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Abstract

Many brain-based disorders are traditionally diagnosed based on clinical interviews and behavioral 

assessments, which are recognized to be largely imperfect. Therefore, it is necessary to establish 

neuroimaging-based biomarkers to improve diagnostic precision. Resting-state functional 

magnetic resonance imaging (rs-fMRI) is a promising technique for the characterization and 
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classification of varying disorders. However, most of these classification methods are supervised, 

i.e., they require a priori clinical labels to guide classification. In this study, we adopted various 

unsupervised clustering methods using static and dynamic rs-fMRI connectivity measures to 

investigate whether the clinical diagnostic grouping of different disorders is grounded in 

underlying neurobiological and phenotypic clusters. In order to do so, we derived a general 

analysis pipeline for identifying different brain-based disorders using genetic algorithm-based 

feature selection, and unsupervised clustering methods on four different datasets; three of them—

ADNI, ADHD-200, and ABIDE—which are publicly available, and a fourth one—PTSD and PCS

—which was acquired in-house. Using these datasets, the effectiveness of the proposed pipeline 

was verified on different disorders: Attention Deficit Hyperactivity Disorder (ADHD), 

Alzheimer’s Disease (AD), Autism Spectrum Disorder (ASD), Post-Traumatic Stress Disorder 

(PTSD), and Post-Concussion Syndrome (PCS). For ADHD and AD, highest similarity was 

achieved between connectivity and phenotypic clusters, whereas for ASD and PTSD/PCS, highest 

similarity was achieved between connectivity and clinical diagnostic clusters. For multi-site data 

(ABIDE and ADHD-200), we report site-specific results. We also reported the effect of 

elimination of outlier subjects for all four datasets. Overall, our results suggest that 

neurobiological and phenotypic biomarkers could potentially be used as an aid by the clinician, in 

additional to currently available clinical diagnostic standards, to improve diagnostic precision. 

Data and source code used in this work is publicly available at https://github.com/xinyuzhao/

identification-of-brain-based-disorders.git.
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INTRODUCTION

A neuropsychiatric disorder is a brain-based dysfunctional condition associated with 

impairments of affect, cognition and behavior. Many factors contribute to these disorders, 

e.g., genes, family history, substance abuse, traumatic brain injury, life experience, 

environmental conditions etc. Conventional diagnosis primarily consists of clinical 

interviews and standardized psychometric testing, which are recognized to be largely 

imperfect [1–3]. Because neuropsychiatric pathologies are complex, which can lead to 

inconsistencies between clinicians’ diagnoses, there is increasing interest in identifying non-

invasive neuroimaging biomarkers. The most commonly used approach for achieving this is 

by employing supervised learning models such as support vector machines [4, 5], artificial 

neural networks [6], and decision trees [7], wherein the model learns the associations 

between patterns in the data and diagnostic labels using a training data set. This model can 

then be tested on an independent validation data set. However, the problem with such an 

approach is that the model itself is based on clinical labels, and hence, it cannot be used to 

uncover novel structures and groupings from the data. The problem can be addressed by 

employing unsupervised models. Unsupervised models have been traditionally used to 

uncover clusters of subjects with similar patterns of imaging data, with applications in 

identifying disease clusters [8, 9] as well as sub-clusters [10] within a disease. Most of these 
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studies use k-means clustering [11, 12]. However, it is besieged with methodological issues 

such as a priori choice of clusters needed in k-means, and the large dimensionality of 

imaging data necessitates some type of dimensionality reduction for clustering to work as 

intended. Problematically, this last step is either not carried out [13], or carried out by 

preselecting features not from the structure in the data, but by some external considerations 

such as previous findings in a given disorder [14, 15]. Such approaches rob the method of its 

advantages of being truly data-driven, in that the clusters obtained from imaging data are 

seldom compared to data obtained from clinical diagnostic criteria and related behavioral 

phenotypes. This is important because disease clusters obtained from any method, be it 

imaging or another diagnostic tool, should be linked with the behavioral phenotype. In this 

study, we address the above shortcomings using resting state functional magnetic resonance 

imaging (rs-fMRI) data obtained from five different neuropsychiatric disorders: Attention 

Deficit Hyperactivity Disorder (ADHD), Alzheimer’s Disease (AD), Autism Spectrum 

Disorder (ASD), Posttraumatic Stress Disorder (PTSD) and Post-Concussion Syndrome 

(PCS). We provide a brief introduction to these disorders in the following paragraphs.

Attention Deficit Hyperactivity Disorder

ADHD is a psychiatric disorder characterized by impulsiveness, inattention, and 

hyperactivity. This condition affects about 5% of children and adolescents worldwide [16]. 

Symptoms include difficulty staying focused and paying attention, difficulty controlling 

behavior, and hyperactivity. ADHD has three subtypes: ADHD hyperactive-impulsive 

(ADHD-H), ADHD inattentive (ADHD-I), and ADHD combined hyperactive-impulsive and 

inattentive subtype (ADHD-C). Because symptoms vary from person to person, ADHD can 

be di cult to identify. In addition, there has been a debate that ADHD is over-diagnosed in 

children and adolescents by current clinical criterion [17].

Alzheimer’s Disease

AD is the most commonly diagnosed type of dementia in elderly patients [18], which is 

characterized by memory dysfunction, cognitive decline, etc. Before the onset of dementia, 

patients may develop an intermediate stage of dysfunction known as mild cognitive 

impairment (MCI). Patients with MCI have a higher risk of progressing to AD [19]. 

According to results from the Honolulu-Asia Aging Study [20], as many as one-third of all 

Alzheimer’s diagnoses may actually be false positives. In addition, the diagnostic boundary 

between AD and MCI is not well established.

Autism Spectrum Disorder

ASD is a pervasive developmental disorder clinically characterized by social and 

communication impairments as well as restricted interests and repetitive behaviors [1]. 

While the boundaries between ASD, its comorbidities, and neurotypicals with sub-clinical 

ASD-like traits are blurred, several diagnostic subcategories within ASD were defined: 

autism, Asperger’s disorder, and pervasive developmental disorder-not otherwise specified 

(PDD-NOS). It has been often argued that the Asperger’s disorder criteria is problematic 

[21, 22]. In the latest DSM-V classification, Asperger’s and PDD-NOS were eliminated, in 

favor of the so called “dimensional assessment” of the autism spectrum [23]. This highlights 
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the confusion in the field due to lack of objective biomarkers based on underlying 

neurobiology.

Post-traumatic Stress Disorder

PTSD is a disabling condition in individuals exposed to a traumatic event, such as war, 

violent crime, and motor vehicle accidents [24]. PTSD is characterized by intrusive 

avoidance, hypervigilance, hyperarousal and alterations in cognition and mood [25]. PTSD 

is found to be associated with aberrant functioning of the amygdala, hippocampus, insula, 

and regions of the prefrontal cortex such as the ventromedial PFC [26–28]. Although 

cognitive decrements are associated with PTSD, there is evidence that they are mediated by 

comorbid symptoms of the disorder (e.g., depression and anxiety) [29].

Post-concussion Syndrome

PCS emerges in a subset of individuals who sustain a mild traumatic brain injury (mTBI) or 

concussion. It includes a constellation of prolonged symptoms, which persist several months 

after the mTBI. Symptoms can be categorized as vestibular, cognitive, affective, and 

somatosensory [30–32]. In military service members, diagnosis can be more complex since 

it has high co-morbidity with PTSD, along with homogeneity of symptomatology between 

the two disorders [33, 34].

In summary, although the neuropsychiatric disorders delineated have well established 

diagnostic criteria, overlapping symptoms with other neuropsychiatric disorders are 

common, and in some cases manifest as comorbidities. The neural circuits implicated in a 

given disorder are also often overlapping with that of other disorders. In addition, 

conventional diagnostic categories often do not adequately capture the spectrum of 

symptoms and impairments ranging from mild to severe. Further, categorization of 

subgroups within several disorders have yet to be fully characterized. Thus, neuroimaging-

based diagnostic classification and biomarkers can improve our understanding of subgroups 

within a specific neuropsychiatric disorder and eventually improve diagnostic precision.

This approach has indeed been promoted actively by the National Institute of Mental Health 

(NIMH) in the United States by the publication of “Research Domain Criteria” (RDoC, 

http://www.nimh.nih.gov/research-priorities/rdoc/nimh-research-domain-criteria-

rdoc.shtml). RDoC is agnostic to present disorder categories. Its intent is the generation of 

disorder classifications in a data-driven fashion. The “core unit of analysis” as advanced by 

RDoC is the “measurements of particular circuits as studied by neuroimaging techniques.” 

In keeping with this ideology, a recent report demonstrated how data-driven definition of 

diagnostic groups in psychiatric spectrum disorders could identify new groups that had 

better mapping onto behavioral clusters [35, 36]. Our approach in this work is inspired by 

these recent developments.

