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Abstract

Borrelia burgdorferi, the Lyme disease spirochete, dramatically alters its transcriptome and proteome as it cycles between
the arthropod vector and mammalian host. During this enzootic cycle, a novel regulatory network, the Rrp2-RpoN-RpoS
pathway (also known as the s54–sS sigma factor cascade), plays a central role in modulating the differential expression of
more than 10% of all B. burgdorferi genes, including the major virulence genes ospA and ospC. However, the mechanism(s)
by which the upstream activator and response regulator Rrp2 is activated remains unclear. Here, we show that none of the
histidine kinases present in the B. burgdorferi genome are required for the activation of Rrp2. Instead, we present
biochemical and genetic evidence that supports the hypothesis that activation of the Rrp2-RpoN-RpoS pathway occurs via
the small, high-energy, phosphoryl-donor acetyl phosphate (acetyl,P), the intermediate of the Ack-Pta (acetate kinase-
phosphate acetyltransferase) pathway that converts acetate to acetyl-CoA. Supplementation of the growth medium with
acetate induced activation of the Rrp2-RpoN-RpoS pathway in a dose-dependent manner. Conversely, the overexpression of
Pta virtually abolished acetate-induced activation of this pathway, suggesting that acetate works through acetyl,P.
Overexpression of Pta also greatly inhibited temperature and cell density-induced activation of RpoS and OspC, suggesting
that these environmental cues affect the Rrp2-RpoN-RpoS pathway by influencing acetyl,P. Finally, overexpression of Pta
partially reduced infectivity of B. burgdorferi in mice. Taken together, these findings suggest that acetyl,P is one of the key
activating molecule for the activation of the Rrp2-RpoN-RpoS pathway and support the emerging concept that acetyl,P
can serve as a global signal in bacterial pathogenesis.
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Introduction

The enzootic life-cycle of Borrrelia burgdorferi is complex and

typically involves transmission between an arthropod vector (Ixodes

ticks) and a mammalian host (e.g., Peromyscus rodents) [1].

Accumulated evidence have shown that the alternative sigma

factor RpoS plays a central role in this complex natural cycle of B.

burgdorferi [2–8]. RpoS functions as a global regulator and governs

differential expression of more than 10% of all B. burgdorferi genes,

including the two major virulence genes ospA and ospC [9–13].

One unique feature about rpoS of B. burgdorferi is that its expression

is directly controlled by the alternative second sigma factor RpoN

(s54) at a 224/212 s54-type promoter. Mutation within this

promoter region or inactivation of rpoN that encodes the second

alternative sigma factor RpoN (s54) abolishes expression of rpoS

and RpoS-dependent genes such as ospC [6,8,14]. This RpoN-

dependent transcriptional activation appears to play a major role

in modulating RpoS level in B. burgdorferi [3,5–8,14,15]. In

addition, a small RNA dsrA also has been shown to be involved

in post-transcriptional regulation of RpoS [7].

RpoN(s54)-dependent activation of transcription requires a

highly conserved transcriptional activator, the so-called enhancer-

binding proteins (EBPs) [16]. B. burgdorferi has a single EBP, Rrp2,

a homolog of NtrC family [17,18]. Members of NtrC family

contain three putative functional domains: an N-terminal response

regulator receiver domain, a central RpoN-activation domain, and

a C-terminal helix-turn-helix (HTH) DNA-binding domain [19].

The central domain becomes activated upon phosphorylation at a

conserved aspartic acid residue (corresponding to D52 in Rrp2)

within the N-terminal receiver domain. The activated central

domain then contacts the Es54-holoenzyme through DNA

looping, hydrolyzes ATP, and promotes open promoter complex

formation for transcriptional initiation. Although direct biochem-

ical evidence remains lacking, genetic data indicates that Rrp2 is
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the activator for the s54–sS cascade of B. burgdorferi. First, a single

point mutation of glycine (G) residue 239 to cysteine (C) within one

of the ATP-binding motifs in the central activation domain of

Rrp2 abolishes expression of rpoS and RpoS-dependent genes

[4,18,20]. Second, when a rpoS promoter-cat reporter and an

inducible rrp2 gene were cloned into a surrogate E. coli system, the

reporter was activated only upon induction of rrp2 [6]. Thus,

Rrp2, RpoN, and RpoS appear to constitute a Rrp2-RpoN-RpoS

pathway. Consistent with this notion, recent microarray analyses

reveal that genes influenced by Rrp2, RpoN, or RpoS largely

overlap [2–4,20].

Given the importance of the Rrp2-RpoN-RpoS pathway to the

infectious cycle of B. burgdorferi [3–5,20], it is striking how little we

know about the upstream event(s) that lead to its activation. Since

Rrp2 is the upstream activator for the pathway, an understanding

of the activation of Rrp2 is key to understand the mechanism of

activation of this pathway. It is postulated that activation of Rrp2

is through a phosphorylation event by a cognate histidine kinase

[21–23]. Because of the co-localization of rrp2 and hk2 in the

genome (15) and because of the ability of Hk2 to phosphorylate

Rrp2 in vitro [6], Hk2 is predicted to be the cognate histidine kinase

for Rrp2. A recent study by Burtnick et al. [6], however, showed

that an hk2 mutant remains capable of activating Rrp2 under in

vitro cultivation conditions, indicating that the molecular mecha-

nism activating the Rrp2-RpoN-RpoS pathway is more complex

than previously envisioned. In addition, the contribution of Hk2

during the infectious cycle of B. burgdorferi remains unknown

because the previous hk2 mutant lost an important endogenous

plasmid (lp36) for mammalian infection [6].

Response regulators can be activated by factors other than their

cognate histidine kinases. The best studied mechanisms are

phosphorylation by non-cognate histidine kinases (a phenomenon

called ‘‘cross-talk’’) [24–28] and phosphorylation by small

molecular weight high-energy donors, such as acetyl phosphate

(acetyl,P) or carbamoyl phosphate (carbamoyl,P) [29–31].

While cross-talk appears to be quite rare (48), emerging evidence

indicates that acetyl,P can function in vivo as a global signal by

donating its phosphoryl group to certain response regulators

[32,33]. B. burgdorferi possesses four predicted histidine kinases

(Hk1, Hk2, CheA1, and CheA2) [17,34] as well as pathways for

the synthesis and degradation of both acetyl,P and carbamoyl,P

[17]. Burtnick et al. [6] proposed that Hk2-independent activation

of Rrp2 could be activated by receiving a phosphoryl group from a

non-cognate histidine kinase or a small phosphorylated com-

pound. However, this hypothesis has not been tested experimen-

tally. In this study, we generated an hk2 mutant suitable for in vivo

study and showed that Hk2 was not required for the activation of

the Rrp2-RpoN-RpoS pathway under in vitro growth conditions or

during murine infection. We further showed that cross-talk among

two-component systems is not likely to account for Rrp2

activation. Rather, the results obtained support the hypothesis

that acetyl,P functions as an important phosphoryl donor for

Rrp2, making this small molecule a key modulator of the

activation of the Rrp2-RpoN-RpoS pathway in B. burgdorferi.

