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Abstract

Experimental single-cell approaches are becoming widely used for many purposes, includ-

ing investigation of the dynamic behaviour of developing biological systems. Consequently,

a large number of computational methods for extracting dynamic information from such

data have been developed. One example is RNA velocity analysis, in which spliced and

unspliced RNA abundances are jointly modeled in order to infer a ‘direction of change’ and

thereby a future state for each cell in the gene expression space. Naturally, the accuracy

and interpretability of the inferred RNA velocities depend crucially on the correctness of the

estimated abundances. Here, we systematically compare five widely used quantification

tools, in total yielding thirteen different quantification approaches, in terms of their estimates

of spliced and unspliced RNA abundances in five experimental droplet scRNA-seq data

sets. We show that there are substantial differences between the quantifications obtained

from different tools, and identify typical genes for which such discrepancies are observed.

We further show that these abundance differences propagate to the downstream analysis,

and can have a large effect on estimated velocities as well as the biological interpretation.

Our results highlight that abundance quantification is a crucial aspect of the RNA velocity

analysis workflow, and that both the definition of the genomic features of interest and the

quantification algorithm itself require careful consideration.

Author summary

Applied to single-cell RNA-seq data, RNA velocity analysis provides a way to estimate the

rate of change of the gene expression levels in individual cells. This, in turn, enables esti-

mation of what the gene expression profile of each cell will look like a short time into the

future and lets researchers infer likely developmental relationships among different types

of cells in a tissue. An important first step in this type of analysis consists of estimating the

expression levels of unspliced pre-mRNA as well as mature mRNA in each cell. Several

methods are available for this purpose, and in this study we perform a comparison of

these tools and highlight respective advantages and disadvantages. We envision that the
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results will be informative for researchers performing RNA velocity analysis, as well as to

guide future developments in the evaluated and newly proposed quantification methods.

This is a PLOS Computational Biology Benchmarking paper.

Introduction

Single-cell RNA-seq (scRNA-seq) enables high-throughput profiling of gene expression on a

transcriptome-wide scale in individual cells [1–6]. The increased resolution compared to bulk

RNA-seq, where only average expression profiles across populations of cells are obtained, pro-

vides vastly improved potential to study a variety of biological questions. One such question

concerns the dynamics of biological systems, reflected in, e.g., cellular differentiation and

development [7]. While such dynamical processes would ideally be studied via repeated tran-

scriptome-wide expression profiling of the same cells over time, this is not possible with cur-

rent scRNA-seq protocols. Existing analysis methods for so called trajectory inference are

instead applied to one or several snapshots of a population of cells, assumed to comprise all

stages of the trajectory of interest. Many computational methods for trajectory inference from

scRNA-seq have been presented in the literature (reviewed by [8]). These methods typically

use the similarity of the gene expression profiles between cells to construct a (possibly branch-

ing) path through the observed set of cells, representing the trajectory of interest. Projecting

the cells onto this path then provides an ordering of the cells by so called pseudotime.

A different approach to the investigation of developmental processes in scRNA-seq data

instead exploits the underlying molecular dynamics. The feasibility of such an approach is

based on the observation that, with several commonly used library preparation protocols, not

only exonic, but also intronic and exon/intron boundary-spanning reads are obtained [9], and

the insight that considering these in combination with the exonic reads would allow for direct

inference of developmental relationships among cells. Similar observations, coupled with a

simple differential equation model of transcriptional dynamics, were previously used for inves-

tigation of pre-mRNA dynamics and transcriptional and post-transcriptional regulation of

gene expression in exon arrays [10] and bulk RNA-seq [11], as well as estimation of transcrip-

tion, processing and degradation rates in bulk RNA-seq [12]. For scRNA-seq, La Manno et al
[9] used the differential equation model of [10], describing the rate of change of unspliced pre-

mRNA as well as spliced mRNA molecules, as a basis for their investigations. They defined the

RNA velocity for a given gene in a given cell, at a given time point, as the instantaneous rate of

change of the spliced mRNA abundance. Combining the RNA velocities with the estimated

mRNA abundances enables reconstruction of the state of each cell at a timepoint in the near

future. With the increased popularity of RNA velocity applications in scRNA-seq studies, sev-

eral computational tools have been developed, both for the preprocessing of the reads and for

the RNA velocity estimation. The original velocyto software [9] estimates velocities under a

steady-state assumption, and provides both Python and R implementations. More recently,

Bergen et al [13] relaxed the steady-state assumption and considered the full dynamical model,

thereby enabling application of the RNA velocity framework to a broader set of biological sys-

tems and states. The dynamical model is implemented in their scVelo Python package, which

also includes an efficient implementation of the steady-state model.

The input to both velocyto and scVelo effectively consists of two gene-by-cell count matri-

ces; one representing mRNA (“spliced”) abundances and one representing pre-mRNA

(“unspliced”) abundances. In practice, these two types of abundances are typically quantified
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using reads mapping to the exonic and intronic regions of genes, respectively. It is worth

pointing out that this type of quantification differs from the more commonly used ‘gene

expression’ estimation, for which a range of tools are available [4, 14–21]. There, a single

matrix representing the abundance of mature mRNA is returned. Only a subset of the quantifi-

cation tools provide explicit modules or instructions for joint estimation of both mature

mRNA and pre-mRNA abundances, and those are the focus of the present study. Velocyto pro-

vides functions for parsing a BAM file of aligned reads (obtained by other tools such as Cell-
Ranger [4]) and generating the two count matrices. Also dropEst [20] can be used to estimate

exonic and intronic counts from an existing BAM file, e.g., from CellRanger. Dedicated end-

to-end functionality for estimation of spliced and unspliced abundances from raw scRNA-seq

reads is available within the kallisto|bustools software suite [14, 15] and in STARsolo, the sin-

gle-cell mode of the STAR aligner [17]. Furthermore, assuming a properly specified set of ref-

erence sequences, the required counts can also be obtained using other general-purpose tools

for quantification of droplet scRNA-seq data, such as alevin [16].

To our knowledge, no critical evaluation of the characteristics of the spliced and unspliced

count matrices generated by these tools, and the effects on the downstream RNA velocity esti-

mates, has been performed to date. In this study, we therefore used five public experimental

droplet scRNA-seq data sets, generated with the 10x Genomics platform, to compare spliced

and unspliced abundance estimates obtained by velocyto, kallisto|bustools, STARsolo, dropEst
and alevin. Including alternative index definitions and parameter settings, we analyzed each of

the five experimental data sets with a total of up to thirteen different quantification approaches

(tool/parameter/index combinations). We illustrate that the estimates of spliced and unspliced

abundances can be strongly affected by the choice of tool, as well as by the delineation of

exonic and intronic regions; in particular, how genomic regions that are exonic in some anno-

tated transcript isoforms and intronic in others are treated. Moreover, we show that abun-

dance estimation is a critical step of the analysis workflow and that differences at this stage

can have considerable effects on both the RNA velocity estimates and subsequent biological

interpretation.

Methods

Data

In this study, we used five public single-cell RNA-seq data sets, generated by different laborato-

ries using popular droplet-based protocols from 10x Genomics. Three of the five data sets

(Pancreas, Dentate gyrus and Spermatogenesis) comprise cells from dynamically developing

systems, while the remaining two (PFC and OldBrain) contain differentiated cells from adult

mouse brain and were chosen as negative control data sets, assumed to not harbor a strong

dynamic signal.

• The Pancreas data set [22] stems from a study of endocrine development in mouse, and was

acquired with the 10x Genomics Chromium platform, using v2 chemistry. We downloaded

the FASTQ files containing the reads from the cells at stage E15.5 from the Gene Expression

Omnibus, accession number GSE132188. The RNA read length is 151 nt. A subset of this

data set was used for illustration by [13], and is included as an example data set in the scVelo
package. After the respective quantifications, we retained only the cells that are also included

in the scVelo example data set, from which we also retrieved cell type labels. The final pro-

cessed data set used for our analyses contains 3,696 cells.