Resting-state functional magnetic resonance imaging (rsfMRI) is a promising tool for 

studying neuropsychiatric disorders [37–42]. It measures spontaneous fluctuations in the 

blood oxygen level-dependent (BOLD) signal, while the participants do not perform any 

explicit task [43, 44]. Considering machine learning applied to rs-fMRI, a common 

methodology is to apply supervised classification methods on functional connectivity (FC) 
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features obtained from rsfMRI to identify brain-based disorders with FC aberrations. For 

example, some studies [6] used support vector machine (SVM) and artificial neural network 

(ANN) on different brain connectivity measures to identify ADHD. Khazaee et al. [3] 

combined a graph theoretical approach with SVM to classify patients with AD and MCI 

from healthy individuals. Plitt et al. [2] applied different classification methods, e.g., K-

nearest neighbor (KNN), linear support vector machines (L-SVM), Gaussian kernel support 

vector machines (rbf-SVM) and L1-regularized logistic regression on rs-fMRI connectivity 

features to establish biomarkers for Autism spectrum disorders (ASD). However, the 

supervised machine learning methods used in such studies requires a priori clinical 

diagnoses to guide classification. In addition, most studies only target classifying one 

specific illness.

In this work, we attempt to address the aforementioned four challenges in supervised models 

by deriving a general analysis pipeline for identifying different neuropsychiatric disorders 

using unsupervised clustering methods. There have been very few studies using 

unsupervised models on rs-fMRI data to identify different neuropsychiatric disorders [1]. 

The main idea of unsupervised learning or clustering is to group subjects in such a way that 

those in the same group are more similar to each other than to those in other groups. Three 

clustering methods were specifically chosen: hierarchical clustering [45], ordering points to 

identify the clustering structure (OPTICS) [46], and density peak clustering (DPC) [47], 

since these methods do not require a priori specification of the number of clusters. The 

commonly used k-means clustering [48, 49] was not considered in this study due to the 

uncertainty of the number of clusters and sensitivity to outliers. Since clustering accuracy is 

often lower in high dimensional feature space, feature selection methods were applied. Most 

existing feature selection algorithms in the machine learning literature focus on heuristic 

search such as sequential forward searching (SFS) [50], non-linear optimization [51], 

genetic algorithm (GA) [50], etc. Bradley et al. proposed a non-linear optimization using a 

non-linear kernel support vector machine. Although this method provides high accuracy, it 

can only be used in the supervised learning context. SFS was proposed based on a greedy 

algorithm, which follows the problem-solving heuristic of making the locally optimal 

decision at each step. Similar to SFS, here we propose a sequential feature ranking (SFR) 

method by applying ANOVA testing among different groups (e.g., control group, disease 

subgroups) and then sequentially selecting features from the original dataset based on the p-
value of each feature. Although SFS and SFR can be applied in unsupervised learning, they 

do not guarantee an optimal solution. Therefore, we propose GA as a robust feature selection 

method for unsupervised learning approaches for the identification of disease clusters from 

FC features by maximizing the similarity between connectivity and clinical diagnosis, as 

well as between connectivity and behavioral phenotypes, respectively. The identified clusters 

were then compared with those obtained from clinical diagnostic criteria and behavioral 

phenotypes in order to investigate their similarity with disease clusters identified from rs-

fMRI connectivity.

MATERIALS AND METHODS

In this work, a general pipeline has been derived (Figure 1) for identifying different brain-

based disorders using unsupervised clustering methods. In addition, several supplementary 
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analyses have been performed, e.g., site-specific analysis for multi-site data, elimination of 

outlier subjects, and enrichment analysis. The details of each step in the pipeline are 

described next. ADHD, AD and ASD data were obtained from publicly available databases. 

Details regarding ethical approvals for those data can be obtained from the links provided 

below. The PTSD study was carried out in-house, in accordance with the recommendations 

of Auburn University Institutional Review Board (IRB) and the Headquarters U.S. Army 

Medical Research and Material Command, IRB (HQ USAMRMC IRB) with written 

informed consent from all subjects. All subjects gave written informed consent in 

accordance with the Declaration of Helsinki. The protocol was approved by the Auburn 

University IRB and the HQ USAMRMC IRB.

Participants and Non-imaging Measures

ADHD

Four hundred and eighty-seven subjects with complete phenotypic data were selected from 

the ADHD-200 dataset (http://fcon_1000.projects.nitrc.org/indi/adhd200/), which included 

272 healthy controls (HC), 118 subjects with ADHD-C, and 97 subjects with ADHD-I. The 

number of subjects with ADHD-H were too small (n < 10), therefore ADHD-H was not 

considered in this work. The subjects were scanned at one of these three different sites: 

Peking University, Kennedy Krieger Institute (KKI), and New York University Child Study 

Center (NYU).

Subjects scanned at Peking University with diagnosis of ADHD were initially identified 

using the Computerized Diagnostic Interview Schedule IV [C-DIS-IV] [52]. All participants 

(ADHD and HC) were evaluated with the Schedule of Affective Disorders and 

Schizophrenia for Children—Present and Lifetime Version [KSADS-PL] [53], with one 

parent for the establishment of the diagnosis for study inclusion. The ADHD Rating Scale 

[ADHD-RS-IV] [54, 55] was employed to provide dimensional measures of ADHD 

symptoms. Intelligence was evaluated with the Wechsler Intelligence Scale for Chinese 

Children-Revised [WISCC-R] [56].

In the KKI sample, psychiatric diagnoses were based on evaluations with the Diagnostic 

Interview for Children and Adolescents, Fourth Edition [DICA-IV] [57], a structured parent 

interview based on DSM-IV criteria; the Conners’ Parent Rating Scale-Revised, Long Form 

[CPRS-R] [58], and ADHD-RS-IV. Intelligence was evaluated with the Wechsler 

Intelligence Scale for Children-Fourth Edition [WISC-IV] [59] and academic achievement 

was assessed with the Wechsler Individual Achievement Test-II [60].

In the NYU sample, psychiatric diagnoses were based on evaluations with KSADS-PL, 

administered to parents and children and CPRS-R. Intelligence was evaluated with the 

Wechsler Abbreviated Scale of Intelligence [WASI] [61].

Six Phenotypic variables were measured for all sites (Table 1), i.e., three ADHD measures 

including ADHD index score, Inattentive score, and Hyper/Impulsive score [62], and three 

IQ measures including Verbal IQ [VIQ], Performance IQ [PIQ], and Full Scale IQ [FIQ] 

[63].
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AD

Rs-fMRI data from the Alzheimer’s disease neuroimaging initiative (ADNI) database (http://

adni.loni.usc.edu/) was utilized in this study. The sample consisted of subjects with three 

progressive stages of cognitive impairment—early MCI [EMCI] (n = 23), late MCI [LMCI] 

(n = 29), and AD (i = 13)—along with matched HC (n = 31).

The patients with AD had a Mini-Mental State Examination [MMSE] [64] score of 14–26, a 

Clinical Dementia Rating [CDR] [65] of 0.5 or 1.0 and met the National Institute of 

Neurological and Communicative Disorders and Stroke and the Alzheimer’s disease and 

Related Disorders Association [NINCDS/ADRDA] criteria [66] for probable AD. The 

patients with MCI had MMSE scores between 24 and 30, a memory complaint, objective 

memory loss measured by education adjusted scores on Wechsler Memory Scale Logical 

Memory II, a CDR of 0.5, absence of significant levels of impairment in other cognitive 

domains, essentially preserved activities of daily living and an absence of dementia [3].

Eight phenotypic variables, i.e., neuropsychiatric inventory [NPI] score [67], geriatric 

depression scale [GDS] [65], MMSE, CDR and functional assessment questionnaire [FAQ] 

[68], and one genetic variable i.e., apolipoprotein [APOE] A1 and A2 genotypes [69], were 

measured (Table 2). Except for the AD dataset, all other three datasets (ADHD, ASD, and 

PTSD) only have phenotypic variables. Thus, we just refer to these variables as phenotypic 

variables henceforth.

ASD

Four hundred and fifty-four subjects with complete phenotypic data were selected from the 

Autism Brain Imaging Data Exchange (ABIDE) database (http://

fcon_1000.projects.nitrc.org/indi/abide/index.html). The sample consisted of 256 HC, 166 

subjects with autism, and 32 subjects with Asperger’s. Including PDD-NOS and “Asperger’s 

or PDD-NOS” would have made the whole dataset more unbalanced, therefore these two 

subgroups were not considered in this study. Each subject was scanned at one of the 

following seven different sites: California Institute of Technology (Caltech), Carnegie 

Mellon University (CMU), NYU Langone Medical Center (NYU), University of Pittsburgh 

School of Medicine (Pitt), San Diego State University (SDSU), Trinity Center for Health 

Sciences (Trinity), and University of California Los Angeles (UCLA).

For most of the sites, diagnosis of ASD was consistent with the Diagnostic and Statistical 

Manual of Mental Disorders, Fourth Edition, Text Revision [DSM-IV-TR] criteria [70], and 

classification of either autism or Asperger’s was made by a clinician based on the Autism 

Diagnostic Observation Schedule [ADOS] [71] and Autism Diagnostic interview-Revised 

[ADI R] [72]. HC subjects were screened through a self-report history questionnaire to rule 

out other disorders, such as ASD, ADHD, or Tourette’s Disorder.

Ten phenotypic variables were measured (Table 3) at all sites including three IQ measures, 

i.e., FIQ, VIQ, PIQ, four ADI_R measures, i.e., Reciprocal Social Interaction Subscore 

[ADI_R_SOCIAL], Abnormalities in Communication Subscore [ADI_R_VERBAL], 

Restricted, Repetitive, and Stereotyped Patterns of Behavior Subscore [ADI_RRB], 
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Abnormality of Development Evident at or Before 36 Months Subscore [ADI_R_ONSET], 

and three ADOS measures, i.e., Classic Total ADOS Score [ADOS_TOTAL], 

Communication Total Subscore of the Classic ADOS [ADOS_COMM], and Social Total 

Subscore of the Classic ADOS [ADOS_SOCIAL].