Results

Hk2 is not required for the activation of Rrp2-RpoN-RpoS
pathway in mammalian host-adapted spirochetes or
during murine infection

To study the mechanism of activation of the Rrp2-RpoN-RpoS

pathway, we focused on the upstream activator Rrp2, a putative

response regulator. Burtnick et al. [6] recently reported that

inactivation of hk2, which encodes the putative cognate histidine

kinase for Rrp2, did not affect activation of the Rrp2-RpoN-RpoS

pathway when spirochetes were cultivated in vitro. However, this

hk2 mutant was not phenotypically characterized in vivo [6]. Thus,

we sought to generate an hk2 mutant suitable for in vivo study. A

suicide vector harboring a disrupted hk2 region was transformed

into the infectious B. burgdorferi strain B31-A3 (Fig. 1A) [35].

Disruption of hk2 in the transformants was confirmed by PCR

(Fig. 1B) and the absence of Hk2 expression was verified by

immunoblot analyses (Fig. 1C). Of note, inactivation of hk2 by the

KanR cassette did not substantially affect expression of the protein

encoded by the downstream gene, rrp2 (Fig. 1C). Three

transformed clones were further subjected to plasmid profile

analyses (data not shown). Two clones had a plasmid profile

identical to that of parental wild-type B31-A3; one of these was

designated hk2 and chosen for further study (Table 1).

Under in vitro growth conditions, a combination of elevated

temperature and increased cell density activates the Rrp2-RpoN-

RpoS pathway, leading to the production of RpoS and RpoS-

controlled proteins such as OspC [2,5,6,8,18,36–39]. To deter-

mine if Hk2 affects temperature and cell density-dependent

activation of the Rrp2-RpoN-RpoS pathway, wild-type B.

burgdorferi and isogenic hk2 mutant spirochetes were cultivated at

elevated temperature (35uC) and harvested at the late-exponential

stage of growth (56107 spirochetes per ml), conditions under

which the Rrp2-RpoN-RpoS pathway is known to be activated.

The hk2 mutant and its parental strain expressed similar levels of

RpoS and OspC (Fig. 1C). Under ‘‘non-inducing’’ conditions

(i.e., low cell density or lower culture temperature), neither the hk2

mutant nor the parent strain expressed OspC (data not shown).

Thus, consistent with studies by Burtnick et al. [6], the Rrp2-

RpoN-RpoS pathway can be activated in vitro in an Hk2-

independent manner.

In vitro growth conditions only partially mimic the B. burgdorferi

gene expression patterns observed during tick feeding and

mammalian infection. For example, spirochetes grown under

elevated temperature and high cell density conditions upregulate

ospC but do not downregulate ospA [2,40–42]. Therefore, we next

examined the phenotype of the hk2 mutant grown in mammalian

host-adapted conditions by cultivating spirochetes in dialysis

membrane chambers (DMCs) implanted in the peritoneal cavities

of rats [2,40–42]. As shown in Fig. 2, wild-type spirochetes

cultivated in DMCs produced large amounts of OspC and

undetectable amounts of OspA. An rpoS mutant exhibited the

opposite phenotype, as previously reported [41]. In contrast, the

DMC-cultivated hk2 mutant behaved much like its wild-type

Author Summary

Borrelia burgdorferi, the causative agent of Lyme disease, is
maintained in nature in a complex enzootic cycle involving
Ixodes ticks and mammals. A novel regulatory network, the
Rrp2-RpoN-RpoS pathway, which governs differential
expression of numerous genes of B. burgdorferi, is essential
for this complex life cycle. In this study, we provide
evidence showing that the activation of the Rrp2-RpoN-
RpoS pathway is modulated, not by the predicted histidine
kinase for Rrp2, but rather by acetyl phosphate (acetyl,P),
the intermediate of the Ack-Pta (acetate kinase-phosphate
acetyltransferase) metabolic pathway. Based on our
findings, we propose that during the enzootic cycle of B.
burgdorferi, changes in environmental cues and nutrient
conditions lead to an increase in the intracellular acetyl,P
pool in B. burgdorferi, which in turn modulates the
activation of the Rrp2-RpoN-RpoS pathway.

The Rrp2-RpoN-RpoS Pathway of B. burgdorferi
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parent, indicating that Hk2 was not required for Rrp2 activation

within this mammalian host environment.

To further determine whether Hk2 is required for murine

infection, groups of C3H/HeN mice were inoculated intrader-

mally with various doses of either wild-type B. burgdorferi B31-A3 or

its isogenic hk2 mutant. As shown in Table 2, the infectivity of the

hk2 mutant was similar to that of the parental strain. This result

suggests that unlike Rrp2, RpoN and RpoS [3–5,20], Hk2 was not

required for infection of mice by B. burgdorferi.

Other histidine kinases are not involved in Rrp2
activation

The results described above indicate that Rrp2 could be

activated by an Hk2-independent mechanism. To test the

possibility that cross-talk may contribute to Rrp2 activation, we

assessed the involvement of the other three B. burgdorferi histidine

kinases identified to date [17]. We first constructed an hk1 mutant

(hk1) in B. burgdorferi 297 using a strategy similar to that described

for generating the hk2 mutant (Fig. 3A). The resulting mutant was

verified using RT-PCR to test for the absence of hk1 expression

and the lack of polarity on the downstream gene rrp1 (Fig. 3B).

Spirochetes were cultivated at elevated temperature and harvested

at the late-exponential stage of growth. Unlike the rrp2(G239C)

mutant, which failed to express OspC, the hk1 mutant produced

levels of OspC that were comparable to those of its wild-type

parent, indicating that Hk1 is dispensable for Rrp2 activation

(Fig. 3C).

It remained possible that Hk1 and Hk2 are involved in Rrp2

activation but that they may compensate for each other in a single

knockout mutant. To rule out this possibility, we generated an hk1

hk2 double mutant in B. burgdorferi 297 by transforming the hk1

mutant with the suicide vector used for generating the hk2 mutant.

Immunoblot analysis of the double mutant confirmed the absence

of Hk2 in the hk1 hk2 mutant, and, more importantly,

demonstrated that temperature and cell density-induced expres-

sion of OspC was unaffected despite the loss of both histidine

kinases (Fig. 4A). These results indicate that during in vitro growth,

Hk1 is not responsible for Rrp2 activation in the absence of Hk2.

In addition to Hk1 and Hk2, B. burgdorferi expresses two other

histidine kinases, CheA1 and CheA2, both of which are involved

in chemotaxis [43,44]. To determine whether CheA1 or CheA2

participate in Rrp2 activation, we examined the ability of cheA1

and cheA2 mutants to produce OspC. As shown in Fig. 4B, both

cheA mutants expressed normal levels of OspC, indicating that

neither CheA1 nor CheA2 is required for Rrp2 activation under in

vitro growth conditions.