• The Dentate gyrus data set [23] considers the developing mouse dentate gyrus, and was

acquired with 10x Genomics v1 chemistry. The individual FASTQ files for cells from P12
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and P35 were downloaded from the Gene Expression Omnibus, accession number

GSE95315, and the reads from each time point were combined in a single pair of FASTQ

files, with cell barcodes and UMI sequences in one file and the read sequence in the other.

The RNA read length is 98 nt. Similarly to the Pancreas data set, the Dentate gyrus data set is

also available as an example data set in scVelo, and was used for illustration by [13]. Only

cells that were also studied in the scVelo paper were retained for our analysis, and cell type

labels were obtained from the scVelo example data set. CellRanger, velocyto and dropEst were

not run on this data set since the downloaded FASTQ files were not in the format expected

by these tools. The final processed data set used for our analyses contains 2,914 cells.

• The Spermatogenesis data set [24] consists of steady-state spermatogenic cells from an adult

mouse, and was processed with 10x Genomics Chromium v2 chemistry. The submitted

BAM file was downloaded from the Gene Expression Omnibus, accession number

GSE109033 (sample accession number GSM2928341), and converted to FASTQ format

using the bamtofastq utility (v1.1.2) from 10x Genomics (https://support.10xgenomics.com/

docs/bamtofastq). The RNA read length is 100 nt. Cell type labels were obtained from the

corresponding loupe browser file provided by the authors, downloaded from https://data.

mendeley.com/datasets/kxd5f8vpt4/1. Only cells that were also included in this file were

retained for further analysis after quantification. The final processed data set used for our

analyses contains 1,829 cells.

• The PFC data set [25] consists of cells from the prefrontal cortex of an adult mouse, and was

generated using 10x Genomics Chromium v2 chemistry. Since only limited dynamics is

expected in this data set, it is used here as a negative control. The submitted BAM file was

downloaded from the Gene Expression Omnibus, accession number GSE124952 (sample

accession GSM3559979), and converted to FASTQ format using bamtofastq. The RNA

read length is 98 nt. Only cells annotated to ‘PFC sample 2’ were used, and cell type labels

assigned by the data generators were obtained from the GEO record metadata. The final pro-

cessed data set used for our analyses contains 1,267 cells.

• The OldBrain data set [26] consists of cells from the dissociated brain of a 21-22 months

old mouse, and was generated using 10x Genomics Chromium v2 chemistry. Similarly to

the PFC data set, it is used as a negative control. The submitted BAM file was downloaded

from the Gene Expression Omnibus, accession number GSE129788 (sample accession

GSM3722108), and converted to FASTQ format using bamtofastq. The RNA read length is

57 nt. Only cells annotated to ‘sample 37’ were used, and cell type labels assigned by the data

generators were obtained from the GEO record metadata. The final processed data set used

for our analyses contains 1,823 cells.

Feature sequence extraction

All analyses are based on reference files from Gencode, mouse release M21 [27]. The desired

output from each quantification method is a pair of count matrices; one containing ‘spliced’ or

‘exonic’ counts, and the other containing ‘unspliced’ or ‘intronic’ counts for each gene in each

cell. For simplicity, in the remainder of this paper, the terms ‘spliced’ and ‘exonic’ will be used

interchangeably to refer to the counts representing the processed mRNA abundances, and

‘unspliced’ and ‘intronic’ counts will similarly refer to the counts representing the unprocessed

pre-mRNA abundances.

To enable this type of quantification with alevin and kallisto|bustools (as opposed to the

more standard, gene-level expression quantification), the Gencode reference files were
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processed as follows (also summarized in Table 1). First, we used the BUSpaRse R/Bioconduc-

tor package (v1.0.0) [28] to extract transcript and intron sequences from the genome sequence

and the Gencode annotation GTF file. While the definition of the transcripts is unambiguous,

the BUSpaRse package supports two ways of defining the introns (see S1 Fig for a schematic).

The ‘separate’ approach considers each transcript separately when extracting the intronic

regions (and thus, an intron can overlap with an exonic region of an alternate transcript),

while the ‘collapse’ approach first collapses the isoforms of a gene (taking the union of all the

exonic regions) before defining the introns as any regions of the gene locus that are not exonic

in any of the annotated transcript isoforms of the gene. In effect, the ‘separate’ approach thus

considers exonic and intronic regions on an equal footing, while the ‘collapse’ approach repre-

sents a prior belief that an ambiguous read is more likely to come from an exon than from an

intron. A flanking sequence of length L-1 (where L is the RNA read length of the respective

study) is added on each side of each intron to account for reads mapping across exon/intron

boundaries. For comparison, we also reimplemented the extraction of transcript and intron

sequences (for both the ‘separate’ and ‘collapse’ approaches) directly using functions from the

GenomicFeatures and BSgenome R/Bioconductor packages [29, 30]. For convenience, code

used to extract the features has been included in the eisaR R/Bioconductor package (https://

www.bioconductor.org/packages/eisaR/). In each case, the extracted transcript and intron

sequences were written to a joint FASTA file, summarized in Table 1. Upon comparison of

the two implementations, we noticed that the BUSpaRse release version at the time (v1.0.0)

returned erroneous feature sequences for multi-exonic transcripts and corresponding introns

on the negative strand. This was partly corrected in a later release (v1.2.2) (S2 Fig). However,

for this reason, the features extracted by BUSpaRse were not used for further analyses.

Reference index generation

The combined transcript and intron FASTA files were used to build the following quantifica-

tion indices (summarized in Table 2):

• a joint transcript and intron index for Salmon (v1.0.0) [31]

• an index for Salmon, considering the transcripts as the features of interest and providing the

introns as decoy sequences [32]

• an index for Salmon, considering the introns as the features of interest and providing the

transcripts as decoy sequences

• a joint transcript and intron index for kallisto (v0.46.0) [33]

In addition to the indices based on transcripts and introns, we built one Salmon index from

the original Gencode FASTA file with the annotated transcripts, and one Salmon index from a

FASTA file combining the annotated transcripts and fully unspliced versions of all transcripts.

Table 1. Summary of reference FASTA files containing exonic and intronic sequences. Only files generated by

eisaR were used for creation of quantification indices.

FASTA file name Sequence extraction Description

BUSpaRse-separate BUSpaRse Introns extracted separately from each transcript isoform

BUSpaRse-collapse BUSpaRse Introns extracted after collapsing all transcripts of a gene

eisaR-separate eisaR Introns extracted separately from each transcript isoform

eisaR-collapse eisaR Introns extracted after collapsing all transcripts of a gene

https://doi.org/10.1371/journal.pcbi.1008585.t001
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For all Salmon indices, the complete genome sequence was provided as a decoy sequence [32],

with the aim to exclude reads coming from intergenic regions of the genome. Across data sets

and reference specifications, this excluded between less than 1 and 2.5% of the reads from the

quantification. For the quantification based on spliced-only transcripts, in which the genome

decoy would also capture unambiguously intronic reads, this number was between 2 and 10%.

Finally, we built an index for CellRanger (v3.0.2) [4] and one for STAR (v2.7.3a) [17] based on

the reference genome and GTF file from Gencode. The splice junction database overhang in

the STAR index was set to 150nt, which is at least as long as the read length minus one for all

data sets considered here.

To investigate the effect of the choice of flank length in the intron definition, we further

built Salmon indices (using the ‘separate’ intron definition) with flank lengths equal to the

read length minus 21bp, and the read length minus 41bp. We also built an index for kallisto|

bustools using the kb-python wrapper [15, 33], which uses the ‘separate’ intron definition and

sets the flank length to 30 bp.

Sequence uniqueness estimation

Finally, to aid in the interpretation, we estimated the sequence uniqueness for each gene, rela-

tive to all other genes, separately for each FASTA file generated as described above (Table 1).