PTSD and PCS

Eighty-seven active-duty male U.S. Army Soldiers (selected from Fort Benning, GA, USA 

and Fort Rucker, AL, USA) voluntarily participated in the current study. All of subjects had 

combat experience in Iraq (Operation Iraqi Freedom [OIF]) and/or Afghanistan (Operation 

Enduring Freedom [OEF]). Each subject was evaluated using three factors: (1) symptom 

severity in PTSD measured with “PTSD Checklist-5” [PCL5] score [73], (2) symptom 

severity in PCS measured with “Neurobehavioral Symptom Inventory” [NSI] score [74], and 

(3) medical history. Based on these factors, (i) 17 subjects were grouped as PTSD with no 

history of mTBI in the last 5 years, a total score ≥38 on PCL5 and <26 on NSI, (ii) 42 

subjects were grouped as the comorbid PCS+PTSD with a history of medically documented 

mTBI, post-concussive symptoms, and scores ≥38 on PCL5 and ≥26 on NSI, and (iii) 28 

subjects were grouped as combat controls with a score <38 on PCL5 and <26 on NSI, no 

DSM-IV-TR or DSMV diagnosis of a psychotic disorder (e.g., schizophrenia), no mTBI 

within the last 5 years, and no history of a moderate-to-severe TBI. All of these three groups 

were matched in age, race, deployment history, and education. Comparing NSL score and 

PCL5 score among these groups, it can be seen that NSI scores were significantly different 

between the PCS+PTSD group and the PTSD and control groups combined (p = 1.32 × 

10−29). Also the PCL5 scores were significantly different between the control group and the 

PTSD and PCS+PTSD groups combined (p = 3.64 × 10−44).

Thirty-two phenotypic variables were used including ten primary Neurocognitive measures 

CNS-Vital Signs® [CNSVS] measures [75] (which is a computerized neurocognitive 

assessment battery), seven derived CNS-VS domain scores, eight self-report psychological 

health measures, and seven neurocognitive measures from a second battery, the Automated 

Neuropsychological Assessment Metric (ANAM 4.0) (Table 4). The ten primary CNS-VS 

measures were Symbol Digit Coding [SDC; correct responses], Stroop Test [ST] (simple and 

complex), Shifting Attention Test (SAT), Continuous Performance Test [CPT; correct 

responses and reaction time, RT], Dual-Task Test [DTT; correct responses and RT], and 

Digit Span Test [DST]. Seven derived CNS-VS domain scores were verbal memory [VM], 

complex attention [CA], reaction time [RT], processing speed [PS], cognitive flexibility 

[CF], executive functioning [EF], and neurocognitive composite index [NCI], which was 

computed by averaging the other six domain scores. Domain scores were standardized to 

have a mean of 100 and standard deviation of 15. In addition, data from the ANAM seven 

subtests were included—Coded Digit Substitution [CDS], Coded Digit Substitution-Delayed 

[CDD], Matching to Sample [MTS], Mathematical Processing [MP], Procedural Reaction 

Time [PRT], Simple Reaction Time [SRT], and Simple Reaction Time-Delayed [SRT2]. E 

ort was also assessed to improve the validity of our assessment data. Finally, the Test of 

Memory Malingering (TOMM) was applied consisting of two learning trials and a retention 

trial that uses pictures of common, everyday objects (e.g., chair, pencil). A cut-off score 
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(<45 correct) for the first two learning trials was used to determine eligibility for 

participation in the study.

Psychological health was assessed using five self-report measures—Perceived Stress Scale 

[PPS], Pittsburgh Sleep Quality Index [PSQI], Epworth Sleepiness Scale [ESS], Zung 

Anxiety Scale [ZAS] and Zung Depression Scale [ZDS]; and three exposure/injury 

descriptive measures—Combat Exposure Scale [CES], lifetime concussions [LC], and Life 

Events Checklist [LEC].

The study protocol and procedures were approved by the Auburn University Institutional 

Review Board (IRB) and the Headquarters U.S. Army Medical Research and Material 

Command, IRB (HQ USAMRMC IRB).

Data Acquisition and Preprocessing

For each neuropsychiatric disorder, an rs-fMRI dataset was obtained using different scanners 

with different parameters. A standard preprocessing was then performed on each dataset, 

individually. The details of data acquisition and preprocessing are described in 

Supplementary Material: Data Acquisition and Preprocessing.

Connectivity Measures

Given the high dimensionality of whole-brain data, each rsfMRI image was partitioned into 

200 (for ADHD, AD, and ASD) or 125 (for PTSD/PCS) functionally homogenous regions 

of interests (ROIs) using spatially constrained spectral clustering [cc200 template] [76]. 

Even though the same parcellation was used on all the datasets, we ended up with only 125 

regions for the PTSD/PCS dataset since we had limited brain coverage (cerebellum was 

excluded). The mean time series for each ROI was subsequently extracted. Deconvolution of 

ROI time series was then performed using the method proposed by Wu et al. [77] to obtain 

hidden neuronal time series [78–81]. Deconvolution was performed because fMRI is an 

indirect measure of neural activity that can be influenced, at least in-part, by non-neural 

factors which control the shape of the hemodynamic response function (HRF), and 

deconvolution minimizes the inter-subject and spatial variability of the HRF that could 

potentially give rise to false connectivity estimates [82–91].

Next, four connectivity matrices—statistic functional connectivity (SFC), variance of 

dynamic functional connectivity (vDFC) [92], statistic effective connectivity (SEC) [93–96], 

and variance of dynamic effective connectivity (vDEC) [97–99]—were computed using the 

latent neuronal time series.

Functional connectivity (FC) refers to the functional co-activation between two different 

brain regions. In this study, static functional connectivity (SFC) was evaluated using 

Pearson’s correlation coefficient, which gives a constant measure of connection strength 

between two time series. Although most of studies investigate SFC assuming the 

connectivity is temporally stable, it has been shown that dynamic changes in FC are relevant 

to neuropathology [100] as well as behavioral performance in different cognitive domains in 

healthy individuals [92]. Hutchison and his colleagues also provided a comprehensive 

overview of dynamic functional connectivity (DFC) in rs-fMRI [101]. In this study, similar 
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to our previous study [92], DFC was evaluated using a sliding windowed Pearson’s 

correlation with variable window length. The window length was determined adaptively by 

timeseries stationarity assessed through the augmented Dickey-Fuller test (ADF test), which 

searches for the optimal window length within a specified range using stationarity of the 

signal as the criteria for optimization. According to Jia’s [92] study, we used a liberal range 

of 20–140 data points in this work.

While FC is a non-directional quantity, another approach to brain connectivity modeling is 

effective connectivity (EC), which characterizes directional causal interactions in the brain. 

It gives characteristically different information from FC, i.e., the former characterizes causal 

influences while the latter captures co-activation, both of which have been acknowledged as 

distinct modes of communication in the brain [93]. We evaluated SEC using Granger 

causality [102–104], which quantifies the directional influence of one region over the other. 

We also evaluated its time-varying version, DEC [105–108], using time-varying Granger 

causality evaluated in a dynamic Kalman filter framework [109–112].

SFC, DFC, SEC, and DEC values were obtained between all pairs of brain regions. Variance 

of DFC (and DEC) were computed to obtain vDFC (and vDEC). This provides a single 

measure of variability of connectivity over time for every connection [84, 113]. In effect, we 

employed the measures of strength and temporal variability of co-activation and causality in 

this work. Significant group differences were obtained with each of these measures for each 

of the datasets using oneway ANOVAs, and only the top significant features (p < 0.01) were 

used in further clustering analysis. This was done in order to minimize the effect of noisy 

measurements and outliers on clustering analysis.

Clustering and Feature Selection

In order to test whether clinical diagnostic grouping was grounded in the underlying 

neurobiological and phenotypic clusters, the three clustering methods, i.e., hierarchical 

clustering [45, 114, 115], Ordering Points to Identify the Clustering Structure—OPTICS 

[46], and Density Peak Clustering—DPC [47], were applied on three types of features: (i) 

connectivity-based features: SFC, SEC, vDFC, and vDEC, (ii) clinical diagnostic measures, 

and (iii) phenotypic and genetic (when available) variables. In each clustering method, there 

are several user specified input parameters and the clustering results greatly depend on these 

parameters. To determine the optimal value for each input parameter, the Calinski-Harabasz 

(CH) index [116, 117] was applied in this work. Detailed description of each of the 

clustering methods as well as parameter optimization are described in section 3 of the 

Supplementary Material.

The clustering accuracy is often lower in high dimensional feature space, because most of 

the features may be irrelevant, redundant, or sometimes may even misguide results. 

Moreover, a large number of features make the clustering results di cult to interpret. 

Therefore, it is necessary to select a minimum subset of relevant features to achieve a 

meaningful cluster separation. For supervised learning, feature selection can be trivial, i.e., 

only the features that are related to the given cluster labels are maintained. Nevertheless, for 

unsupervised learning, the cluster labels are unknown. Thus, finding the relevant subset of 

features and clustering the subset of the data must be accomplished simultaneously. In this 
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work, three different feature selection methods were performed, i.e., in house SFR, SFS 

[50], and GA [118, 119], to find the optimal subset of features. The performances of these 

three methods were compared in the Results section. Detailed description of these feature 

selection methods can be found in section 4 of the Supplementary Material.