Rrp2 activation requires the conserved phosphorylation
site D52

As a putative two-component response regulator, it is predicted

that Rrp2 becomes activated upon phosphorylation of a conserved

aspartate residue (D52) located within its N-terminal receiver

domain [6,18] (Fig. 5A). Since deletion of each histidine kinase

gene exerted no effect on the activation of the Rrp2-RpoN-RpoS

pathway, we asked whether Rrp2 activation actually requires

phosphorylation. Repeated attempts to replace the wild-type rrp2

with a mutated allele containing a D52A mutation were

unsuccessful. As an alternative strategy, we reasoned that, if

phosphorylation is important for Rrp2 activation, overexpression

of a wild-type N-terminal Rrp2 fragment (Rrp2-N) (phosphor-

ylatable but not active) would interfere with phosphorylation of

endogenous full-length Rrp2 and therefore affect activation of the

Rrp2-RpoN-RpoS pathway. Conversely, overexpression of a non-

phosphorylatable mutant version of the Rrp2 N-terminus should

have no effect. Accordingly, we constructed a series of shuttle

vectors that carried the wild-type allele rrp2-N or the mutant

alleles rrp2-N(D52A) or rrp2-N(D52E) under control of the

constitutive flaB promoter (Fig. 5A). Each constructed vector

then was transformed into a non-infectious but highly transform-

able strain, B31 13A. The resulting transformants were verified by

immunoblot analysis showing that each produced native full-

length Rrp2 and the overexpressed Rrp2-N fragment (Fig. 5B).

We then evaluated the ability of these transformants to express

OspC. Overexpression of wild-type Rrp2-N almost completely

abolished expression of ospC (Fig. 5B and 5C). These results were

consistent with the expectation that the Rrp2-N fragment can

successfully compete with native full-length Rrp2 for phosphory-

lation and, thus, interfere with Rrp2 and RpoN (s54)-dependent

transcription of rpoS [14,15]. In contrast, cells expressing non-

Figure 1. Construction and characterization of the hk2 mutant.
(A) Strategy for insertional inactivation of hk2. wt, genomic structure of
hk2 and the surrounding region in wild-type B. burgdorferi. pHX-hk2-
Kan, the suicide vector used for generating the hk2 mutant. Only the
relevant portion of the plasmid is shown. hk2, the diagram showing the
genomic structure of the hk2 mutant. Small labeled arrows denote
positions of oligonucleotide primers used for PCR analyses. (B)
Confirmation of the hk2 mutant by PCR analyses. Letter combinations
denote primer pairs used for PCR. kb: kilobase DNA ladder, wt, wild type
strain; hk2, hk2 mutant. (C) Immunoblot analyses of the hk2 mutant.
Cultures were grown at 35uC to late logarithmic phase (56107 spir-
ochetes/ml) and subjected to immunoblotting with monoclonal
antibodies against Hk2, Rrp2, RpoS, OspC or FlaB (loading control).
doi:10.1371/journal.ppat.1001104.g001

The Rrp2-RpoN-RpoS Pathway of B. burgdorferi
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phosphorylatable Rrp2-N(D52A) or Rrp2-N(D52E) behaved like

the vector control (Fig. 5B and 5C), as would be expected if Rrp2

activation requires phosphorylation of D52.

Given that the Rrp2-RpoN-RpoS pathway is essential for

mammalian infection, we hypothesized that overexpression of

Rrp2-N, but not Rrp2-N(D52A) would affect the spirochete’s

ability to infect mice. To test this hypothesis, we re-transformed

the corresponding shuttle vectors into the infectious strain B31-A3.

Positive transformants that had endogenous plasmid profiles

identical to that of B31-A3 were then needle-inoculated into

groups of C3H/HeN mice. As shown in Table 3, although the

strain overexpressing wild-type Rrp2-N was capable of infecting

mice with a high dose of inoculation (16105 spirochetes per

mouse), its infectivity was greatly reduced; only 1 out of 5 mice was

infected at the dose of 16103 spirochetes (Table 3). In contrast,

overexpression of Rrp2-N(D52A) exerted no such effect. Thus,

overexpression of Rrp2-N impaired the activation of the Rrp2-

RpoN-RpoS pathway both in vitro and in vivo, further supporting

the hypothesis that phosphorylation of Rrp2 is likely required for

the activation of the Rrp2-RpoN-RpoS pathway.

Carbamoyl phosphate does not contribute to Rrp2
activation

Since Rrp2 activation appears to require D52, but not the B.

burgdorferi histidine kinases, we reasoned that small metabolic

intermediates (e.g., carbamoyl,P or acetyl,P) might be respon-

sible for phosphorylation of D52. The B. burgdorferi genome is

predicted to encode a single pathway that can produce carbamoyl-

P, the so-called arginine fermentation or ArcA-ArcB pathway, in

which the enzyme arginine deaminase (ArcA) converts arginine to

citrulline, which is then converted to ornithine and carbamoyl,P

by the enzyme ornithine carbamoyltransferase (ArcB) (Fig. 6A).

To assess the ability of carbamoyl,P to influence Rrp2 activation,

we used transposon mutagenesis to construct an arcA (bb0841)

mutant (see Materials and Methods). The arcA mutant had no

growth defect in vitro (data not shown) and produced levels of

OspC similar to those of the wild-type parent strain (Fig. 6B).

Table 1. Strain description.

Spirochete Description Plasmid missing Source

B31-A3 A low–passage and virulent strain, derived from B31-MI cp9 [35]

B31 13A A non-infectious clone, derived from B31 lp25, lp56 [59]

B31 5A18 An infectious clone, derived from B31-MI lp28-4, lp56 [63]

BbAH130 An infectious clone, derived from Bb strain 297 [9]

rrp2 Same as BbAH130, except rrp2 was replaced with rrp2(G239C) [18]

rpoS Same as Bb297, except rpoS was disrupted with a ermC selection marker [8]

hk2 B31-A3 with the hk2 gene (bb0764) disrupted with a kanamycin selection marker This study

hk1 AH130 with the hk1 gene (bb0420) disrupted with a ermC selection marker This study

hk1 hk2 An hk1 hk2 double mutant in AH130, generated by transforming the hk2 suicide
vector into the hk1 mutant

This study

cheA1 A cheA1 (bb0567) mutant in B31-A lp28-4, lp56 [44]

cheA2 A cheA2 (bb0669) mutant in B31-A lp25, lp56 [44]

arcA An arc (bb0841) mutant, generated by transposon-mediated mutagenesis in B31 5A18 lp25, lp56 This study

13A/Rrp2-N B31 13A carrying a shuttle vector that overexpresses Rrp2-N lp25, lp56 This study

13A/D52A B31 13A carrying a shuttle vector that overexpresses Rrp2-N(D52A) lp25, lp56 This study

13A/D52E B31 13A carrying a shuttle vector that overexpresses Rrp2-N(D52E) lp25, lp56 This study

13A/vector B31 13A carrying a shuttle vector alone lp25, lp56 This study

13A/Pta B31 13A carrying a shuttle vector that overexpresses Pta lp25, lp56 This study

A3/Rrp2-N B31-A3 carrying a shuttle vector that overexpresses Rrp2-N cp9 This study

A3/D52A B31-A3 carrying a shuttle vector that overexpresses Rrp2-N(D52A) cp9 This study

A3/Pta B31-A3 carrying a shuttle vector that overexpresses Pta cp9 This study

doi:10.1371/journal.ppat.1001104.t001

Figure 2. hk2 mutant spirochetes cultivated in DMCs are
capable of activating the Rrp2-RpoN-RpoS pathway. Wild-type
(wt), hk2 mutant (hk2), or rpoS mutant (rpoS) spirochetes were
cultivated in DMCs, after which whole cell lysates were separated by
SDS-PAGE and visualized with silver stain. The bands corresponding to
OspA and OspC are indicated by arrowheads on the right. Molecular
mass markers in kilodaltons are shown on the left.
doi:10.1371/journal.ppat.1001104.g002

The Rrp2-RpoN-RpoS Pathway of B. burgdorferi
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Moreover, wild-type spirochetes cultivated in growth medium

supplemented with an excess of arginine or ornithine showed no

change in OspC expression (data not shown). Collectively, these

results argue that carbamoyl,P does not donate its phosphoryl

group to activate Rrp2, at least under in vitro cultivation conditions.