The gene uniqueness was defined as the fraction of unique k-mers in the gene, that is, the frac-

tion of the constituent k-mers that are not found in any other gene. For each data set, the k-

mer length was set to be equal to the RNA read length minus 1. The sequence uniqueness for a

gene was calculated in two different ways. In each case, the full FASTA file with transcript and

intron sequences was used as input. First, we estimated separate uniqueness values for the

exonic and intronic parts of a gene, by assigning the transcripts and introns of a gene to dis-

tinct gene IDs in the uniqueness calculations. With this approach, k-mers that are exonic in

one transcript and intronic in another (even if these are isoforms of the same gene) are classi-

fied as non-unique, and thus the uniqueness score of an exon sharing some of its sequence

with an intron of another transcript from the same gene is reduced. Second, we estimated an

overall gene uniqueness, by again considering all (exonic and intronic) sequences, but not

penalizing shared sequence between introns and exons of the same gene.

Quantification

alevin. For each of the Salmon indices described above, we ran alevin (v1.0.0) [16] to esti-

mate exonic and intronic abundances for each annotated gene. It is worth noting that for

abundances obtained with the salmon-spliced-unspliced index, ‘exonic’ and ‘intronic’

Table 2. Summary of reference indices. The full index name is constructed by concatenating the index type to the FASTA file name, e.g. salmon-joint-eisaR-separate

refers to the salmon-joint index built for the sequences in the eisaR-separate FASTA file.

Index type Index building Input reference files (Table 1) Target sequences Decoy sequences

salmon-joint Salmon eisaR-separate, eisaR-collapse spliced transcripts and introns genome

salmon-spliced Salmon transcriptome spliced transcripts genome

salmon-spliced-unspliced Salmon transcriptome + unspliced transcripts spliced and unspliced transcripts genome

salmon-spliced-decoy Salmon eisaR-separate, eisaR-collapse spliced transcripts introns + genome

salmon-introns-decoy Salmon eisaR-separate, eisaR-collapse introns spliced transcripts + genome

kallisto-joint kallisto eisaR-separate, eisaR-collapse spliced transcripts and introns N/A

cellranger CellRanger genome and GTF file whole genome N/A

star STAR genome and GTF file whole genome N/A

https://doi.org/10.1371/journal.pcbi.1008585.t002
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abundances refer directly to spliced mRNA and unspliced pre-mRNA abundance estimates,

respectively, while for all other indices, ‘exonic’ abundances refer to exonic regions and ‘intro-

nic’ abundances to intronic regions. This affects, for example, how reads aligning completely

within an exon are used in the quantification: For the salmon-spliced-unspliced index, such a

read could stem from either the spliced or the unspliced transcript (since also the latter con-

tains the exons) and could contribute to the abundance of either (or both) of them, while with

the other indices, it will be considered ‘exonic’.

For the alevin quantifications, the transcripts and introns (or unspliced transcripts) from

the same gene were manually annotated with different gene IDs, in order to obtain separate

exonic and intronic gene-level abundances despite estimating them jointly. For the indices

with decoys, the exonic gene counts were defined as the counts obtained when quantifying

against the transcript index (with introns as decoys) and the intronic gene counts were simi-

larly obtained by quantifying against the intron index (with transcripts as decoys). Hence, for

these approaches, it is possible for a read that maps equally well to an exonic and an intronic

sequence to be included in both the exonic and the intronic count matrices, and thus be

counted twice.

kallisto|bustools. For each of the kallisto indices, we applied kallisto|bustools (v0.46.0)

[14, 15] to generate a BUS file. Barcodes were corrected using the list of available cell barcodes

from 10x Genomics for the appropriate chemistry version, and the BUS file was sorted using

kallisto|bustools. Next, the BUS file was subset with the capture command of kallisto|bus-
tools to generate separate BUS files to be used for the quantification of exonic and intronic fea-

tures, respectively. The gene-level exonic and intronic counts were subsequently obtained

using the count command. The capture was performed using two different approaches:

• ‘include’, where the features of interest for the quantification at hand are provided to kallisto|

bustools. In other words, the transcript IDs are provided as the -c argument to quantify the

exonic abundances, and the intron IDs are provided to quantify the intronic abundances. In

practice, this means that reads in equivalence classes containing at least one transcript are

retained for the exonic quantification, and reads in equivalence classes containing at least

one intron are retained for the intronic quantification. Hence, equivalence classes containing

both exonic and intronic features will be provided to both the exonic and intronic quantifi-

cation steps.

• ‘exclude’, where the features that are not of interest for the quantification at hand are pro-

vided to kallisto|bustools, and subsequently excluded. In other words, intron IDs are pro-

vided as the -c argument to quantify the exonic abundances, and the transcript IDs are

provided to quantify the intronic abundances, and in addition the -x flag is used to indicate

that the provided IDs represent sequences to be excluded. In practice, this means that only

reads in equivalence classes that don’t contain any introns will be retained for the exonic

quantification, and only reads in equivalence classes that don’t contain any transcripts will

be retained for the intronic quantification. Hence, equivalence classes containing both

exonic and intronic features will be excluded in both steps.

In addition to the manual application of kallisto|bustools as described above, we applied the

kb-python wrapper for quantification based on the corresponding index. With its default set-

tings, it calls kallisto|bustools with the ‘exclude’ capture approach.

Velocyto, dropEst and STARsolo. CellRanger (v3.0.2) [4] and velocyto (v0.17) [9] were

run with default settings to generate exonic and intronic counts based on the CellRanger
index. Also dropEst (v0.8.6) [20] was run on the BAM files output by CellRanger, specifying

the -V flag to instruct dropEst to return exonic, intronic and exon-intron spanning UMI
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count matrices. The intronic and exon-intron spanning UMI counts were summed and used

to represent the unspliced UMI count. STARsolo (v2.7.3a) [17] was run using the STAR index,

specifying the SOLOfeatures argument to generate ‘Velocity’ (exonic and intronic), ‘Gene’

(regular exonic gene expression) and ‘GeneFull’ (reads with any overlap with the gene locus)

counts. Based on these count matrices, we obtained exonic and intronic count matrices in two

different ways. First, we directly used the ‘Velocity’ count matrices as exonic and intronic

counts (below referred to as starsolo). Second, we used the ‘Gene’ count matrix as the exonic

counts, and the difference between the ‘GeneFull’ and ‘Gene’ counts as the intronic counts

(below referred to as starsolo_diff). For genes where the ‘Gene’ counts were higher than the

‘GeneFull’ counts, the intronic count was set to zero. This can happen, for example, for a gene

located in the intron of another gene. In the ‘GeneFull’ quantification, reads mapping to such

a gene are considered ambiguous and therefore discarded. However, they may be assigned in

the ‘Gene’ quantification, if they are compatible with the annotated gene model. An overview

of the evaluated quantification approaches is provided in Table 3.

Cell filtering and data processing. For each quantification, we generated a SingleCellEx-

periment object [34] containing the exonic and intronic counts. Only cells and genes included

by all methods were retained for further analysis. For the Pancreas and Dentate gyrus data sets,

we further subset the objects to only the cells analyzed by [13], for the PFC data we kept only

cells annotated to PFC sample 2, for the OldBrain data only cells annotated to sample 37, and

for the Spermatogenesis data set only cells with an assigned cell type label provided by the data

generators were retained. For visualization purposes, we calculated a single low-dimensional

representation based on the alevin quantification of only the spliced mRNAs (using the origi-

nal transcriptome FASTA file from Gencode). After normalization with scater (v1.14.6) [35],

using the library sizes to define size factors, we extracted 30 principal components from the

Table 3. Summary of quantification approaches. In addition to the strategies included in this table, we applied alevin_sep_gtr after using different flank length

when defining the intronic reference sequences, alevin_sep_gtr in unstranded mode, and the kb-python wrapper around kallisto|bustools. The effects of these modifi-

cations are evaluated in S3 Fig.

