 mRNA and 
protein expression in differentiated primary bronchial epithelial cells from non-asthmatics. 
However, in asthmatics miR-22 remained unchanged, while CD147 expression increased 
and HDAC4 remained unaffected. The study concluded that the different profile of miR-22 
expression in differentiated epithelial cells from non-asthmatics may indicate a self-defence 
mechanism against aberrant epithelial responses through suppressing CD147 and HDAC4, 
which is limited in epithelial cells of asthmatics.39,108

In the context of this review, combining the reports from the above comprehensive literature, 
we summarized several miRs potentially involved in virus-induced asthma (Supplementary 
Tables S2 and S3). Many miRs are increased after virus infection or involved actively in innate 
immunity, and are significantly depressed in asthmatic patients (Table 5). For example, 
miR-155 is induced in epithelial cells after RV infection,39,69 while in other studies it seems 
to be reduced in asthmatic epithelium.33,40 In addition, members of the let-7 family that 
seem to play a significant role in RSV infection through regulation of IFNB1 expression.73,74,77 
are reduced in nasal and bronchial biopsies of asthmatic patients compared to healthy 
individuals.33,40,45

These findings point out a new field of study, involving the detailed exploration of miR 
profiles in asthmatics and non-asthmatic individuals, different levels of asthma severity 
or endotypes of asthma in relation to viral exposure. Such studies may not only unravel 
biomarkers for susceptibility but may also characterise the mechanisms that underpin the 
deficient innate immune responses of asthmatic patients. Further, functional experimental 
assays using potential miR-inhibiting or enhancing sequences and chemistries can evaluate 
suitable drug candidates for preclinical toxicity and pharmacokinetics studies prior to 
the onset of clinical trials. These assays may determine new molecules appropriate for 
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Table 5. List of respiratory virus-inducible miRs that are down-regulated in asthmatic subjects
No. Common miRs Cell type Virus type

1 miR-21 Epithelium32 IFV108

2 miR-155 Epithelium33,39,40 RV69, RSV99

3 miR-24 Epithelium32,40 RSV74

4 miR-30a Epithelium32,40 IFV92

5 miR-146a PBMCs (CD4+ T-cells)59 RV69, IFAV92

6 let-7b Epithelium40 RSV74

7 miR-423-5p Epithelium110 IFV92

8 miR-106b PBMCs (CD4+ T-cells)53 RV69, IFV92

9 miR-126 Epithelium33 IFV92

10 miR-29c PBMCs (mononuclear macrophages and CD4+ T-cells)94 IFV92,111,112

11 miR-128 Epithelium39 IFV92

RV, rhinovirus; RSV, respiratory syncytial virus; IFV, influenza virus; PBMCs, peripheral blood mononuclear cells.



therapeutic targeting according to patients' disease status supporting the evolution of 
personalised or precision medicine for chronic diseases such as asthma.
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