Acetate induces activation of the Rrp2-RpoN-RpoS
pathway

Acetyl,P is the intermediate in the acetate kinase (Ack) –

phosphate acetyltransferase (Pta) pathway. B. burgdorferi possesses

genes predicted to encode both Ack (BB0622) and Pta (BB0589)

[17] (Fig. 7A). However, the B. burgdorferi genome encodes neither

an AMP-ACS pathway that converts acetate to acetyl-coA nor

other known pathways that produce acetyl-CoA. It also lacks the

TCA cycle which utilizes acetyl-CoA for energy production. The

genome does have a mevalonate pathway (BB0683-BB0688) that

requires acetyl-CoA for cell wall synthesis. Therefore, the Ack-Pta

pathway appears to be the sole pathway for biosynthesis of acetyl-

CoA required for cell wall synthesis

As a short-chain fatty acid, acetate can diffuse into cells under

neutral or acidic conditions [32]. Then the enzyme Ack can

convert acetate to acetyl,P, which in turn is converted to acetyl-

CoA by the enzyme Pta. Thus, increasing concentrations of

exogenous acetate can elevate intracellular levels of acetyl,P [32].

To assess whether acetyl,P plays a role in Rrp2 activation, wild-

type B. burgdorferi B31-A3 were cultivated in BSK-H medium

supplemented with increasing concentrations of sodium acetate

(NaOAc) with the final medium pH adjusted to 7.0. In order to

Table 2. Mouse infectivity of the hk2 mutant.

Strains No. of mouse tissues culture positive/total No. of tissues tested No. of mice infected/total No. of mice

Skin Heart Joint Bladder

B31-A3

105 5/5 5/5 5/5 5/5 5/5

103 9/10 9/10 9/10 9/10 9/10

hk2 mutant

105 5/5 5/5 5/5 5/5 5/5

103 7/10 7/10 8/10 8/10 8/10

doi:10.1371/journal.ppat.1001104.t002

Figure 3. The hk1 mutant remains capable of activating the Rrp2-RpoN-RpoS pathway. (A) Strategy for insertional inactivation of hk1. wt,
genomic structure of hk1 in wild-type B. burgdorferi. pXY245, the suicide vector used for generating the hk1 mutant. Only the relevant portion of the
plasmid is shown. (B) Confirmation of the hk1 mutant by RT-PCR analyses. RT-PCR was performed using primers specific for ospA, hk1, or rrp1 (labeled
on the top). kb: the kilobase DNA ladder. RT indicates the absence (-) or presence (+) of reverse transcriptase in the reaction. (C) Production of OspC
by the hk1 mutant. Various strains of spirochetes (labeled on the top) were grown at 35uC and harvested in the late logarithmic phase
(56107 spirochetes/ml) and subjected to immunoblot analysis using a mixture of monoclonal antibodies specific for OspC and FlaB, respectively. A
strain harboring a G239C point mutation within Rrp2 [18], serves as a negative control for OspC expression. The bands corresponding to OspC or FlaB
are indicated by the arrowhead on the right.
doi:10.1371/journal.ppat.1001104.g003

The Rrp2-RpoN-RpoS Pathway of B. burgdorferi
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detect the effect of acetate, cells were harvested at low density

(56106 spirochetes/ml) when activation of the Rrp2-RpoN-RpoS

pathway (monitored by RpoS and OspC expression) is low

[37,38]. As shown in Fig. 7B, supplementation of NaOAc to the

growth media dramatically increased the expression of OspC and

RpoS in a dose-dependent fashion. This increase was not due to

an elevated salt concentration (or to osmotic shock) since

supplementation of the medium with as much as 150 mM NaCl

did not reproduce this effect (data not shown).

Overexpression of Pta inhibits the activation of the
Rrp2-RpoN-RpoS pathway

To determine whether acetate-induced RpoS and OspC

expression occurs via the Ack-Pta pathway, we attempted to

generate ack and pta mutants but were unsuccessful. We reasoned

that the Ack-Pta pathway may be indispensable for borrelial

growth (see discussion). As an alternative approach, we overex-

pressed Pta in wild-type spirochetes. We reasoned that if acetate-

induced Rrp2 activation results from accumulation of acetyl,P,

then overexpression of Pta would reduce the level of acetyl,P and

abolish the acetate effect. A shuttle vector carrying the pta gene

under the control of the flaB promoter was introduced into strain

B31 13A. The resulting transformants were cultivated in the

presence of 15 mM NaOAc at pH 7.0 and harvested at low cell

density (56106 spirochetes/ml). As shown in Fig. 7C, overex-

pression of Pta dramatically reduced acetate-induced Rrp2

activation as assessed by expression of OspC. These results are

consistent with the hypothesis that acetate activates Rrp2 via

accumulation of acetyl,P.

A combination of elevated culture temperature and increased

cell density or lowered pH (pH 6.8–7.0) induces RpoS and OspC

expression [5,37,38,45], yet the underlying mechanism remains

unclear. Since temperature, cell density, and pH are capable of

influencing intracellular level of acetyl,P in other organisms, such

as E. coli [32], we sought to determine if overexpression of Pta also

affects temperature and cell density-induced Rrp2 activation.

Thus, spirochetes were cultivated at 23 or 35uC in standard BSK-

H and harvested during late exponential growth (,56107 spir-

ochetes/ml). Consistent with previous observation, elevated

temperature and cell density induced OspC expression in wild-

type spirochetes (Fig. 7D, the left panel). However, overexpres-

sion of Pta dramatically inhibited such effect (Fig. 7D, the right

panel). These results suggest that the effect of environmental cues

such as temperature- and cell density on RpoS and OspC

expression might be through the small molecule acetyl,P.

To determine whether overexpression of Pta would affect

mammalian infection by B. burgdorferi, we re-constructed a Pta-

overexpressing strain in the infectious strain B31-A3. One of the

transformed clones harboring flaBp-pta had an endogenous

plasmid profile identical to that of B31-A3, and was chosen for

subsequent infection study. As shown in Table 3, overexpression

of Pta resulted in a moderate reduction of infectivity; half of the

mice (4 out of 8) were infected at the dose of 16103 spirochetes.

This result suggests that the AckA-Pta pathway contributes to

mammalian infection, likely by synthesizing acetyl,P, which can

donate its phorphoryl group to Rrp2.

Acetyl,P phosphorylates Rrp2 in vitro
To determine whether Rrp2 can be directly phosphorylated by

acetyl,P, we performed an in vitro phosphorylation assay.