Site-Specific Analysis

Since we are more interested in the similarity of the clusters obtained from different types of 

features such as connectivity and phenotypic variables and not per se in the clustering 

accuracy, we did not perform cross-validation during clustering. However, in order to 

determine the robustness of clustering and associated features, we performed site specific 

analysis. As discussed in Supplementary Material: Data Acquisition, ADHD and ASD 

datasets were obtained from different sites using different scanners, which might introduce 

inter-site variance and affect the clustering accuracy. To eliminate this variance, site-specific 

feature selection and clustering were individually applied on data acquired at each site. Let 

S1 = {F1, F7, …, Fm} and S2 = {F3, F5, …, Fn} represent connectivity features selected by 

the proposed feature selection and clustering framework from site 1 and site 2, respectively. 

The intersection between S1 and S2 was then used as the new “selected features” for the 

whole dataset.

Elimination of Outlier Subjects

Real-world data always su ers from different sources of noise, which can introduce outliers 

in the feature space. The accuracy of clustering depends vitally on the quality of the input 

data. Accordingly, the most feasible and direct way to improve the effectiveness of 

clustering is to eliminate outlier subjects from the data.

In this study, three different clustering methods (based on three distinct principles) were 

employed for revealing hidden structures in the data. For the same input data, different 

clustering methods will, in general, result in different partitions in terms of the number of 

clusters and the membership of clusters. It is impractical to find a single clustering method 

that can handle all the different types of datasets. However, it has been demonstrated that by 

combining results from different clustering methods into a “co-association” matrix [CM, 

[120, 121]], true underlying data membership can be identified with more fidelity. Inspired 

by this theory, we propose a new outlier subject elimination method by applying the union-

find algorithm [122] on the co-association matrix so that isolated outlier subjects can be 

identified, considered as noise in the dataset and eliminated from the analysis.

Given M different partitions for a given dataset with N subjects. The N × N co-association 

(CM) matrix is then defined as:

CM =

CM11 ⋯
CM1 j

⋮
⋯ CM1N

CMi1 … CMi j ⋯ CMiN

CMN1 …
⋮

CMN j
⋯ CMNN

(1)
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Each element in the CM matrix is computed by:

CMi j =
mi j
M (2)

Where CMij is the number of times subjects i and j are assigned to the same cluster among 

the M partitions.

With the CM matrix we define subjects i and j as a connected pair with condition CMij = 1, 

which indicates that subjects i and j are always grouped together among the M partitions. 

Note that CM is a symmetric matrix, thus only upper triangular (or lower triangular) 

connected pairs need to be considered. A union-find algorithm is then applied so that 

connected subjects are merged together. Given N subjects and its corresponding CM matrix, 

the union-find algorithm is described next (Figure 2):

1. Initially, each subject was considered as a singleton tree with only itself in it.

2. By looking up the CM matrix, the connected pairs were identified.

3. For one connected pair a and b, where a belongs to tree A and b belongs to tree 

B, a “find” operation was applied to find the root of tree A and root of tree B, 

respectively.

4. A union operation was then applied to merge trees A and B.

5. Step 3 and 4 were repeated for all connected pairs.

The output of the union-find algorithm was a set of trees, and those trees with only one node 

in it were considered as outlier subjects.

Functional Interpretation of Selected Connectivity Features—Enrichment Analysis

Interpretation of large-scale neuroimaging finds, e.g., brain connectivity, is often done by 

associating identified regions or connections to previous studies. Such an approach is 

developed based on subjective visual inspection or on percent of overlap with existing maps 

without any statistical justification. Therefore, it has potential risk of false positive 

interpretations and overlooking additional findings. In this study, to avoid these 

shortcomings, a functional interpretation method—enrichment analysis [123]—was 

employed, which provides a quantitative statistical measure on the association between 

selected connectivity features and pre-defined functional brain networks.

We define the following: (1) a background set S with m predefined ROIs, i.e., 200 ROIs (for 

ADHD, AD, and ASD) or 125 ROIs (for PTSD/PCS), and (2) group of n connectivity 

features A = {(p1, q1), (p2, q2), …, (pn, qn)}, each pi and qi represents ROIs. Two disjoint 

subsets of where S, C and D (with size mc and md), were generated by enrichment analysis, 

each of which constitutes a known brain network identified in previous studies. A group B 

was then generated with all possible ROI pairs (i.e., connectivity features) between C and D. 

The size of B was determined by K = mc × md. Let x represent the intersection between A 
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and B. The significance of x is the probability of having x or more elements in the 

intersection, which can be calculated by,

p = F x M, n, K = ∑i = x
min n, K i

K
n − i
M − K

n
M (3)

Where M = m m − 1
2  is the total pairs of ROIs in the background set S. Equation (14) is the 

so called hypergeometric (HG) cumulative distribution, which is equivalent to a one-tailed 

Fisher’s exact test. The underlying null hypothesis of this test is that A was randomly 

selected from the set of all groups of ROI pairs with the same number of connectivities n 

over the same set of ROIs. By using this method, the statistically significant brain network-

to-network (N2N) connections can be verified and quantified with corresponding p-values.

The entire pipeline for identifying different brain-based disorders, along with several 

supplementary analyses, e.g., site-specific analysis, elimination of outlier subjects, and 

enrichment analysis, is illustrated in Figure 1.

RESULTS

The optimal values of each input parameter determined for the three clustering methods are 

presented in Tables 5, 6. Different feature selection methods were compared in terms of peak 

similarity obtained for the different neuropsychiatric disorders. From Tables 7–10, it can be 

seen that the minimum subset of features selected by GA consistently resulted in the highest 

similarity between clusters obtained from clinical diagnoses, fMRI-based connectivity and 

phenotypic variables. Using GA, the average and maximum similarities between 

connectivity and clinical diagnosis were 80.59 and 100%, respectively, the average and 

maximum similarities between connectivity and phenotypic variables were 76.72 and 

80.38%, respectively, and the average and maximum similarities between clinical diagnosis 

and phenotypic variables were 73.06 and 76.62%, respectively. SFS was less reliable than 

GA in that the average and maximum similarities achieved between connectivity and clinical 

diagnosis were 72.20 and 100%, respectively; and the average and maximum similarities 

between connectivity and phenotypic variables were 66.95 and 72.22%, respectively. For 

similarity, the number of features determined by SFS was larger than that selected by GA. 

For instance, in the PTSD/PCS dataset, although the peak similarities obtained by using SFS 

and GA with OPTICS were similar, the number of features selected by these two methods 

were 84 and 15, respectively. The similarities obtained by SFR were much lower than that 

obtained by SFS and GA, and the number of clusters determined using SFR was different 

from that using SFS and GA in all datasets. The convergence of SFR, SFS, and GA were 

also compared. In Figure 3, the similarity between connectivity and phenotypic variables 

obtained using hierarchical clustering and different feature selection methods was plotted as 

a function of the number of iterations in ADHD dataset. The shape of the curve looks 

comparable between connectivity and clinical diagnosis for the different clustering methods, 

but the amplitude may be different. With GA and SFS, a clearly step-wise convergence was 

observed. Although SFS converged faster than GA, a lower similarity was achieved after the 
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curve became stable. With SFR, no clear convergence was observed (i.e., the curve 

oscillated dramatically).

The performance of the different clustering methods varied across the datasets. Hierarchical 

clustering gave higher similarity in ADHD (Table 7) and ASD (Table 8) datasets. OPTICS 

performed better in AD (Table 9) and PTSD/PCS (Table 10) datasets. DPC also resulted in a 

higher similarity in PTSD/PCS. The computation time of DPC was longer than hierarchical 

and OPTICS. For example, using 2.3 GHz Intel Core i7 processor, the computing time for 

one iteration using the PTSD dataset were as follows: hierarchical clustering took 0.27 s, 

OPTICS took 0.42 s, and DPC took 5.22 s, due to the fact that more input parameters (ρ and 

δ) were required to be optimized in DPC than that in hierarchical (cutting height) and 

OPTICS (threshold of reachability plot). More parameters result in larger searching space.

Site-specific analysis was applied on the ADHD dataset. We could not apply this analysis on 

ASD dataset since there was only one site that had enough samples for HC and disease 

subgroups (Table 11) whereas AD and PTSD datasets were obtained on the same scanner. 

For ADHD dataset, NYU and Peking had more than 30 samples for control, ADHD-C, and 

ADHD-I (Table 12). Thus, a site-specific analysis was applied on these two sites, 

individually.

The peak similarity obtained between clinical diagnostic and phenotypic clusters, between 

clinical diagnostic and connectivity clusters, and between phenotypic and connectivity 

clusters for site-specific analysis are shown in Table 13. Compared with previous results 

presented in Table 7 using feature selection and clustering on the entire dataset across 

different sites, the similarity was increased by applying site-specific analysis for Peking and 

NYU, individually. The similarity was reduced by applying clustering on the whole datasets 

with commonly selected features from these two sites.