Method ID Quant

method

Index Exonic/intronic quantification Capture

type

alevin_coll_gtr alevin salmon-joint-eisaR-collapse joint N/A

alevin_coll_decoy_gtr alevin exonic: salmon-spliced-decoy-eisaR-collapse, intronic: salmon-

introns-decoy-eisaR-collapse

separate N/A

alevin_sep_gtr alevin salmon-joint-eisaR-separate joint N/A

alevin_sep_decoy_gtr alevin exonic: salmon-spliced-decoy-eisaR-separate, intronic: salmon-

introns-decoy-eisaR-separate

separate N/A

alevin_spliced_unspliced_gtr alevin salmon-spliced-unspliced joint N/A

kallisto|bus_coll_excl kallisto|

bustools
kallisto-joint-eisaR-collapse separate exclude

kallisto|bus_coll_incl kallisto|

bustools
kallisto-joint-eisaR-collapse separate include

kallisto|bus_sep_excl kallisto|

bustools
kallisto-joint-eisaR-separate separate exclude

kallisto|bus_sep_incl kallisto|

bustools
kallisto-joint-eisaR-separate separate include

starsolo STAR star joint N/A

starsolo_diff STAR star exonic: Gene, intronic: GeneFull

—Gene

N/A

velocyto velocyto CellRanger joint N/A

dropest dropEst CellRanger joint N/A

https://doi.org/10.1371/journal.pcbi.1008585.t003
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log-transformed normalized count values. The scater package was then used to apply UMAP

[36] with default parameters to the PCA output to obtain a two-dimensional representation

that was used for visualization of estimated velocities.

Visualization

In order to visualize the coverage pattern of reads within genomic regions, we subset the BAM

file generated by CellRanger to only the reads assigned to the retained cell barcodes, using the

subset_bam tool (v1.0) from 10x Genomics (https://github.com/10XGenomics/subset-bam).

Next, we used BEDTools (v2.27.1) [37] to calculate the coverage along the genome, separately

for reads on the positive and negative strand. The bedGraphToBigWig script from Kent Tools

(v20190212) [38] was used to convert the resulting bedGraph file to bigwig format.

Coverage patterns, together with annotated gene models, were visualized using the Gviz R/

Bioconductor package (v1.30.3) [39]. In these figures, the annotated gene models are visualized

by their genomic coordinates, together with coverage tracks of reads aligned to the positive

and negative strand of the genome. The alignments are aggregated across all the retained cells

in the data set. All alignments contained in the BAM file are included; hence, multimapping

reads are represented in all the reported mapping locations. Moreover, no UMI deduplication

is performed and thus the number of reads reported in the coverage tracks are often higher

than the total UMI count returned by any of the counting methods. It is also important to note

that while the gene models and coverage tracks are represented with respect to a genomic ref-

erence for ease of interpretation, both alevin and kallisto|bustools perform the quantification

based on mapping to transcriptomic features, not alignment to the genome. Thus, these plots

are not intended to provide an exact correspondence between mapped reads and estimated

UMI counts, but rather serve as illustrations to aid in the understanding of the causes of differ-

ences between the counts from the various methods.

RNA velocity estimation

SingleCellExperiment objects with exonic and intronic gene-level UMI counts were converted

to AnnData objects [40] using the anndata2ri package v1.0 (https://github.com/theislab/

anndata2ri). The scVelo package (v0.1.24) [13] was then used to normalize the counts and

select the 2,000 most highly variable genes separately for each quantification approach, after

excluding all genes with less than 20 assigned reads across the exonic and intronic components

(only summing across cells with nonzero exonic and intronic count). Note that by default,

scVelo selects highly variable genes based on the spliced counts only. RNA velocity estimates

were obtained using the dynamical model implemented in scVelo. For comparison, we also

performed downstream analysis and visualization of the RNA velocity using only the genes

that were selected (and for which scVelo returned a finite velocity value) by scVelo with all the

quantification approaches.

The scVelo analysis returns a gene-by-cell matrix of estimated velocities, as well as corre-

sponding matrices of normalized (spliced and unspliced) abundances. Based on these matri-

ces, we estimated both gene- and cell-wise Spearman correlations between the different types

of abundances, as well as between the abundances and the velocity estimates. For each gene,

we also fit a linear model without intercept with the normalized spliced abundance as the pre-

dictor and the normalized unspliced abundance as the response, and estimated the R2 for the

model, similarly to the fit_r2 value currently returned by scVelo. A large R2 value indicates

that most cells lie close to a diagonal line in the spliced-unspliced abundance space, suggesting

that the gene is in a steady state across the majority of the cells. We used this to contrast the
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data sets where we do not expect much systematic dynamics to those where we do, expecting a

shift towards larger R2 values in the former. For each cell, scVelo further provides an estimate

of the velocity confidence (representing the average correlation of the velocity vector of the cell

and those of its neighbors). It is worth noting that the velocity calculations are performed sepa-

rately for each input gene, and the resulting values are therefore independent of which other

genes are included in the data set (under the assumption that the normalized abundance values

stay unchanged).

Low-dimensional embedding of velocities

All velocity estimates were embedded into the same low-dimensional representation, calcu-

lated from the spliced-only abundance quantification by alevin as described above. Based on

the estimated velocity vectors and the differences between the expression profiles of different

cells, scVelo calculates a cosine correlation (πij) for each pair of ‘neighboring’ cells. A high

value of πij indicates that the velocity vector of cell i points in the direction from cell i to cell j
in gene expression space. The low-dimensional embedded velocity vector for cell i, calculated

by scVelo, is given by

~vi ¼
X

j6¼i

~p ij �
1

n

� �

~d ij

where ~p ij is the transition probability from cell i to cell j (derived from the cosine correlation

πij), n is the number of cells, and

~d ij ¼
~sj � ~si
k~sj � ~sik

is the normalized difference of the coordinates of cells i and j in the low-dimensional embed-

ding. The fact that ~d ij is normalized implies that the length of ~vi indicates to what extent the

cells to which cell i has high transition probabilities are all located in the same direction from

cell i in the low-dimensional representation. It further implies that the embedded velocities are

potentially more comparable across methods than the original velocity vectors, since the mag-

nitudes of the latter depend on the normalized abundance levels of the genes, and since the

velocity vectors will only be directly comparable between methods if they are based on the

same set of input genes. In order to compare the velocity embeddings across methods, we cal-

culate a concordance score for each cell. The score for cell i is defined as the ratio between the

length of the sum of the embedded velocity vectors for cell i across all quantification methods,

and the sum of the lengths of the individual embedded velocity vectors. In other words, the

score for cell i is given by

ci ¼
k
P

m~vðmÞi k
P

mk~v
ðmÞ
i k

where the sum is taken over all methods m, and ~vðmÞi is the embedded velocity vector for cell i
with method m. If all embedded velocity vectors for cell i point in the same direction in the

low-dimensional representation, this ratio will be close to 1, while if there is less concordance

between the different quantification methods, the ratio will be lower than 1.
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Results

The total UMI count varies between methods

With the aim of characterizing global differences between the counting methods, we first

directly compared the total UMI count assigned to exonic and intronic targets by each of the

methods. We summed up the counts across all cells, either across all genes or within gene sub-

sets stratified by sequence uniqueness (Fig 1, Pancreas data; S4 Fig, OldBrain data). There are

considerable differences in the assigned UMI counts between the methods. Moreover, these

differences are not confined to a small number of susceptible genes, but can be seen across a

large fraction of the expressed genes (S5 Fig).

Overall, dropest gave the highest total UMI counts, mostly resulting from higher counts for

genes with a low degree of sequence uniqueness. This effect is stronger in the data sets with a

higher degree of multi-mapping, such as the OldBrain data set (S4 Fig). We hypothesized that

this effect is due to insufficient UMI collapsing, resulting from the use of only the alignments

designated as primary alignments in the BAM files output by CellRanger. This reported pri-

mary alignment can vary between different reads stemming from the same underlying tran-

script molecule. In such cases, the corresponding UMI could contribute to the count for

multiple different genes. Among the other approaches, starsolo_diff and the alevin-based quan-

tification approaches based on transcript/intron annotations gave the highest total UMI

counts, mainly driven by higher counts for the exonic targets. Also here, the effect is predomi-

nantly driven by genes with a low fraction of unique k-mers. alevin includes multi-mapping

reads in the quantification, thus increasing the counts for these targets. This is in contrast to

kallisto|bustools, velocyto and starsolo, which by default exclude ambiguous reads that map to

multiple genes from the quantification.