Different amounts of purified recombinant Rrp2, Rrp2-N, Rrp2-

N(D52A), or Rrp2-N(D52E) were incubated with 32P-labeled

acetyl,P in the reaction buffer at 37uC for 15 or 30 min. As

shown in Fig. 7E, phosphorylated Rrp2 was readily detected in a

time- and dose-dependent manner. Furthermore, phosphorylation

of Rrp2 requires D52, since wild-type Rrp2-N, but not Rrp2-

N(D52A) or Rrp2-N(D52E) could be phosphorylated by acetyl,P

Figure 4. The hk1 hk2 double mutant and the cheA1 or cheA2
mutant have normal level of Rrp2 activation. Various strains of
spirochetes (labeled on the top) were grown at 35uC, harvested in the
late logarithmic phase (56107 spirochetes/ml), and subjected to
immunoblot analysis using monoclonal antibodies specific against
Hk2, OspC or FlaB as indicated.
doi:10.1371/journal.ppat.1001104.g004

Figure 5. Influence of overexpression of wild-type or mutated version of the Rrp2 N-terminal receiver domain on Rrp2 activation.
(A) Schematic diagram of predicted Rrp2 domain structure and various versions of overexpressed N-terminal receiver domains. D52 is the putative
phosphorylation site. (B) Immunoblot of wild-type strain (lane 1), the strain carrying the shuttle vector only (lane 2), the strain with overexpression of
Rrp2-N (lane 3), the strain with overexpression of Rrp2-N(D52A) (lane 4), and the strain with overexpression of Rrp2-N(D52E) (lane 5). Cultures were
grown to late logarithmic phase at 35uC. Pooled antibodies/antisera against Rrp2, FlaB, and OspC were used. Bands corresponding to each protein
were labeled on the right. (C) qRT-PCR analysis of ospC expression in various strains shown in (B). Levels of ospC transcript were normalized per 1000
copies of flaB in each sample.
doi:10.1371/journal.ppat.1001104.g005
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(Fig. 7E). These results indicate that acetyl,P can directly donate

its phosphoryl group to Rrp2 in a histidine kinase-independent

manner.

Discussion

The discovery of the central regulatory network, the Rrp2-

RpoN-RpoS pathway, was a significant advance in B. burgdorferi

gene regulation. However, the dearth of knowledge regarding the

mechanism underlying the activation of this pathway has been a

major gap in our understanding of Borrelia host adaptation. In this

study, we showed that temperature- and cell density-induced

Rrp2-RpoN-RpoS activation occurs via a histidine kinase-

independent mechanism. We further provided evidence suggesting

the hypothesis that the high-energy metabolic intermediate

acetyl,P plays a key role in Rrp2 phosphorylation and,

consequently, the activation of the Rrp2-RpoN-RpoS pathway.

In this study we first extended the recent finding by Burtnick

et al. [6] that Hk2 was not essential for Rrp2 activation under in

vitro cultivation conditions, by further showing that the hk2 mutant

was capable of activating the Rrp2-RpoN-RpoS pathway in a

mammalian host-adapted model and establishing infection in

mice. The fact that the hk2 mutant remained capable of

upregulation of OspC and downregulation of OspA in the

DMC model (Fig. 2) indicates that this sensor kinase and its

PAS sensing domain does not play a major in sensing mammalian

host-specific signals for RpoS activation. We next tested the

hypothesis that Hk1, the only other B. burgdorferi histidine kinase

with no assigned function, could be responsible for activation of

the Rrp2 pathway. We found that the hk1 and hk1 hk2 mutants

exhibited normal levels of temperature-induced Rrp2-dependent

OspC expression. We further found that spirochetes lacking other

histidine kinases identified in the B. burgdorferi genome, the

chemotaxis histidine kinases CheA1 or CheA2, also exhibited

normal OspC expression. One caveat is that we have not tested

cheA1 hk2 and cheA2 hk2 double mutants and thus cannot formally

rule out a possible compensatory effect between Hk2 and CheA1

or CheA2.

Several groups have reported the existence of atypical response

regulators in other bacteria whose activities do not require

phosphorylation of their receiver domains [46–48]. These atypical

response regulators either do not possess the conserved aspartate

residue shown to function as the phosphorylation site (e.g.,

HP1021 and HP1043 in Helicobacter pylori) [46], or lack conserved

residues for Mg++ chelation, which is essential for phosphorylation

(e.g., FrzS in Myxococcus or NblR in Synechococcus) [47,48].

However, Rrp2 retains all the conserved residues for phosphor-

ylation (D52), Mg++ binding (D8, D9), and signal transduction

(T80, F99, K102). Thus, it is unlikely that Rrp2 is an atypical

response regulator. Indeed, in this study, we showed that Rrp2 can

autophosphorylate using acetyl,P as its sole phosphoryl donor.

Furthermore, overexpression of the phosphorylatable receiver

domain of Rrp2 (Rrp2-N), but not variants of Rrp2-N that carry

the D52A or D52E mutations, interfered with endogenous Rrp2

activity. This result is consistent with the assumption that Rrp2

activation requires phosphorylation of D52. Another evidence

supporting phosphorylation-dependent Rrp2 activation is our

previous observation that the ATPase activity of Rrp2, an activity

that is essential for its transcriptional activation function, also is

Table 3. Mouse infectivity of Borrelia burgdorferi with overproduction of Rrp2-N or Pta.

Strain Ear*
No. of cultures positive/total No.

No. of mice positive/total No. of mice

Skin Joint Heart All sites

B31-A3

105 3/3 3/3 3/3 3/3 9/9 3/3

103 9/10 9/10 9/10 9/10 27/30 9/10

A3/vRrp2-N

105 2/3 2/3 2/3 2/3 6/9 2/3

103 0/5 1/5 1/5 1/5 3/15 1/5

A3/vRrp2-ND52A

103 5/5 5/5 5/5 5/5 15/15 5/5

A3/vPta

103 4/8 4/8 3/8 4/8 11/24 4/8

*Ear punch biopsies were examined at day 10 and other tissues were examined at day 20 post inoculation.
doi:10.1371/journal.ppat.1001104.t003

Figure 6. Inactivation of the carbamoyl-P biosynthesis pathway
does not affect Rrp2 activation. (A) Diagram of the arginine
fermentation pathway in B. burgdorferi. The arcA (bb0841) and arcB
(bb0842) genes are predicted to encode arginine deaminase and
ornithine carbamoyltransferase, respectively. (B) Immunoblot analysis
of whole cell lysates of wild-type (wt), the rrp2 mutant [rrp2(G239C)],
and the arcA mutant (arcA) with a mixture of antibodies against OspC
and FlaB. Spirochetes were cultured at 35uC and harvested at late
logarithmic growth. The bands corresponding to FlaB and OspC are
indicated on the right.
doi:10.1371/journal.ppat.1001104.g006
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Figure 7. Acetyl,P plays an important role in Rrp2 activation under in vitro cultivation conditions. (A) Diagram of the ACK-PTA pathway
in B. burgdorferi. ack (bb0622) encodes acetate kinase (Ack), which converts acetate to the intermediate acetyl,P, while pta (bb0589) encodes
phosphate acetyltransferase (Pta), which synthesizes acetyl-CoA from acetyl,P and CoASH [17]. In B. burgdorferi, the Ack-Pta pathway appears to be
the sole pathway for biosynthesis of acetyl-CoA, a molecule required for cell membrane biosynthesis (see Results and Discussion for details). (B)
Acetate induces activation of the Rrp2-RpoN-RpoS pathway. Wild-type B. burgdorferi strain B31-A3 was cultivated in the BSK-H medium
supplemented with 0–90 mM NaOAc with a final media pH value of 7.0. Cells were harvested at the early-logarithmic phase (56106 spirochetes/ml).
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dependent on phosphorylation of Rrp2 [15]. Of note, overpro-

duction of a protein from a strong constitutive promoter (e.g., flaB)

could have pleiotropic effects. An ideal approach to study the

function of Rrp2 phosphorylation would be to replace the

endogenous copy of rrp2 with the D52A mutant allele. Despite

multiple efforts, however, we failed to generate the desired strain.