For ADHD and AD, highest similarity was achieved between connectivity and phenotypic 

clusters and the corresponding similarity between clinical diagnostic and phenotypic clusters 

was lower. On the other hand, for ASD and PTSD/PCS, highest similarity was achieved 

between connectivity and clinical diagnostic clusters. This suggests that diagnostic criteria 

for ASD and PTSD/PCS are mapped well onto underlying neurobiological clusters, while 

that was not the case for ADHD and AD. Consequently, for ADHD and AD, we reassigned 

diagnostic labels based on those generated by connectivity clusters to form new 

neurobiologically-informed groups. In order to verify whether this new grouping is valid, we 

estimated the statistical separation of phenotypic variables based on the traditional 

diagnostic grouping as well as with the new neurobiologically informed groups. The results, 

shown in Figures 4, 5, indicates that almost all p-values were smaller with the new grouping 

by conducting 2-sample t-test. This suggests that when traditional diagnostic groups do not 

map well onto underlying neurobiological clusters, connectivity can be used to regroup the 

subjects so that they map better onto the behavioral phenotypes.

The peak similarity obtained with and without outlier subject elimination was compared and 

is shown in Table 14. Consistently higher similarity was achieved by removing the identified 

outlier subjects from the dataset. Moreover, in AD dataset, the number of clusters identified 
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by hierarchical clustering was changed from 5 to 4 with outlier elimination (highlighted in 

Table 14), which matched with the grouping obtained using clinical diagnosis. The data in 

ADHD and ASD datasets comprised of data acquired at different sites using different 

scanners, which might explain the fact that the number of outliers identified in ADHD and 

ASD were generally greater than the other two datasets.

DISCUSSION

In this work, we have proposed a general analysis pipeline for characterizing different 

neuropsychiatric disorders using unsupervised learning methods. Our results suggest that 

neurobiological and phenotypic biomarkers could potentially be used as an aid by the 

clinician, in additional to currently available diagnostic standards, to improve diagnostic 

precision and identify diagnostic sub-groups. First, we discuss the selected brain 

connectivity features and phenotypic variables for each disorder and compare our results 

with previous studies. Second, we elaborate on the implications of results obtained within 

specific sites in comparison to those obtained from the entire ADHD dataset. Third, we 

discuss the reassignment of diagnostic labels based on those generated by connectivity 

clusters. Finally, we delineate the role of outlier subject elimination in unsupervised leaning 

methods as applied to neuroimaging.

Connectivity Features Important for Clustering

After applying clustering, the selected connectivity features were split into two networks, 

i.e., (1) a network in which functional/effective connectivities and temporal variability of 

constituent paths were significantly (p < 0.05, FDR corrected) larger in the control group, 

and (2) a network in which functional/effective connectivities and temporal variability of the 

constituent paths were significantly (p < 0.05, FDR corrected) larger in the disease group. 

Here, “disease group” refers to all pathological subgroups combined. This was done since all 

disease groups have two or more pathological sub-groups and it becomes increasingly 

complex to interpret all pairwise differences. Then, these two networks were mapped back to 

the image space and overlaid on an anatomical glass brain (using BrainNet Viewer [124]) for 

the visualization, respectively. The identified brain networks were then qualitatively 

interpreted and compared with previous studies using enrichment analysis [123].

Intrinsic connectivity networks (ICNs) denote groups of brain regions that show correlated 

spontaneous activities at “resting” state [125]. It has been shown that ICNs reflect strong 

coupling of spontaneous fluctuations in ongoing activity and remain robust under different 

mental states, e.g., sleep, loss of consciousness, etc. [126, 127]. ICNs provide a common 

neurofunctional framework for investigating cognitive dysfunction in different 

neuropsychiatric disorders. There are many stable ICNs that have been identified in the 

human brain so far. Five of them—default mode network (DMN), visual network (VN), 

basal ganglia network (BGN), sensory motor network (SMN), and the semantic cognition 

and attention (SCAN)—have been demonstrated to be particularly important for 

understanding higher cognitive function and dysfunction, and provide useful models for 

identifying rs-fMRI connectivity patterns. Below, we discuss the significance of each of 
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these networks to provide a context for presenting alterations in the interactions within and 

between these networks observed in neuropsychiatric disorders.

The DMN is one of the most well-known ICNs, which is a distributed network anchored in 

the posterior cingulate cortex [PCC], medial prefrontal cortex [mPFC], medial temporal lobe 

[MTL], precuneus, anterior cingulate cortex [ACC], inferior parietal lobe [IPL], and medial 

orbital gyrus [MOG] [128]. The PCC, hippocampus, and angular gyrus are typically 

associated with episodic memory retrieval [129, 130], autobiographical memory [131], and 

semantic memory related to internal thought [132]. mPFC has been demonstrated to be 

associated with self-related and social cognitive processes [133], value-based decision 

making [134], and emotion regulation [135]. Together, the entire DMN comprises an 

integrated system involving episodic memory, autobiographical memory, and self-related 

mental processes.

The VN [136] involves the occipital and bilateral temporal regions including the middle 

occipital gyrus, inferior temporal gyrus [ITG], fusiform gyrus, and cuneus, which is involved 

in visual processing and mental imagery [137, 138]. The middle occipital gyrus, ITG, and 

fusiform gyrus are primarily involved in the higher functions of vision processing, e.g., 

distinguishing objects among different categories, face recognition, visual words 

recognition, representation of complex object features, etc. [139, 140]. The cuneus has been 

demonstrated to be involved in basic visual processing, which receives visual information 

from retina [141].

The BGN is predominantly located in the basal ganglia including the striatum (which is 

subdivided into the caudate nucleus and putamen), globus pallidus or pallidum substantia 

nigra and thalamus [142]. The BGN is associated with a variety of functions including 

control of voluntary motor movements [143], procedural learning, eye movements [144], 

cognition [145], emotion [146], etc.

The SMN involves the precentral gyrus, postcentral gyrus, cerebellum, posterior insula, and 

part of the frontal gyrus corresponding to the primary sensory motor cortex and 

supplementary motor area [SMA] [147, 148]. Studies have indicated that this network is 

processing somatosensory stimuli, executing motor movements and sensorimotor integration 

[149, 150].

The SCAN is defined as regions associated with the semantic cognition network and 

attention network, which is a network of lateral structures in the frontal and parietal cortices, 

as well as some temporal regions. The semantic cognition network is primarily made up of 

three regions, Broca’s area, Wernicke’s area, as well as parts of the middle temporal gyrus 

[MTG] [151, 152]. Broca’s area is generally defined as comprising Brodmann areas 44 and 

45. Area 44 (the posterior part of the inferior frontal gyrus [IFG]) is involved in 

phonological processing and language production whereas area 45 (the anterior part of the 

IFG) engages in the semantic aspects of language. Together, Broca’s area plays an important 

role in processing of verbal information [153]. Wernicke’s area is traditionally thought to be 

located in the posterior part of the superior temporal gyrus [STG], which is involved in the 

comprehension or understanding of written and spoken language [154]. Some studies have 
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showed that the MTG is involved in the retrieval of lexical syntactic information [155]. The 

attention network is commonly segregated into two distinct networks: a bilateral dorsal 

attention network (DAN), which includes the dorsal frontal and parietal cortices, and the 

ventral attention network (VAN), largely right-lateralized, which includes the ventral frontal 

and parietal cortices [129, 156]. The DAN has been associated with goal-directed, top-down 

attention processes in inhibitory control, working memory and response selection, whereas 

the VAN is related with salience processing and mediates stimulus-driven, bottom-up 

attention processes [157]. Moreover, it is relevant to note that dorsal and ventral systems 

appear to interact not only during cognitive tasks [158, 159] but also during spontaneous 

activity [160]. Previous literature suggests that semantic cognition and attention are 

intimately related. This is also borne out by the fact that many disorders such as ADHD and 

ASD have simultaneous deficits in semantic cognition and attention. Therefore, we 

considered this as one network.

A qualitative as well as quantitative interpretation of alterations of these INCs and other 

related brain regions in different neuropsychiatric disorders are discussed below. For each 

pathology, we chose the features that gave us highest similarity between clusters obtained 

from clinical labels, connectivity features and phenotypic features. For ADHD and AD, 

highest similarity was obtained between connectivity and phenotypic clusters while for ASD 

and PTSD/PCS, highest similarity was obtained between clinical labels and connectivity 

clusters. Therefore, the features obtained in these two different scenarios have different 

implications. For ADHD and AD data sets, it suggests that traditional clinical diagnostic 

grouping may not neatly map onto neurobiological and neurobehavioral clusters. This may 

be because of uncertainty in clearly identifying differences between disease sub-groups in 

ADHD (ADHD-C and ADHD-I) and AD (EMCI, LMCI, and AD). Contrarily, for ASD and 

PTSD/PCS data sets, it suggests that traditional clinical diagnostic grouping may in fact map 

well onto at least neurobiological clusters. These facts are borne out by computing the purity 

of clusters obtained from connectivity features for disease sub-groups within each data set. 

To measure cluster purity, the clusters obtained using connectivity features were regrouped 

using the diagnostic label, and each subject was assigned to majority class in the current 

cluster. Then the accuracy was measured by counting the number of correctly assigned 

subjects within each cluster and took the average. The cluster purity for ADHD, AD, ASD, 

and PTSD/PCS were 0.73, 0.75, 0.94, and 1.00, respectively. It can be seen that ASD and 

PTSD/PCS data sets had high purity while for ADHD and AD, the purity of clusters for 

disease subgroups was qualitatively lower.