Velocyto and starsolo_diff gave the highest UMI counts for genes whose transcripts are all

shorter than the read length (genes in the ‘NA’ category in Fig 1, for which no uniqueness

could be calculated since all transcripts were shorter than the employed k-mer length). How-

ever, velocyto considered most of these reads to be exonic, while starsolo_diff assigned them to

the intronic features. This behaviour of starsolo_diff is likely due to the generation of the intro-

nic counts by subtraction of the exonic count from the full gene locus count. A read which

partly overlaps the gene locus but is not consistent with the annotated gene model would be

included in the ‘GeneFull’ count but not in the ‘Gene’ count, and thus considered an intronic

read, regardless of whether or not the gene actually contains any introns. Similarly, starsolo_
diff assigned higher counts than both velocyto and the default ‘Velocity’ counting of starsolo,

for both exonic and intronic features.

As expected, the alevin-based approaches where exonic and intronic features are quantified

separately, as well as the ‘include’ capture mode of the kallisto|bustools approaches, tend to

give higher total UMI count than quantifying exonic and intronic features jointly with alevin
or running kallisto|bustools in ‘exclude’ capture mode, especially for the ‘separate’ intron defi-

nition. This is likely due to double-counting of some reads that map equally well to an exon

and an intron. The difference between the ‘include’ and ‘exclude’ capture approaches is smaller

for the ‘collapse’ annotation, since in that case, no genomic regions are annotated as both

intronic and exonic for the same gene. The same is true for the difference between the alevin
quantifications employing joint and separate quantification. It is worth noting that the length

of the flanking region chosen when constructing the intronic features for the quantification

also influences the counts (S3 Fig). A shorter flank length typically leads to a lower unspliced

count, since a larger fraction of the read must overlap the intron for the read to be considered

potentially intronic.
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Fig 1. Total UMI count across genes and cells. The bars correspond to the total UMI count, and the split of these into

counts for exonic and intronic targets, for each quantification method in the Pancreas data set. Largely similar patterns

were seen in the other four data sets. In addition to the overall count (top row), the figure shows the total count after

stratifying genes by the overall fraction of unique k-mers (using the ‘collapse’ annotation), indicated in the vertical

panel headers together with the number of genes in the category. The genes for which no uniqueness information
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In addition to the absolute counts, also the fraction of UMIs assigned to unspliced targets

varies between methods, with the largest fraction of intronic counts obtained by alevin_splice-
d_unspliced_gtr. This was expected, given that for this method, the ‘intronic’ features are the

full pre-mRNA molecules and thus contain both exonic and intronic sequences. Hence, also

reads falling in exons may be assigned to the unspliced features.

Individual genes exemplify methodological differences

Next, we aimed to find individual genes whose count patterns exemplify the main methodo-

logical differences among the counting strategies. First, we restricted the set of genes to those

that were selected as highly variable by scVelo, and thus used for velocity estimation, for at

least one counting method. Notably, while a large fraction of these genes were selected across

all quantification methods, there were non-negligible differences between the sets of selected

genes (S6 Fig). In particular, alevin_spliced_unspliced_gtr gave the largest number of unique

highly variable genes, followed by the starsolo variants and alevin_sep_gtr depending on the

data set. For each of the retained genes, we calculated the fraction of the total counts that were

assigned to unspliced features (summarized across all cells). Next, we calculated the standard

deviation, across the quantification methods, of these intronic count fractions and selected

the top 10% of the genes based on this measure. These genes were partitioned into 10 clusters

based on the Pearson correlation dissimilarity (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 � rÞ

p
where ρ is the Pearson correlation)

between the fractions of intron-assigned counts across methods, using hierarchical clustering

with complete linkage (Fig 2). The gene clusters reveal typical cases where the methods yield

different exonic and/or intronic counts. Representative genes for each cluster, selected among

the genes with the highest correlation with the cluster centroid, are discussed below and illus-

trated in S7 and S8 Figs.

Genes with ambiguous regions. (clusters 1, 2, 3, exemplified by Tspan3, Ssr1 and Alg2 in

S7 Fig). For genes in which many of the base positions are annotated to both exons and introns

(in different isoforms), the choice of how to define introns (‘separate’ vs ‘collapse’ approaches)

has a major effect on the quantifications. If exons are collapsed before the introns are defined,

reads falling in ambiguous regions are considered exonic, leading to a higher exonic and a

lower intronic count than with the ‘separate’ intron definition. This effect can be seen in

approximately half of the genes with the highest variability in the fraction of unspliced counts

(Fig 2), and manifests itself via a low fraction of unspliced reads for the alevin and kallisto|bus-
tools approaches based on annotations explicitly obtained with the ‘collapse’ intron definition

approach, as well as dropest. Also starsolo_diff falls in this category, since the intronic regions

are not considered when the exonic counts are estimated (via the ‘Gene’ count), and thus any

read that is compatible with at least one transcript model is considered exonic.

With the ‘separate’ intron definition, running alevin with decoys or kallisto|bustools with

the ‘include’ capture double-counts many reads falling completely in ambiguous regions, giv-

ing high values of both exonic and intronic counts. Conversely, running kallisto|bustools with

‘exclude’ capture discards many reads in ambiguous regions, since they will typically be

assigned to equivalence classes containing both exonic and intronic targets, and this counting

strategy therefore often returns low counts for both types of features. While these effects can

be seen in the absolute counts, they do not necessarily affect the ratio of spliced and unspliced

counts (S7 Fig).

could be calculated (the ‘NA’ category) are those for which all transcripts are shorter than the chosen k-mer length

(which was set to the read length minus one; here 150nt).

https://doi.org/10.1371/journal.pcbi.1008585.g001
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Fig 2. Clustering of genes based on the fraction of unspliced counts. Top panel: Heatmap showing the unspliced UMI

count fraction, across all cells, in the Pancreas data. The dendrogram was cut into 10 clusters, indicated by colors to the

left of the heatmap. Bottom panel: Relative total count assigned to each gene by the different methods, stratified by gene

cluster.

https://doi.org/10.1371/journal.pcbi.1008585.g002
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For genes with many ambiguous regions, velocyto often returns a relatively low number of

spliced counts, and consequently a large fraction of unspliced counts (clusters 1, 2). This likely

follows from the default ‘permissive’ counting logic where, essentially, a read contributes to

the spliced count only if it is consistent with the exonic region of a transcript model, but does

not map to an intronic region or an exon/intron boundary of any other transcript model. Also

starsolo often assigns a low total count for this group of genes.

Genes overlapping (introns of) other genes. (clusters 4, 5, 6, 9, 10, exemplified by Rassf1,

Gm21983, Chkb, Cnot6 and Tmem120b in S8 Fig). Overlaps between genes can take many dif-

ferent shapes; exons of one gene can overlap either introns or exons of other genes, and the

overlap can be on the same or on opposite strands. Reads falling in an exon of one gene and in

an intron of another gene on the same strand are considered ambiguous, and are therefore dis-

carded, by kallisto|bustools, velocyto and starsolo. In contrast, dropest and alevin do not discard

such reads. dropest preferentially assigns the reads to the exonic region, while alevin instead

often distributes the reads between the two features. Thus, alevin tends to give a higher fraction

of unspliced counts, and in many cases also a higher total count, for genes with other genes in

their introns (cluster 9, exemplified by Cnot6 in S8 Fig). It is worth observing that alevin will

often also assign reads to the gene located within the intron (Gm12191 in S8 Fig, which is the

gene in the intron of Cnot6). As for the previous category of genes, alevin with the decoy

approach double-counts reads mapping equally well to an exon and an intron, regardless of

whether or not the exon and the intron belong to the same gene.

In cases of exonic overlap between genes on the same strand (clusters 5 and 6, exemplified

by Gm21983 and Chkb in S8 Fig), all methods except alevin consider the corresponding reads

ambiguous and discard them, leading to a large difference in the total counts (Fig 2). The main

difference between many genes in clusters 5 and 6 is that in cluster 6, the gene of interest over-

laps partly with an intron of the other gene, and the reads in the overlapping region may be

counted by the ‘Gene’ approach of starsolo_diff and by dropest. In cluster 5, the gene of interest

overlaps only with exons of the other gene in the region.