This lack of success is consistent with previous reports that

inactivation of rrp2 may be lethal [6,18]. We hypothesize that

phosphorylated Rrp2 may be important for cell growth.

Consistent with this hypothesis, overexpression of Rrp2 exhibited

a moderate growth defect (data not shown).

The finding that activation of RpoS and OspC requires

phosphorylation of Rrp2 but does not require any of the four

histidine kinases led us to hypothesize that the phosphoryl donor

might be a high-energy central metabolic intermediate [29,31,32].

Indeed, bioinformatic analysis of the B. burgdorferi genome revealed

one pathway capable of producing carbamoyl-P (ArcA-ArcB) and

one pathway that can synthesize acetyl,P (Ack-Pta). Loss of ArcA,

which should result in the inability to synthesize carbamoyl-P, had

no effect upon Rrp2-dependent expression, suggesting that

carbamoyl-P does not serve as the phosphoryl donor to Rrp2.

Acetyl,P is the intermediate of the Ack-Pta pathway. The

Ack-Pta pathway functions in acetogenesis through the conver-

sion of acetyl-CoA obtained from pyruvate into acetate;

operation of this pathway in the opposite direction enables other

bacteria to use acetate as a carbon source by activating acetate to

acetyl-CoA, which subsequently enters the tricarboxylic acid

(TCA) cycle. In some organisms, such as E. coli, the pathway is

reversible and thus can function in both acetogenesis and acetate

activation [32]. The relatively small genome of B. burgdorferi, an

obligate parasite, does not encode any enzyme known to convert

pyruvate to acetyl-CoA, nor does it encode the enzymes of the

TCA cycle. Instead, B. burgdorferi performs lactogenesis, convert-

ing pyruvate to lactate [17] (Xu H. and Yang, X.F., unpublished

result). As such, the main function of the Ack-Pta pathway of B.

burgdorferi is likely not for converting acetyl-CoA to acetate, but

for generating acetyl-CoA from acetate. This acetyl-CoA could

then be used for cell wall synthesis (via the mevalonate pathway

[BB0683-BB0688]) and possibly for other metabolic pathways

(Fig. 7A). Furthermore, B. burgdorferi seems to lack other acetyl-

CoA synthetic pathways (e.g., the AMP-ACS pathway, b-

oxidation of fatty acids, and several amino acid degradation

pathways). Thus, the Ack-Pta pathway appears to be the sole

pathway for biosynthesis of acetyl-CoA. If so, one would predict

that the Ack-Pta pathway is essential for spirochetal growth. This

notion is consistent with the fact that we failed to generate either

an ack or a pta mutant by either targeted mutagenesis or random

transposon mutagenesis (data not shown). What’s the source of

acetate for B. burgdorferi? Our measurement showed that acetate

concentration in mouse blood and the midgut of fed ticks is

,1.0 M and ,1.8 mM, respectively (Xu H. and Yang, XF,

unpublished data). One of the ingredients of the BSK-H medium,

CMRL, also contains 0.61 mM acetate (other ingredients of this

complex medium, such as rabbit serum, also may contribute to

the overall levels of acetate). Through diffusion or an unknown

transport system, B. burgdorferi may obtain sufficient acetate from

these environments for acetyl-CoA production.

Acetyl,P has drawn attention as a global regulator of gene

expression via its ability to donate its phosphoryl group to a subset

of response regulators under certain environmental conditions

[32]. In E. coli, the intracellular acetyl,P concentration can reach

levels sufficient to phosphorylate a subset of response regulators

[49] and thus influence the biological processes controlled by those

proteins [32]. Although we have not yet measured the intracellular

acetyl,P levels to determine if this is also the case in B. burgdorferi,

we were able to provide three lines of evidence to support the

conclusion that acetyl,P plays an important role in Rrp2

activation: (i) the activation of the Rrp2-RpoN-RpoS pathway

can be induced by increasing concentration of exogenous acetate

(Fig. 7B); (ii) overexpression of Pta reduced acetate-induced

activation of the Rrp2-RpoN-RpoS pathway (Fig. 7C); and (iii)

acetyl,P served as a phosphoryl donor to Rrp2 in vitro (Fig. 7E).

Note that overexpression of Pta did not completely abolish OspC

production, suggesting that a low level of Rrp2 activation still

occurs. This might be due to the presence of low levels of

acetyl,P, as overexpression of Pta does not abolish the production

of acetyl,P. Alternatively, Hk2 may contribute to Rrp2

activation. We are currently in the process of testing this possibility

by overexpressing Pta in the hk2 mutant. Nevertheless, this partial

inhibition of RpoS and OspC expression by overexpression of Pta

is consistent with the in vivo phenotype that overexpression of Pta

resulted in a moderate reduction of spirochetal infectivity in mice

(Table 3).

It is well established that the Rrp2 pathway can be activated by

many environmental cues such as temperature, pH, cell density,

oxygen, and CO2 levels [37–39,45,50,51]. However, the under-

lying mechanism for these phenomena has not been elucidated. In

this regard, it is striking that virtually all the environmental cues

that activate the Rrp2 pathway also have been shown to influence

the acetyl,P pool in E. coli [32]. This observation is consistent

with our hypothesis that acetyl,P serves as a signaling molecule

that responds to environmental cues and in response activates the

Rrp2 pathway. Indeed, we showed that overexpression of pta

greatly inhibited both temperature- and cell density-induced

activation of Rrp2 (Fig. 7D), suggesting that elevated temperature

and increased cell density activate the Rrp2-RpoN-RpoS pathway

in an acetyl,P-dependent manner. Elevated temperature may

increase acetyl,P levels by enhancing diffusion of acetate into the

cells and/or from increased transport efficiency via an unidentified

transport system for acetate. Elevated temperature also increases

cell growth rates that likely lead to increased levels of acetyl,P

[32,52]. The effect of increased cell density on acetyl,P levels, on

the other hand, can result simply by a change in extracellular pH.

As cell density increases, the culture pH diminishes from 7.5 to 7.0

or lower [38], which favors the passive diffusion of acetate into the

cells [32].