ADHD

One hundred and twenty-one relevant connectivity features were selected by GA and 

hierarchical clustering (since this combination gave highest similarity between connectivity 

and phenotypic features), which were 26 SFC, 14 vDFC, 53 SEC, and 28 vDEC. These 

features include connections in all lobes of the brain (Figure 6). With enrichment analysis, 

two N2N interactions were selected for SFC, i.e., the interactions within the BGN and the 

interaction between the VN and SMN, including connections between the cerebellum and 

occipital lobe, between the insula and fusiform, and between the caudate and thalamus. In 

addition, two N2N interactions were selected for the SEC, i.e., from the BGN to VN, and 
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from the SCAN to SMN, including connections from the caudate to occipital lobe and ITG, 

from the IFG and MFG to posterior insula, from the IFG to postcentral gyrus, and from the 

STG to cerebellum (Table 15).

Most of the rs-fMRI studies have demonstrated atypical functional activations in the frontal, 

temporal, parietal lobes, and cerebellar regions [161–163] in ADHD. Multiple studies have 

found aberrant functional connectivity among the brain regions of the DMN, SCAN, and 

BGN [164–167]. Abnormal functional activations in the orbitofrontal cortex [OFC] have 

been suggested to influence behavioral inhibition in children with ADHD [168]. Resting-

state fMRI studies have frequently reported disrupted functional connectivity between the 

ACC and PCC in ADHD [169, 170]. Significantly decreased activations have been reported 

in the PFC, SPL, and IFG in ADHD, during multiple cognitive performance tasks and in 

resting-state [163, 171, 172]. One fMRI study conducted in adults with childhood ADHD 

showed reduced activations in bilateral IFG, left parietal lobe, caudate, and thalamus [162]. 

Another study found reduced functional connectivity between thalamus and other BGN 

areas (e.g., putamen, caudate) with ADHD [167]. Some studies have also identified reduced 

activations in the IFG [173] and STG [174] in ADHD patients. Kessler et al. [175] observed 

reduced connectivity between the SCAN and SMN and increased connectivity within the 

VN by applying joint independent component analysis on the ADHD-200 sample. On the 

other hand, increased functional connectivity in the DMN, BGN, SMN, and VN has been 

observed in some studies [176, 177]. Significantly increased functional connectivity between 

the ACC and the thalamus, cerebellum, and insula have been shown during resting-state in 

children with ADHD, compared to controls [170, 178, 179]. Li et al. [166] found increased 

connectivity between the right pulvinar and occipital regions, during a visual sustained 

attention task-based fMRI study. Hale et al. [180] also observed reduced activations in the 

VN and DMN, during letter and location judgment tasks. The features selected by GA for 

maximizing the similarity between connectivity and phenotypic clusters and the subset of 

significant N2N interactions determined by enrichment analysis are in agreement with 

previous literature implicating the very same regions and connections in ADHD.

AD

Fifty-eight features were selected by GA and OPTICS (since this combination gave highest 

similarity between connectivity and phenotypic features), including 32 vDFC features and 

26 SFC features. Most of features were related to the DMN, VN, SMN, and SCAN (Figure 

7). With enrichment analysis, two N2N interactions were selected for the SFC, i.e., the 

interaction between the DMN and SMN, and that between the DMN and VN, including 

connections between the ACC and middle occipital gyrus, between the PFC and fusiform, 

between the IPL and ITG, between the SFG and insula, between the hippocampus and SMA, 

between the cerebellum and SFG, and between the cerebellum and PFC. In addition, two 

N2N interactions were selected for vDFC, i.e., the interactions within the SCAN, and 

between the DMN and SCAN, including connections between the MTG and STG, between 

the PFC and IFG, between the precuneus and IFG, between the precuneus and MTG, 

between the PFC and STG, and between the MTG and IPL (Table 16).
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Several previous studies have indicated dysfunctions in different regions of the DMN, VN, 

SMN and SCAN in the AD and MCI populations [181, 182]. Some studies have observed 

decreased connectivity in the DMN coupled with an increased connectivity within prefrontal 

regions [183–185]. Significant alterations of connectivity in the MTG, PCC, hippocampus, 

and angular gyrus, have been observed in AD [130, 186]. The dysfunction in the MTG, 

which is referred to as a central hub of the SCAN [187], is suggested as an early feature of 

AD [188]. A lesser degree of the MTG activation has been observed in MCI [189, 190] 

compared to controls. The medial parietal cortex, including the PCC and precuneus, are 

selectively vulnerable to amyloid deposition in AD [187], and studies of cortical metabolism 

using positron emission tomography and single photon emission computed tomography in 

AD suggest that abnormalities in the PCC and precuneus are early features of AD [188]. A 

voxel-based study showed that AD patients had both decreased activity of the right MFG 

and an increased activity of the right parietal cortex [191]. Reduced connectivity in the 

temporal lobe was also observed in different rs-fMRI studies [182, 184]. Multiple studies 

have suggested that the insula is involved in AD [192–194] and some of the behavioral 

abnormalities in AD may reflect insular pathology. Brier et al. [38] observed reduced anti-

correlations between the DMN and SMN, and between the DMN and SCAN, during a rs-

fMRI study. Li et al. [195] also found aberrant connectivity between the DMN and SCAN, 

as well as between the DMN and SMN. These previous studies seem to support our findings 

regarding features which are important for unsupervised clustering of control, EMCI, LMCI 

and AD groups.

ASD

Seventy-six features were selected using GA and hierarchical (since this combination gave 

highest similarity between connectivity features and clinical diagnosis)−30 SFC, 11 vDFC, 

27 SEC, and 9 vDEC—involving the frontal, parietal, temporal lobes, and cerebellar regions 

(Figure 8). With enrichment analysis, two N2N interactions were selected for the SFC, i.e., 

the interaction within the DMN, and between the DMN and VN, including connections 

between the PFC and angular gyrus, between the SFG and angular gyrus, between the ACC 

and parahippocampal gyrus, between the MOG and parahippocampal gyrus, between the 

ACC and fusiform, between the SFG and ITG, and between the ACC and ITG. One N2N 

interaction was selected for the vDFC, i.e., the interaction between the BGN and SCAN, 

including connections between the caudate and MTG, and between the thalamus and STG. 

In addition, one N2N interaction was selected for the SEC, i.e., from the DMN to SMN, 

including connections from the MOG to precentral, from the hippocampus to posterior 

insula, and from the precuneus to cerebellum (Table 17).

Several recent studies have observed abnormal connectivity in the DMN, SCAN, SMN, 

BGN and VN in the pathophysiology of ASD [196, 197]. A recent meta-analysis showed 

alterations in the MTG, hippocampus, as well as the posterior medial cortex in ASD [198], 

which were suggested to be related to deficits in social information processing. It has been 

shown that the PCC and mPFC in ASD are hypoactive compared with healthy controls 

[199]. Decreased connectivity between the PCC and SFG, the PCC and temporal lobes, as 

well as the PCC and parahippocampal gyri were observed, which were associated with poor 

social skills [200]. Dysfunction in the SCAN has been shown to be related to deficits in 
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language and communication in individuals with ASD. Reduced activation and functional 

connectivity in the frontal-temporal SCAN were observed by Mody et al. [201]. A recent rs-

fMRI study found a marked loss of functional connectivity between the right cerebellar 

region and regions in the SCAN [202]. Weaker connection between the SMA and ventral 

premotor cortex was found in the ASD group compared with controls, which has been 

hypothesized to underlie the initiation of speech motor actions [203]. Decreased connectivity 

between the BGN and the occipital region and prefrontal cortical regions was also found by 

Prat et al. [204]. A meta-analysis identified the posterior insula as a consistent locus of 

hypoactivity in ASD [199]. Other fMRI studies have also suggested that the insula is one 

possible key dysfunctional area in ASD [205]. In contrast, a recent rs-fMRI study [206] 

observed stronger functional connectivity within several large-scale brain networks in 

children with ASD compared with controls, including the DMN, SCAN, SMN, BGN, and 

VN. It has been suggested that developmental trajectories in ASD can be both heterogeneous 

and aberrant compared to neurotypicals and hyper- or hypo-connectivity is observed 

depending on when the data is acquired during development [206]. Our results are in broad 

agreement with previous fMRI literature in ASD discussed above.

PTSD/PCS

Fifteen features were selected by GA and OPTICS (since this combination gave the highest 

similarity between connectivity features and clinical diagnosis); 2 SFC, 5 vDFC, 2 SEC, and 

6 vDEC. These features were mainly located in the DMN, BGN, and SCAN (Figure 9). 

With enrichment analysis, one N2N interaction between the DMN and BGN was selected 

for both the SFC and vDFC. This involved connections between the ACC and caudate, and 

between the parahippocampal gyrus and caudate. In addition, one N2N interaction from the 

DMN to BGN was selected for the vDEC, which included the connection from the 

parahippocampal gyrus to caudate (Table 18).