Reads falling in overlapping regions of genes on opposite strands are not considered ambig-

uous if the strandedness of the reads is taken into account. However, not accounting for the

strandedness (illustrated here by the behaviour of kallisto|bustools and dropest) implies treating

such overlaps similarly to same-strand overlaps. For example, for a gene located inside the

intron of another gene on the opposite strand, all reads not mapping across an exon-exon

junction will map equally well to the two genes and thus be discarded (cluster 10, exemplified

by Tmem120b in S8 Fig). As before, dropest tends to give preference to exonic overlaps, while

the reads falling in the intronic regions in the two overlapping genes are often discarded.

Exonic overlaps between genes on opposite strands also leads to a decrease in the number of

assigned reads if the strandedness is not taken into account (exemplified by Rassf1 in S8 Fig).

The assigned count can also increase by performing the quantification in an unstranded man-

ner. For example, reads mapping to the negative strand, not overlapping any feature there but

overlapping a gene on the positive strand, can be assigned to the latter. Intronic reads resulting

from discordant priming from poly-T sequences, as observed by [9], would also be incorpo-

rated with an strand-agnostic counting approach. The observation of [9] could be reproduced

in our data sets (S9 Fig), and the incorporation of opposite-strand reads by kallisto|bustools
and dropest is exemplified by Ssr1 and Brsk2 in S7 Fig.

Genes with reads only partly overlapping the gene body. (cluster 8, exemplified by

1810019D21Rik in S7 Fig). In some cases, reads extend outside the annotated gene body. The

starsolo_diff ‘GeneFull’ count incorporates these reads, while the ‘Gene’ count from the same

method does not, since they are not compatible with the annotated gene model. As an effect,

the difference between them (which is used as the intronic count) can be high, even in cases
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where the gene does not contain introns, and the total count assigned by starsolo_diff is higher

than most of the other methods. Velocyto and, for some genes in the cluster, the kallisto|bus-
tools methods, yield a high spliced count, while the alevin methods, dropest and starsolo return

lower values.

Reads falling in purely exonic regions. Across the clusters, alevin_spliced_unspliced_gtr
often shows a different read assignment compared to the other methods. As previously noted,

there is a fundamental difference between the reference used for alevin_spliced_unspliced_gtr
(which considers full spliced and unspliced transcripts) and those used for the other methods

(which consider transcripts and introns). This implies that reads falling completely in exonic

regions, from the point of view of alevin_spliced_unspliced_gtr, are equally likely to come from

a spliced as an unspliced molecule, while the other methods consider such reads unambigu-

ously exonic. In practice, this can lead to a lower exonic count and a more even exonic/intro-

nic count ratio for alevin_spliced_unspliced_gtr than for the other methods. This is exemplified

by Map1b (cluster 10) in S7 Fig.

Large differences in inferred velocities between quantification methods

In the previous sections we showed that there are noticeable differences between the quantifi-

cation methods, in terms of the total number of UMI counts as well as the distribution of these

between spliced and unspliced targets. Next, we asked whether these differences could be seen

also in the velocity estimates from scVelo, and in the embedding of these in a low-dimensional

representation of the cells, which is arguably the most widely used way of interpreting RNA

velocity estimates. For our analyses, we provided scVelo with raw spliced and unspliced UMI

count matrices. These were then filtered and normalized by scVelo, and the RNA velocity was

estimated for each input gene and each cell. Velocities were estimated for either the individual

sets of 2,000 highly variable genes from each quantification method, or the set of genes that

were selected by scVelo (and obtained a valid velocity value) with all the quantifications.

Interestingly, the estimated velocities consistently showed a lower correlation between

methods than the normalized (spliced, unspliced or aggregated) abundances, when calculated

across either cells or genes (S10 Fig). Within a cell, there was also a relatively strong correlation

between the total gene abundance and the absolute value of the velocity (S11 Fig). This should

be factored in when comparing absolute velocities across genes, and it may also suggest that

velocity estimates are not directly comparable across quantification methods if the number of

assigned reads are very different. For a given gene, the fraction of unspliced counts was also

moderately positively correlated with the estimated velocity. The spliced and unspliced abun-

dances were positively correlated for all quantification methods, suggesting that the intronic

signal is indeed real and of potential biological relevance, rather than just the result of, e.g.,

contamination by genomic DNA. Finally, we noticed a moderate positive correlation between

the abundance of a gene and the likelihood of the velocity fit in four of the five data sets (exem-

plified by the Pancreas data set in S12 Fig), while it was substantially lower in the Dentate

gyrus data set (S13 Fig).

The velocity estimates were visualized by embedding them into a UMAP representation

based on the alevin_spliced_gtr quantification (note that the alevin_spliced_gtr counts are not

used to estimate the velocity, since no intronic counts are estimated). The UMAP embedding

was compared to other types of embeddings (PCA, tSNE, UMAP based on aggregated abun-

dances, unspliced abundances only or spliced and unspliced abundances concatenated), in

terms of the length of the embedded velocity vectors as well as the average distance between

the velocity vector of each cell and its 10 nearest neighbors. These comparisons suggested that

the differences between embeddings were relatively minor, but that UMAP often provided a
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slightly more interpretable representation (S14 and S15 Figs). Embeddings based solely on

unspliced abundances were the least interpretable from a velocity perspective.

Differences in velocity estimates directly affect biological interpretation

From the UMAP visualizations it is immediately apparent that the differences in the estimated

abundances between the quantification methods directly influence interpretation, e.g., indi-

cated by streamlines pointing in different directions in certain regions of the plots (S16–S18

Figs). These differences are not captured by the velocity confidence estimates returned by

scVelo for an individual method, which are often high for all the cells (S19–S21 Figs), suggest-

ing that the differences between methods are systematic rather than just the result of random

fluctuations or uncertainty in the velocity estimation. The similarity among the low-dimen-

sional velocity embeddings based on different quantification methods increased somewhat

when they were derived from the set of shared genes (Fig 3). However, considerable differences

were still seen, indicating that the quantification does not only influence the velocity interpre-

tation via the selection of genes.

The lack of unambiguous ground truth complicates a direct evaluation of the accuracy of

velocity estimates from the different quantification methods. In addition, the typical way of

interpreting velocity estimates by means of embedded stream lines in a low-dimensional space

provides a relatively coarse-grained measure. Nevertheless, Fig 3 and S16 Fig suggest that for

the Pancreas data, the largest differences between methods appear in the differentiated Alpha,

Beta, Delta and Epsilon cell types (left). Here, alevin_sep_decoy_gtr, dropest and the kallisto|

bus methods induce (partly or fully) a ‘back-flow’, with streamline arrows pointing from the

differentiated cells back towards the pre-endocrine cells. A similar observation can be made

for alevin_spliced_unspliced_gtr and kallisto|bus_sep_incl for the pre-endocrine cells. The

cycling nature of the ductal cells is visible in the embeddings of velocities from most quantifi-

cation methods, with the exception of alevin_spliced_unspliced_gtr, alevin_sep_decoy_gtr, kal-
listo|bus_coll_incl, and kallisto|bus_sep_incl.

Also for the Spermatogenesis data (Fig 3 and S17 Fig), the largest differences between meth-

ods are seen towards the end of the developmental trajectory. Again, many methods (with the

exception of alevin_sep_gtr and kallisto|bus_sep_excl) induce a back-flow, with streamline

arrows pointing from the late round spermatids towards the mid round spermatid cluster. In

most cases, this back-flow continues through (part of) the mid round spermatid cluster as well.

In the Dentate gyrus data (S18 Fig), the lowest concordance between velocities based on dif-

ferent quantifications is seen for the cells in the granule cell lineage (middle part). While some

quantifications indicate a direction largely from neuroblasts to granule cells (e.g., alevin_
sep_gtr, kallisto|bus_coll_incl), others indicate a strong movement in the opposite direction

(e.g., alevin_sep_decoy_gtr, kallisto|bus_sep_incl). All methods except kallisto|bus_coll_excl,
kallisto|bus_sep_excl and kallisto|bus_coll_incl show a strong dynamic flow within the mature

granule cells, and there is further disagreement within the astrocyte cell cluster. Overall, the

results from these three data sets highlight that the biological interpretation can be strongly

affected by the choice of quantification method.