Cell lysates were subjected to SDS-PAGE (top panel) or immunoblot (bottom panels) analysis. The bands corresponding to OspC, RpoS and FlaB were
labeled on the right. (C) Overexpression of Pta reduces acetate-induced Rrp2 activation. Wild-type B. burgdorferi strain B31 13A (-) or the strain
carrying flaBp-pta (+) were cultivated in the BSK-H medium supplemented with 15 mM NaOAc at pH 7. Cells were harvested at the cell density of
56106 and then subjected to immunoblot analyses with a mixture of antibodies against RpoS, OspC, or FlaB (internal control). The bands
corresponding to each protein are indicated on the right. (D) Overexpression of Pta reduces temperature and cell density-induced activation of the
Rrp2-RpoN-RpoS pathway. Wild-type B. burgdorferi strain B31 13A (-) or the strain carrying flaBp-pta (+) were cultivated either at 23 or 35uC in the
standard BSK-H medium. Cells were harvested at the late-logarithmic growth phase (56107 spirochetes/ml) and then subjected to immunoblot
analyses. (E) In vitro phosphorylation of recombinant Rrp2 by acetyl,P. Different quantities of purified recombinant Rrp2 or various versions of Rrp2-
N were incubated with [32P]acetyl phosphate and the reactions were terminated at 15 or 30 min. The reaction mixtures were separated by SDS-PAGE
followed by exposure on Kodak X-ray film.
doi:10.1371/journal.ppat.1001104.g007
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One caveat of this study is that we used expression of RpoS

and OspC as the readout for Rrp2 phosphorylation. An ideal

approach for such study would be directly to detect the

phosphorylated form of Rrp2. Unfortunately this approach is

not technically feasible since most forms of the Asp-phosphor-

ylation are unstable and there is no antibody available for

detecting Asp-phosphorylation. Thus, a common approach for

studying phosphorylation of response regulators is to monitor the

output product as a result of phosphorylation of a response

regulator. In the case of Rrp2, the only direct target gene

identified thus far is rpoS and therefore, expression of rpoS

faithfully reflects the activation of Rrp2 modulated by phos-

phorylation. One concern for this approach is whether the effect

on RpoS expression observed in this study is through another

transcriptional activator, BB647 (BosR). BB647 is a fur

homologue and was recently shown that inactivation of this

gene significantly reduced rpoS and ospC expression [53–56].

Although it remains unclear how BosR fits into the Rrp2-RpoN-

RpoS pathway, we found that neither overexpression of Rrp2-N

nor overexpression of Pta affected the level of BosR (data not

shown), suggesting that the effects of Rrp2-N or Pta overexpres-

sion on RpoS and OspC was not through BosR, rather through

Rrp2.

In summary, we have shown that temperature- and cell

density-induced the activation of the Rrp2-RpoN-RpoS pathway

proceeds independently of histidine kinases and carbamoyl-P. In

contrast, biochemical and genetic manipulation of the acetyl,P-

producing Ack-Pta pathway dramatically impacts activation of

the Rrp2-RpoN-RpoS pathway, providing strong evidence that

acetyl,P plays an important role in Rrp2 activation under in vitro

growth conditions. We also provide evidence showing that,

during mammalian infection, the Rrp2-RpoN-RpoS pathway is

also activated via an Hk2-independent mechanism and that

acetyl,P plays an important role in this process. Then, what is

the function of Hk2? One possibility is that Hk2 may play a role

in sensing host signals and activating Rrp2 during the process of

tick feeding. In this regard, we have examined the phenotype of

the hk2 mutant in ticks and found that the hk2 mutant indeed has

reduced infectivity via the route of tick infestation. Unfortunately,

we have not been able to construct an infectious complemented

strain and, thus, have been unable to show restoration of this

defect, which prevents us from drawing a definitive conclusion on

Hk2 function in the enzootic cycle of B. burgdorferi. Nevertheless,

this preliminary finding suggests that Hk2 may contribute to

Rrp2 activation during the process of tick feeding. In addition,

spirochetes likely have increased levels of intracellular acetyl,P

in feeding ticks, as they encounter increased temperature [39], as

well as a massive influx of nutrients that leads to a dramatic

increase of growth rates during this process [57,58]. Thus, we

postulate that while acetyl,P plays an important in activating the

Rrp2-RpoN-RpoS pathway during mammalian infection, both

acetyl,P and Hk2 are likely involved in integrating complex

environmental and host signals to modulate the Rrp2-RpoN-

RpoS pathway during the process of spirochetal transmission

from ticks to mammals.

Materials and Methods

Ethics statement
All animal experimentation was conducted following the NIH

guidelines for housing and care of laboratory animals and

performed in accordance with Indiana University Institutional

regulation after review and approval by the institutional Animal

Care and Use Committee at Indiana University.

Bacterial strains and plasmids
Low–passage, virulent B. burgdorferi strain B31-A3 was kindly

provided by Dr. P. Rosa (Rocky Mountain Laboratories, National

Institute of Allergy and Infectious Diseases, National Institutes of

Health) [35]. Strain B31 13A that lacks lp25 was kindly provided

by Dr. F. T. Liang (Louisiana State University) [59]. The rrp2

mutant was described previously [9] [20]. The cheA1 and cheA2

mutants were kindly provided by Dr. Li (New York medical

college, NY) [44]. Borreliae were cultivated in Barbour-Stoenner-

Kelly (BSK-H) medium (Sigma, St. Louis, MO) supplemented

with 6% normal rabbit serum (Pel Freez Biologicals, Rogers, AR)

at 35uC unless indicated otherwise. A shuttle vector pBSV2 (a gift

from Dr. P. Rosa) was maintained in E. coli strain TOP10.

Relevant antibiotics were added to the cultures in the following

final concentrations: 300 mg/ml for kanamycin and 50 ng/ml for

erythromycin.

Construction of the hk2 mutant
To generate an hk2 mutant in strain B31-A3, a 2.5 kb fragment

containing hk2 and its surrounding region was amplified with

primers hk2-delF and hk2-delR (Supplemental Table S1) and

cloned into the cloning vector pCR-XL-TOPO (Invitrogen). The

plasmid was digested with Hind III (19 bp downstream of the 5’

end of hk2) and ClaI (637 bp upstream of the 3’ end of hk2), and a

kanamycin-resistance cassette driven by the flaB promoter was

then inserted into the disrupted hk2 gene (Fig. 1A). The suicide

vector was confirmed by sequencing, and the plasmid DNA was

transformed into B. burgdorferi strain B31-A3 as previously

described [9,60]. Whole cell lysates from positive clones were

analyzed by PCR and Western immunoblot analysis using a

monoclonal antibody against Hk2 to confirm marker insertion and

inactivation of hk2. The plasmid profiles of the hk2 mutant clones

were determined by PCR analyses with twenty-one pairs of

primers specific for each of the endogenous plasmids [61–63].

Two of the three randomly picked clones had plasmid profiles that

were identical to the parental strain B31-A3 [35], and one of these

was chosen for further study.

Cultivation of B. burgdorferi B31 within dialysis
membrane chambers (DMCs)

Dialysis membrane chambers (DMCs) containing 16103

organisms diluted from a mid-logarithmic growth culture at

33uC in vitro, were implanted into the peritoneal cavities of female

Sprague-Dawley rats as previously described [40,42]. The DMCs

were explanted 192 h after implantation; the spirochetes then

were harvested, washed with 1x PBS buffer, and then examined by

SDS-PAGE and silver staining.

Construction of the hk1 mutant and the hk1 hk2 double
mutant strain

To construct a suicide vector for inactivation of hk1, regions of

DNA corresponding to 1.3 kb upstream and 1.3 kb downstream

of hk1 regions were PCR amplified from B31-A3 genomic DNA.

The resulting DNA fragments were then cloned upstream and

downstream of an erythromycin-resistant marker (ermR) within the

pCR-XL-TOPO cloning vector, resulting in suicide vector

pXY245. The inserts of pXY245 were confirmed by sequencing.