Several resting-state studies of PTSD have showed aberrant connectivity within brain 

structures associated with the DMN [207–209]. The parahippocampal gyri and hippocampus 

are critical structures in the DMN, which have been shown to be essential for memory 

functions, especially memorizing facts and events, and memory consolidation [210]. A 

previous rsfMRI study found decreased functional connectivity in the hippocampal regions 

in PTSD patients [211]. The BGN has also been reported to be associated with PTSD [212–

214]. PTSD has been linked with abnormal activation of different BGN regions, brain stem, 

and limbic regions compared with control groups [26, 215, 216]. The connectivity between 

the DMN and BGN and between the DMN and VN have been observed to be impacted in 

PTSD in many functional connectivity studies [217, 218]. Lanius et al. [217] found 

increased connectivity between the ACC and caudate, the PCC, the right parietal lobe, and 

the right occipital lobe, during a rs-fMRI study using subjects with PTSD. Stark et al. found 

changes in connectivity between the DMN and BGN, (e.g., connections between the ACC 

and caudate, between the parahippocampal gyri and caudate), by applying a systematic, 

quantitative meta-data analysis on colleagues previous studies. The SCAN has also been 

demonstrated to be linked to PTSD. Reduced connectivity was observed in the MTG, MFG 

and several BGN regions in the PTSD group, compared with controls [219]. Yin et al. [220] 

also found reduced connectivity in the MTG and lingual gyrus, during a rs-fMRI study. It is 
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interesting to note that increased static connectivity and reduced variability of dynamic 

connectivity between the hippocampal formation and BGN regions such as the caudate has 

been recently reported in PTSD and PCS [84, 87] and our results seem to confirm these 

findings and show that those aberrations are important for unsupervised clustering of 

subjects into these groups.

From above discussions, it can be seen that for each individual neuropsychiatric disorder, 

connectivity features selected by GA with optimal clustering method are consistent with 

previous studies, which suggest the effectiveness of our general pipeline for identifying 

different brain-based disorders using unsupervised learning.

Phenotypic Features Important for Clustering

The phenotypic variables important for clustering were selected for each psychiatric disease. 

Below, we discuss the relevance of these variables in the context of existing literature on 

those measures.

ADHD

Four phenotypic variables were selected by GA and DPC including ADHD index score, 

Inattentive score, Hyper/Impulsive score (all are subscales in ADHD-RS), and FIQ in 

intelligence scale. ADHD-RS has been considered as an effective clinical diagnostic tool for 

assessing the severity of ADHD in children and adolescents [221, 222]. It gathers 

information on the severity and frequency of symptoms, the establishment of childhood 

onset of symptoms, the chronicity and pervasiveness of symptoms, and the impact of 

symptoms on major life activities. Intelligence scale has been demonstrated to be helpful in 

predicting symptomatology and outcome in children with ADHD [223]. A meta-analysis 

showed that FIQ was lower in adults with ADHD compared to HC [63].

AD

Three phenotypic variables, i.e., MSE, CDR, and FAQ, and one genotypic variable, i.e., 

APOE were selected by GA and OPTICS. APOE is considered as the major genetic risk 

factor for AD [69]. Although the presence of APOE does not necessarily entail the 

development of AD, this genetic isoform probably accelerates the rate of AD conversion and 

progression [224]. The MMSE is the most commonly used instrument for screening memory 

problems and other deficits related to cognitive aging. It has been widely used to screen for 

dementia [64]. CDR is a global scale developed to clinically denote the presence of AD and 

stage its severity [225]. Several methods have been derived based on CDR to identify AD 

accurately; [226]. FAQ is a standardized assessment of instrumental activities of daily living, 

which delineates the clinical distinction between MCI and AD [227].

ASD

Five phenotypic variables were selected including ADOS_TOTAL, ADOS_COMM and 

ADOS_SOCIAL (all makeup ADOS test), FIQ in intelligence scale, and ADIR_VERBAL 

in ADI_R test. ADOS has been extensively used in the clinic for diagnosing ASD [228, 
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229]. It consists of a series of structured and semi-structured presses for an interaction of 

specific target behaviors associated with particular tasks and by general ratings of the quality 

of behaviors. Further, several studies have observed higher VIQ and FIQ in ASD compared 

to neurotypicals; [230]. ADI-R is a structured interview conducted with the parents of the 

referred individual and covers the subject’s full developmental history [231]. The 

communication and language score, as one of the three content areas in ADI-R, is useful in 

assessing the presence and severity of delay or total lack of language.

PTSD/PCS

Four phenotypic variables—SDC correct, ZDS, CES, and LEC—were selected by GA and 

OPTICS. SDC is a test of psychomotor performance, visual-motor coordination, sustained 

attention, and motor and mental speed, which has been shown to be related to PTSD [232]. 

ZDS is a short self-administered survey to quantify the depressed status of a patient. Burriss 

et al. [233] showed that PTSD was associated with general learning and memory 

impairments, and depression was considered as a mediator of these deficits. In addition, 

Dretsch et al. [234] revealed that depressive symptoms in individuals with PTSD account for 

working memory impairments. CES was constructed to measure the subjective report of 

wartime stressors experienced by combatants [235]. It has been demonstrated that CES is a 

useful tool for identifying factors associated with PTSD [236, 237]. LEC, a measure of 

exposure to potentially traumatic events, was developed for assisting with screening of 

PTSD as well. In a clinical sample of combat veterans, a significantly correlated relationship 

between LEC and PTSD symptoms was observed [238].

It can be seen from the discussion above that the phenotypic (and genotypic in case of AD) 

variables selected by GA for maximizing the similarity of clusters obtained from them and 

from connectivity features indicates that they are clinically meaningful and relevant to the 

behavioral deficits observed in each disorder.

Site-Specific Analysis

Modern machine learning systems often integrate data from several different sources. 

Usually, these sources provide data of a similar type but collected under different 

circumstances. For example, the ADHD dataset used in this study was collected from 

different sites. Although fMRI images provided by these sites had similar qualities, these 

images were obtained from different scanners with different scanning parameters. The 

accuracy of machine learning algorithms can be affected by the heterogeneity of input data. 

To address this issue, we performed a site-specific analysis. By applying feature selection 

and clustering on data obtained from each individual site, the cluster similarity was 

increased considerably (see Tables 7, 13). However, as when we applied clustering on whole 

dataset with commonly selected features from individual sites, the similarity was reduced. 

Due to inter-site variance, it is di cult for us to translate high accuracy obtained for 

individual site into the whole dataset. It also affects the diagnostic precision obtained from 

brain connectivity measures. This calls for data acquisition standards and homogenization of 

data acquired from different scanners.
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Connectivity-Based Reassignment of Diagnostic Labels

Many brain-based disorders are highly heterogeneous, and categorization of subgroups 

within many disorders is yet to be completely established. Traditionally, brain-based 

disorders are diagnosed by clinical interviews associated with different behavioral 

assessments. However, it is widely acknowledged that current clinical criteria are insu cient 

to clearly identify most of the brain-based disorders, separate them from healthy subjects 

and identify sub-groups within them. Therefore, it is necessary to develop brain imaging 

based models for understanding how, precisely, neural circuits generate flexible behaviors 

and their impairments give rise to psychiatric symptoms [10]. In this study, we used 

unsupervised learning algorithms to discover brain connectivity-based clusters, which were 

not limited to existing diagnostic criteria. Instead, it focused on separating subjects into 

isolated clusters with maximized inter-cluster variance and minimized intra-cluster variance. 

After clustering, we reassigned diagnostic labels based on those generated by connectivity 

clusters. Compared with clinical diagnostic groups, the neurobiologically-informed groups 

provided better mapping from subjects to the behavioral phenotypes. This result indicates 

that it might be possible to view brain-based disorders from the perspective of brain 

connectivity measures, establishing neuroimaging-based biomarkers for different 

neuropsychiatric disorders.

Outlier Subject Elimination

The overarching aim of healthcare is personalized medicine. However, basing individualized 

treatments on brain imaging characteristics is in the nascent stages, i.e., some subjects will 

deviate considerably from the normative population distribution and it becomes easier to 

assess population level characteristics when such subjects are eliminated from the analysis. 

As shown in this study, with the proposed subject outlier elimination process, the precision 

of clustering was improved. Note that, the inter-individual variability may be introduced not 

just by the variability in the underlying neuropathology, but also by non-neural sources of 

variance such as different scanners and/or different scanning parameters. Until a standard 

data acquisition process is established, outlier subject elimination will serve to homogenize 

the data and make better inferences at the population level.

CONCLUSION

Many neuropsychiatric disorders are conventionally diagnosed based on clinical interviews 

and behavioral assessments. Inherent limitations of specific measures and clinical judgment 

contribute to a far from perfect process. Therefore, it is necessary to establish neuroimaging-

based biomarkers to improve diagnostic precision and accuracy. Rs-fMRI has been used as a 

promising technique for characterization and classification of different disorders. However, 

these approaches are besieged with methodological issues such as (i) a priori choice of 

clusters needed in k-means, (ii) a stopping criterion needed in hierarchical clustering, (iii) 

the large dimensionality of imaging data necessitates some type of dimensionality reduction 

for clustering to work properly and this step is either not carried out, or carried out by 

preselecting features not from the structure in the data, but by some external considerations 

such as previous findings in a given disorder, and (iv) the clusters obtained from imaging 
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data are seldom compared by those obtained from clinical diagnostic criteria or behavioral 

phenotypes.

To address these four issues, a general pipeline was derived on identifying different brain-

based disorders using unsupervised clustering methods. In addition, site-specific analysis 

and elimination of outlier subjects were also applied to improve clustering accuracy. Three 

selected clustering methods were adopted on three types of features: (1) fMRI connectivity 

measures, (2) clinical diagnostic labels, and (3) phenotypic variables. GA based feature 

selection method was also applied to improve clustering accuracy. The accuracy of the 

clustering and feature selection was assessed by computing the similarity of clusters 

between all three types of features. The effectiveness of the proposed pipeline was verified 

on five different disorders: ADHD, AD, ASD, PTSD, and PCS. For ADHD and AD, highest 

similarity was achieved between connectivity and phenotypic clusters, whereas for ASD and 

PTSD/PCS, highest similarity was achieved between connectivity and clinical diagnostic 

clusters. These results suggest that neurobiological and phenotypic biomarkers could 

potentially be used as an aid by the clinician, in addition to currently available subjective 

markers, to improve diagnostic precision.