Negative control data

The PFC and OldBrain data sets were used to compare the methods in terms of their perfor-

mance on ‘negative control’ data sets, that is, data sets where no strong systematic dynamics

are expected. While it is intrinsically hard to find a living biological system without dynamics,

we expected to find a larger fraction of genes in a steady state, in which the expression levels

are maintained at a constant level over time. Under the assumption of a constant degradation
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and splicing rate for a gene across cells, we would thus expect a linear relationship between the

observed spliced and unspliced abundance for a gene, across all cells. Similarly to scVelo, we

therefore fit a zero-intercept line for the unspliced vs spliced normalized abundance for each

gene across all cells, and estimate the R2 for this line. A high value suggests that the gene is in a

steady state across a large fraction of the cells in the data set. Indeed, all methods showed gen-

erally higher R2 values for the negative control data sets (Fig 4), with a smaller difference seen

for alevin_spliced_unspliced_gtr, kallisto|bus_coll_incl and kallisto|bus_sep_incl. The three

quantification methods that detected the strongest differences between positive and negative

control datasets were alevin_coll_gtr, alevin_sep_gtr and starsolo.

Discussion and conclusions

In this study, we have compared different counting strategies for obtaining the spliced and

unspliced count matrices required for RNA velocity analysis. Using five experimental droplet

scRNA-seq data sets, we have shown that there are considerable differences between the count

matrices obtained by different methods that are widely used in the field, and that these differ-

ences directly influence the downstream analysis and interpretation of the estimated velocities.

This effect is mediated partly by an impact on the genes that are selected for inclusion by

scVelo, but differences affecting the interpretation remain even when the same set of genes is

used across all methods.

Fig 3. Concordance of velocity projections. Each panel colors the UMAP embedding of the cells by the concordance of velocity projections across methods for one of

the three data sets expected to contain systematic dynamics. The concordance for a given cell was defined as the ratio between the length of the sum of the velocity

embeddings for the different quantification methods, and the sum of the lengths of the same embedding vectors. A value close to 1 indicates that the embedded

velocity vectors all point in the same direction, while a low value indicates larger deviations among them. For each data set, the top panel shows the concordance

between the velocity embeddings derived based on all the 2,000 genes selected by scVelo for each method, while the bottom panel shows the concordance between the

embeddings obtained when only the genes selected for all methods were considered (see also S6 Fig).

https://doi.org/10.1371/journal.pcbi.1008585.g003
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Given the relative immaturity of the RNA velocity field, and the lack of a generally accepted

method for generating realistic, simulated data with known ground truth for this application,

it is challenging to rank the quantification methods in terms of absolute performance. How-

ever, some clear themes emerge from our analysis, and are summarized below and in Table 4.

Fig 4. Estimated R2 for linear fit of unspliced vs spliced abundance. The box plots show the distribution, across genes, of the estimated R2 value for a linear fit of the

unspliced vs spliced normalized abundances estimated by scVelo. The Kolmogorov-Smirnov statistic indicated within each panel is obtained by comparing the

estimated R2 values between the three data sets expected to contain a dynamical signal (Dentate gyrus, Pancreas, Spermatogenesis) and the two data sets where a

dynamical signal is not expected (OldBrain, PFC). The y-axis is truncated at a value of -1, but the box plots represent the full set of values.

https://doi.org/10.1371/journal.pcbi.1008585.g004

PLOS COMPUTATIONAL BIOLOGY Preprocessing choices affect RNA velocity results for droplet scRNA-seq data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008585 January 11, 2021 19 / 26

https://doi.org/10.1371/journal.pcbi.1008585.g004
https://doi.org/10.1371/journal.pcbi.1008585


First, counting exonic and intronic reads separately, without consideration of whether the

read could have resulted from the other type of feature (exemplified here mainly by alevin_
sep_decoy_gtr and kallisto|bus_sep_incl) leads to double-counting of reads, and velocities that

agree less well with expectations.

Second, not considering the strandedness of the reads from 10x Genomics (here exempli-

fied by the kallisto|bustools variants, dropest, and by explicitly running alevin in unstranded

mode) implies that many reads in regions where genes on different strands overlap each other

(exonically or intronically) are considered ambiguous. Depending on the method, these reads

may consequently be excluded from the quantifications. However, at the same time it provides

the ability to include reads resulting from discordant internal priming.

Third, deriving the intronic reads by subtracting the ‘Gene’ count from STARsolo from the

corresponding ‘GeneFull’ count (here denoted starsolo_diff) sometimes has unexpected conse-

quences, since the ‘GeneFull’ counting considers all reads that overlap the gene locus, while

the ‘Gene’ counting requires that the reads are consistent with the transcript model. Thus, a

gene can obtain a nonzero ‘intronic’ count despite completely lacking annotated introns.

Moreover, genes located within introns of other genes will often obtain a nominally negative

intronic UMI count since non-junction-spanning reads mapping to the former will be consid-

ered ambiguous and discarded in the ‘GeneFull’ counting.

Fourth, for 3’ tag data such as the 10x Genomics data we have considered in this study,

quantifying the spliced and unspliced transcripts (rather than spliced transcripts and introns

only) implies that for a large fraction of the reads, it is difficult to resolve whether they stem

from the spliced or unspliced target. Thus, this type of reference may be more suitable for full-

length scRNA-seq protocols, where reads are sampled across the entire length of the transcript.

Among the counting strategies contrasted in this manuscript, alevin_sep_gtr, kallisto|bus_
sep_excl, starsolo and alevin_coll_gtr provided velocity embeddings most in line with

Table 4. Summary of the evaluated quantification methods. The first group of methods are recommended for use with droplet scRNA-seq data, owing to their good

performance on the experimental data sets used in this study. The last group of methods are not recommended for use with droplet scRNA-seq data. We emphasize

that this table provides a snapshot of the capabilities of the evaluated versions of the respective methods. In addition, the relative performance may be different for

data from full-length scRNA-seq protocols.

Method ID Agreement1 Strand-

aware

Counting of multi-gene

reads

Comments

alevin_sep_gtr good yes yes

alevin_coll_gtr good yes yes

kallisto|bus_sep_excl good no no Reads in ambiguous regions typically discarded

starsolo good yes no

alevin_coll_decoy_gtr variable yes yes

velocyto variable yes no

kallisto|bus_coll_excl variable no no

alevin_sep_decoy_gtr poor yes yes Reads in ambiguous regions double-counted.

alevin_spliced_unspliced_gtr variable yes yes 3’ tag protocols does not provide enough information for spliced/unspliced

resolution.

dropest poor no partially Insufficient UMI collapsing

kallisto|bus_coll_incl poor no no

kallisto|bus_sep_incl poor no no Reads in ambiguous regions double-counted.

starsolo_diff variable yes partially Non-zero unspliced count possible even without introns; nominally negative

unspliced count possible.

1Agreement with expected velocity field for the experimental data sets included in this study.

https://doi.org/10.1371/journal.pcbi.1008585.t004
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expectations in the three real data sets. The methods are also relatively similar in terms of run

time, and considerably faster than running CellRanger+velocyto. However, even among these

well-performing methods, there are large differences in the assigned counts as well as in the

handling of ambiguous reads and genomic regions.

Going forward, we expect that improvements in counting strategies for scRNA-seq data,

specifically tailored for RNA velocity preprocessing, will likely come alongside an increased

understanding of the read generation process and the biases underlying specific scRNA-seq

library preparation protocols, and that different counting strategies may be optimal for differ-

ent types of scRNA-seq data. An increased understanding of the read generation process will

also enable realistic simulation of sets of spliced and unspliced scRNA-seq reads, which in turn

will provide an improved platform for objective evaluation of the performance of counting

strategies.

Supporting information

S1 Fig. Schematic of the intron definition with the ‘collapse’ and ‘separate’ approaches.

With the ‘collapse’ approach, the annotated isoforms of a gene are first collapsed before the

introns are defined as any non-exonic region of the gene locus. With the ‘separate’ approach,

introns are separately defined for each isoform. After extracting the intronic regions, a flanking

region is added to each side of the introns to accommodate reads overlapping exon/intron

boundaries.

(PDF)

S2 Fig. Comparison of feature extraction tools. A. The number of transcripts extracted by

BUSpaRse and eisaR that have the correct or incorrect sequence, respectively, as determined

by comparing to the transcriptome fasta file downloaded from Gencode. Transcripts are strati-

fied by whether or not they are multi-exonic, and by the strand. B. The number of transcripts

for which the lengths of the introns inferred by BUSpaRse and eisaR are correct or incorrect,

respectively, as determined by comparing to the introns extracted by the intronsByTran-
script function from the GenomicFeatures Bioconductor package (‘separate’ intron defini-

tion). C. The number of single-transcript genes for which the lengths of the introns inferred by

BUSpaRse and eisaR are correct or incorrect, respectively, as determined by comparing to the

introns extracted by the intronsByTranscript function from the GenomicFeatures Bio-

conductor package (‘collapse’ intron definition).

(PDF)

S3 Fig. Evaluation of the impact of changing the flank length in the intron extraction, as

well as running alevin_sep_gtr in unstranded mode, in the Spermatogenesis data set. In

each case, the methods are compared to the methodologically most similar among the methods

discussed in the main text. alevin_sep_flankLXX_gtr, with XX set to either 20 or 40, corre-

sponds to running alevin with introns defined using the ‘separate’ approach, and using a flank

length equal to the read length minus (XX+1). The alevin_sep_gtr method corresponds to set-

ting XX = 0. Further, alevin_sep_gtr_unstranded corresponds to running alevin in unstranded

mode. The kb-python wrapper uses the same type of intron definition and capture approach as

kallisto|bus_sep_excl, but fixes the flank length to 30bp, whereas for kallisto|bus_sep_excl, the

read length minus 1 was used. Top row: scatter plot of the total spliced and unspliced count

assigned to genes with the different methods. Bottom row, left: Spearman correlation between

abundances and velocities for each pair of methods. Bottom row, right: A classical multidi-

mensional scaling (MDS) plot based on the Euclidean distances among velocity values for the

set of shared genes. The various modifications to the methods have an impact on the derived
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velocities; however, the modified methods still cluster close to the corresponding base method.

(PDF)

S4 Fig. Total UMI count across genes and cells. The bars correspond to the total UMI count,

and the split of these into counts for exonic and intronic targets, for each quantification

method in the OldBrain data set. In addition to the overall count (top row), the figure shows

the total count after stratifying genes by the overall fraction of unique k-mers (using the ‘col-

lapse’ annotation), indicated in the vertical panel headers together with the number of genes in

the category. The genes for which no uniqueness information could be calculated (the ‘NA’

category) are those for which all transcripts are shorter than the chosen k-mer length (which

was set to the read length minus one; here 56nt).

(PDF)

S5 Fig. Stratification of genes based on whether or not they obtain the same (spliced/

unspliced, respectively) count with different counting methods. For each pair of methods,

the figure shows the fraction of genes that obtain the same count with the two methods (both

overall and after excluding the genes assigned a count of 0 with both methods) as well as the

fraction of genes where the difference between the assigned counts is non-zero, greater than

5% (of the average count assigned by the two methods) or greater than 10%.

(PDF)

S6 Fig. Overlaps among the sets of highly variable genes selected by scVelo based on the dif-

ferent quantification approaches. Each column corresponds to the number of genes shared

by a particular set of methods (indicated by black dots).

(PDF)

S7 Fig. Examples of genes illustrating major differences among the quantification meth-

ods. The coverage tracks show the number of reads overlapping each base position, on the pos-

itive (blue) or negative (red) strand. The isoforms of the main gene in focus of each panel are

similarly shown in blue (positive strand) or red (negative strand). Any overlapping features

from other genes are shown in the bottom annotation track, colored in muted blue or red,

depending on the annotated strand. The bottom panels show the total exonic and intronic

UMI count assigned to the displayed gene by the different quantification methods, as well as

the fraction of unspliced counts, and the fraction of unique k-mers in the gene overall, as well

as in the exons and introns.

(PDF)

S8 Fig. Additional examples of genes illustrating major differences among the quantifica-

tion methods. The coverage tracks show the number of reads overlapping each base position,

on the positive (blue) or negative (red) strand. The isoforms of the main gene in focus of each

panel are similarly shown in blue (positive strand) or red (negative strand). Any overlapping

features from other genes are shown in the bottom annotation track, colored in muted blue or

red, depending on the annotated strand. The bottom panels show the total exonic and intronic

UMI count assigned to the displayed gene by the different quantification methods, as well as

the fraction of unspliced counts, and the fraction of unique k-mers in the gene overall, as well

as in the exons and introns.

(PDF)

S9 Fig. Average coverage of genomic regions around polyA/polyT stretches. Considered

polyA/polyT stretches are at least 15 nt, with at most one mismatch per 15 nt in introns of

genes on the forward and reverse strands. Similarly to [9], we observe consistent coverage
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around discordant internal priming regions.

(PDF)

S10 Fig. Cell- and gene-wise Spearman correlations of spliced, unspliced and total normal-

ized abundance, as well as velocity estimates, between each pair of quantification methods.

(PDF)

S11 Fig. Spearman correlation between total normalized abundance (from scVelo) and

estimated velocity, and between spliced and unspliced normalized abundances, either by

gene or by cell, for all quantification methods.

(PDF)

S12 Fig. Spearman correlation between average total normalized abundance across cells

(from scVelo) and estimated likelihood of the velocity fit, for all quantification methods

(Pancreas data).

(PDF)

S13 Fig. Spearman correlation between average total normalized abundance across cells

(from scVelo) and estimated likelihood of the velocity fit, for all quantification methods

(Dentate gyrus data).

(PDF)

S14 Fig. Distribution of the length of the embedded velocity vectors based on different quan-

tification methods (panels), in different reduced dimension representations, for the Pan-

creas data set. Since the displacement vectors in the low-dimensional representation are

normalized before a weighted average is taken to determine the velocity embedding for a given

cell, the length of the velocity embedding indicates to what extent the cells to which a cell i has a

high transition probability are all located in the same direction from cell i in the low-dimensional

representation. Consequently, the length of the embedded velocity vector provides one way of

measuring how interpretable the low-dimensional representation is, from a velocity point of

view. While overall only small differences are seen between dimension reductions, UMAP gener-

ally showed a small improvement in interpretability compared to PCA and TSNE, and using

only the unspliced counts as the basis for the embedding was typically less informative.

(PDF)

S15 Fig. Distribution of the average similarity (dot product) between embedded velocity

vectors among neighboring cells across a range of reduced dimension representations, for

the Pancreas data set. A high similarity suggests that velocity streamlines in the reduced

dimension representation are more easily interpretable, since they are designed to summarize

the dynamics across neighbouring cells.

(PDF)

S16 Fig. Inferred velocities in the Pancreas data set, visualized on top of the same UMAP

representation.

(PDF)

S17 Fig. Inferred velocities in the Spermatogenesis data set, visualized on top of the same

UMAP representation.

(PDF)

S18 Fig. Inferred velocities in the Dentate gyrus data set, visualized on top of the same

UMAP representation.

(PDF)
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S19 Fig. Velocity confidence estimates (similarity between the estimated velocities for a

cell and those of its neighbors) obtained by scVelo, for the Pancreas data set.

(PDF)

S20 Fig. Velocity confidence estimates (similarity between the estimated velocities for a

cell and those of its neighbors) obtained by scVelo, for the Spermatogenesis data set.

(PDF)

S21 Fig. Velocity confidence estimates (similarity between the estimated velocities for a

cell and those of its neighbors) obtained by scVelo, for the Dentate gyrus data set.

(PDF)
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