The data and source code used in this work are presented elsewhere [239]. They can also be 

downloaded from GitHub repository: https://github.com/xinyuzhao/identification-of-brain-

based-disorders.git.

FUTURE RECOMMENDATIONS

Here we discuss some directions in which the current work could be extended. First, we 

have applied the proposed pipeline to four different disorders. It may be worth evaluating its 

performance on various other disorders such as Schizophrenia, Depression etc. Second, 

deriving a consensus clustering estimate from various clustering algorithms may improve the 

correspondence between diagnostic, imaging and phenotypic clusters. Third, the current 

study used cross-sectional data and hence cannot make inferences on whether unsupervised 

clustering can infer mechanisms that may cause sub-clusters in disorders. However, future 

datasets obtained using longitudinal designs may investigate this aspect. Fourth, the sample 

sizes used in AD and PTSD datasets are smaller compared to those used in ASD and ADHD 

datasets. We believe that demonstration of our method on samples of various sizes is a 

strength. However, specific inferences regarding AD and PTSD would obviously require 

larger sample sizes in the future. Finally, we believe the performance deterioration we 

observed when we pooled data from different sites represents one of the great challenges in 

applying machine learning methods to neuroimaging data. Approaches that can model this 

variability such that inter-site variability is minimized are needed to realize the true potential 

of machine learning in clinical diagnostics.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1 |. 
Illustration of proposed pipeline for identifying different brain-based disorders using 

unsupervised clustering methods. The main pipeline is depicted in purple color along with 

two supplementary analyses, site-specific analysis in salmon color and outlier subject 

elimination in green color. SFC, static functional connectivity; vDFC, variance of dynamic 

functional connectivity; SEC, static effective connectivity; vDFC, variance of dynamic 

effective connectivity; HRF, hemodynamic response functional; GA, genetic algorithm; 

DPC, density peak clustering; OPTICS, ordering points to identify the clustering structure: 

clustering algorithm; CM, co-association matrix.
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FIGURE 2 |. 
Illustration of the outlier subject elimination process (using upper triangular connected 

pairs), employing the co-association matrix approach. x1, x2, …, x6 are six representative 

subjects used in the illustration.
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FIGURE 3 |. 
Similarity between connectivity and phenotypic variables obtained from different iterations 

using hierarchical clustering and different feature selection methods: (A) SFR, (B) SFS, and 

(C) GA.
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FIGURE 4 |. 
Statistical significance (p−value) of selected phenotypic/genotypic variables with both the 

traditional clinical diagnostic grouping and the new connectivity grouping. The results are 

shown here for the ADHD dataset. Logarithmic scale is used for the y-axis of p-values.
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FIGURE 5 |. 
Statistical significance (p−value) of selected phenotypic/genotypic variables with both the 

traditional clinical diagnostic grouping and the new connectivity-based grouping. The results 

are shown here for the AD dataset. Logarithmic scale is used for the y-axis of p-values.
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FIGURE 6 |. 
(A) SFC; (B) vDFC; (C) SEC; (D) vDEC features. selected by GA and hierarchical 

(ADHD). Selected features were split into two groups, i.e., (1) control > disease (ADHD-C 

and ADHD-I) and (2) disease > control. DMN, Default mode network; VN, Visual network; 

BGN, Basal ganglia network; SMN, Sensory motor network; SCAN, Semantic cognition 

and attention network.
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FIGURE 7 |. 
(A) SFC; (B) vDFS features. selected by GA and hierarchical (AD). Selected features were 

split into two groups, i.e., (1) control > disease (AD, LMCI and EMCI) and (2) disease > 

control. DMN, Default mode network; VN, Visual network; BGN, Basal ganglia network; 

SMN, Sensory motor network; SCAN, Semantic cognition and attention network.
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FIGURE 8 |. 
(A) SFC; (B) vDFC; (C) SEC; (D) vDEC features. selected by GA and hierarchical (ASD). 

Selected features were split into two groups, i.e., (1) control > disease (autism and 

asperger’s) and (2) disease > control. DMN, Default mode network; VN, Visual network; 

BGN, Basal ganglia network; SMN, Sensory motor network; SCAN, Semantic cognition 

and attention network.
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FIGURE 9 |. 
(A) SFC; (B) vDFC; (C) SEC; (D) vDEC features. selected by GA and hierarchical (PTSD/

PCS). Selected features were split into two groups, i.e., (1) control > disease (PTSD and 

PTSD/PCS) and (2) disease > control. DMN, Default mode network; VN, Visual network; 

BGN, Basal ganglia network; SMN, Sensory motor network; SCAN, Semantic cognition 

and attention network.
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TABLE 1 |

Phenotypic variables selected by GA with different clustering methods (ADHD).

Phenotypic/genetic variables Selected variables

DPC OPTICS Hierarchical

ADHD index score ✓

Inattentive score ✓ ✓ ✓

Hyper/impulsive score ✓ ✓ ✓

VIQ ✓ ✓

PIQ ✓

FIQ ✓ ✓
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TABLE 2 |

Phenotypic variables selected by GA with different clustering methods (AD).

Phenotypic/genetic variables Selected variables

DPC OPTICS Hierarchical

APOE A1 and A2 ✓ ✓

NPI

GDS

MMSE ✓ ✓ ✓

CDR ✓ ✓ ✓

FAQ ✓ ✓ ✓
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TABLE 3 |

Phenotypic variables selected by GA with different clustering methods (ASD).

Phenotypic/genetic variables Selected variables

DPC OPTICS Hierarchical

FIQ ✓ ✓ ✓

VIQ ✓

PIQ ✓

ADI_R_SOCIAL ✓ ✓

ADI_R_VERBAL ✓ ✓

ADI_RRB ✓

ADI_R_ONSET

ADOS_TOTAL ✓

ADOS_COMM ✓ ✓

ADOS_SOCIAL ✓ ✓
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TABLE 4 |

Phenotypic variables selected by GA with different clustering methods (PTSD/PCS).

Phenotypic/genetic variables Selected variables

DPC OPTICS Hierarchical

Primary CNS-VS measures SDC correct ✓ ✓

ST simple

ST complex

SAT correct

SATRT

CPT correct

CPTRT

DTT percent box

DTT correct

DST

Derived CNS-VS measures NCI

RT

VM

CA

CF

EF

PS

Self-report measures LC

PSS

PSQI

ESS

ZDS ✓ ✓ ✓

ZAS ✓

CES ✓ ✓ ✓

LEC ✓ ✓

Other psychometric measures CDD_SS ✓

CDS_SS

MTS

MP

PRT

SRT2

SRT
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TABLE 5 |

Estimated optimal values of each input parameter in clustering for clinical vs. connectivity comparison.

Disease name DPC OPTICS Hierarchical

ρ δ Reachability threshold Cutting height

ADHD 46.93 1.22 1.03 1.15

AD 6.37 1.17 1.11 1.17

ASD 22.65 1.06 1.18 1.16

PTSD/PCS 12.05 1.17 0.42 1.16
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TABLE 6 |

Estimated optimal values of each input parameter in clustering for phenotypic vs. connectivity comparison.

Disease name DPC OPTICS Hierarchical

ρ δ Reachability threshold Cutting height

ADHD 37.64 1.19 1.21 1.14

AD 6.00 1.18 1.18 1.16

ASD 26.54 1.02 1.11 1.16

PTSD/PCS 14.89 1 11 0.40 1.08
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TABLE 11 |

Number of subjects provided by each site in the ASD sample.

Site Name HC Autism Asperger’s

Caltech 19 13 0

CMU 13 14 0

Pitt 27 30 0

UCLA 45 44 0

SDSU 23 2 5

Trinity 24 10 6

NYU 105 53 21
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TABLE 12 |

Number of subjects provided by three sites in the ADHD sample.

Site name HC ADHD-C ADHD-I

NYU 98 73 43

Peking 116 29 49

KKI 58 16 5
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TABLE 15 |

Network-to-network interactions selected by enrichment analysis for ADHD dataset.

Feature type Comparison P-value Selected features

SFC Control > Disease 0.006 BGN-BGN

SFC Disease > Control 0.04 VN-SMN

SEC Control > Disease 0.03 BGNVN

SEC Control > Disease 0.007 SCANSMN
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TABLE 16 |

Network-to-network interactions selected by enrichment analysis for AD dataset.

Feature type Comparison P−value Selected features

SFC Disease > Control 0.036 DMN-SMN

SFC Control > Disease 0.01 DMN-VN

vDFC Control > Disease 0.01 SCAN-SCAN

vDFC Disease > Control 0.04 DMN-SCAN
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TABLE 17 |

Network-to-network interactions selected by enrichment analysis for ASD dataset.

Feature type Comparison P-value Selected features

SFC Control > Disease 0.033 DMN-DMN

SFC Control > Disease 0.015 DMN-VN

vDFC Control > Disease 0.04 BGN-SCAN

SEC Disease > Control 0.025 DMNSMN
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TABLE 18 |

Network-to-network interactions selected by enrichment analysis for PTSD dataset.

Feature type Comparison P-value Selected features

SFC Disease > Control 0.001 DMN-BGN

vDFC Control > Disease < 0.001 DMN-BGN

vDEC Control > Disease 0.016 DMNBGN
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