The plasmid DNA was transformed into B. burgdorferi 297 strain

BbAH130 as previously described [9,60], resulting in a mutant

with 3.4 kb deletion within hk1 (except the 460 bp to the 5’ end

and 385 bp to the 3’ end of hk1) and an insertion of the ermR

marker. Loss of hk1 expression was confirmed by RT-PCR

analysis.
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To construct the hk1 hk2 double mutant, the suicide vector

pHX-hk2-kan DNA was transformed into the hk1 mutant.

Kanamycin and erythromycin-resistant clones were selected and

the loss of hk2 was confirmed by Western immunoblot analysis

using an anti-Hk2 monoclonal antibody.

Construction of shuttle vectors for overexpression of wild
type and mutant Rrp2 N-terminal domains and for
overexpression of Pta

To constitutively express the wild-type Rrp2 N-terminal

domain, the DNA fragment corresponding to the Rrp2-N terminal

region was PCR-amplified from B. burgdorferi B31-A3 genomic

DNA using primers rrp2-N-F and rrp2-N-R (Supplemental
Table S1). Two restriction sites, NdeI and PstI, were incorporated

into the designated primers and used for insertion of the digested

PCR fragment into the pBSV2-derived shuttle vector pJD55 [4]

harboring a flaB promoter. Thus, expression of Rrp2-N was placed

under the control of the flaB promoter, flaBp-Rrp2-N. The resulting

shuttle vector, pJD55/rrp2-N, was verified by sequencing and

then transformed into B31 13A and B31-A3.

To introduce a single amino acid substitution (D52A or D52E)

into the Rrp2-N terminal domain on pJD55/rrp2-N, site-directed

mutagenesis was carried out by using the QuikChange II XL Site-

Directed Mutagenesis Kit (Stratagene, La Jolla, CA) with the

mutagenic PAGE-purified primers D52A-F/D52A-R and D52E-

F/D52E-R (Supplemental Table S1) as described by the

manufacturer. Briefly, PCR was carried out as follows: 95uC for 50

seconds, 60uC for 50 seconds, 68uC for 10 minutes and 18 cycles.

The resulting shuttle vectors with point mutations in Rrp2-N were

verified by sequencing and designated pJD55-Rrp2-N(D52A) and

pJD55-Rrp2-N(D52E), respectively.

To overexpress Pta, the DNA fragment corresponding to pta

(bb0589) was PCR amplified from B. burgdorferi B31-A3 genomic DNA

using primers Bb589F and Bb589R (Supplemental Table S1) and

then subsequently cloned into pJD55, which places pta under the

control of the flaB promoter. The resulting shuttle vector was verified

by sequencing and then transformed into B31 13A and B31-A3.

Construction of the arcA (bb0841) mutant by transposon
mutagenesis

The arcA mutant was generated by transposon-mediated

mutagenesis as part of an on-going transposon signature tagged

mutagenesis (STM) study. Briefly, twelve independent mutant

libraries, each having a unique 7 bp sequence tag, were created

using modified versions of the suicide plasmid pMarGentKan

derived from pMarGent [64] (kindly provided by Dr. P. E.

Stewart, Rocky Mountain Laboratories, National Institutes of

Health, Hamilton, MN). The resulting plasmids were transformed

into B. burgdorferi B31 5A18; transformants were selected on solid

BSK-II media containing 200 mg/ml of kanamycin and 40 mg/ml

of gentamicin as described previously [65]. Transposon insertion

sites were determined by restriction digestion of the Borrelia

genomic DNA, plasmid rescue in E. coli, and sequencing, as

described previously [1].

Sodium dodecyl sulphate-polyacrylamide gel
electrophoresis (SDS-PAGE) and immunoblotting

SDS-PAGE and immunoblot analyses were performed as previ-

ously described [66]. Monoclonal antibodies against OspC, RpoS, and

FlaB were described previously [20,38]. Monoclonal antibodies against

Rrp2 and HK2 were produced using a previously described method

[66]. Rrp2-N fragments were detected using a previously reported

polyclonal rat antiserum specific against full length Rrp2 [18].

Mouse infection via needle inoculation
Three or four week-old C3H/HeN mice (Harlan, Indianapolis,

IN) were subcutaneously inoculated with spirochetes at a dose of

105 spirochetes per mouse. Ear punch biopsy and tissue samples

(skin, heart, spleen and joint) were collected at the time points

indicated for each experiment and cultured in BSK-H medium

supplemented with 16 Borrelia antibiotic mixture (Sigma, Saint

Louis, MO). A single growth-positive culture was used as the

criterion for infection of each mouse. All animal protocols were

approved by the Institutional Animal Care and Use Committee at

Indiana University.

Quantitative RT-PCR (qRT-PCR)
RNA samples were extracted from B. burgdorferi cultures using

the RNeasyH mini kit (Qiagen, Valencia, CA) according to the

manufacturer’s protocols. Three independent culture samples

were used for each strain. Digestion of contaminating genomic

DNA in the RNA samples was performed using RNase-free

DNase I (Promega, Madison, WI), and removal of DNA was

confirmed by PCR amplification using primers specific for the B.

burgdorferi flaB gene [67]. The cDNA was synthesized using the

SuperScript III reverse transcriptase with random primers

(Invitrogen, Carlsbad, CA). To quantify the transcript levels of

ospC, an absolute quantitation method was used by creating a

standard curve in qPCR assay by following the manufacture’s

protocol (Strategene, La Jolla, CA). Briefly, a cloning vector

containing the ospC gene serves as standard template. A series of

ten-fold dilution (100 to 107 copies/ml) of the standard template

was prepared and qPCR was performed to generate a standard

curve by plotting the initial template quantity against the Ct values

for the standards. The quantity of the ospC and flaB in cDNA

samples were calculated by comparing their Ct values of the

Standard Curve plot. Both standards and samples were performed

in triplicate on an ABI 7000 Sequence Detection System using

GREEN PCR Master Mix (ABI, Pleasanton, CA). Levels of ospC

transcript were reported as per 1000 copies of flaB transcripts.

Expression and purification of recombinant Rrp2-N,
Rrp2-N/D52A and Rrp2-N/D52E

Purification of recombinant Rrp2 protein was described

previously [15]. The PCR fragments encoding Rrp2-N, Rrp2-

N/D52A and Rrp2-N/D52E were cloned into the expression

vector pGEX4t-2 with a glutathione S-transferase (GST) at the N-

terminus. Fusion proteins GST-Rrp2, GST/Rrp2-N, GST/Rrp2-

N/D52A and GST/Rrp2-N/D52E were expressed in E. coli under

inducible condition of 1 mM IPTG at 37uC for 6 hours. Proteins

were purified from cell lysates using GST SpinTrap (GE

Healthcare, Piscataway, NJ) according to the manufacturer’s

manual.

In vitro phosphorylation assay
[32P]acetyl phosphate was synthesized as described by Quon

et al. [68]. Briefly, the reaction mixture includes 0.3 U E. coli

acetate kinase (Sigma), 10 mCi of [32P]ATP (6000 Ci/mmol,

PerkinElmer) in AKP buffer (25 mM Tris-HCl [pH 7.4], 60 mM

KOAc, 10 mM MgCl2; final pH 7.6) and was incubated at room

temperature for 20 min. [32P]acetyl phosphate was used either

without further treatment or with further purification by filtering

through a 30 kDa cut-off membrane to remove acetate kinase

(Amicon ultra with 30 kDa cut-off, Millipore). [32P]acetyl

phosphate was mixed with recombinant Rrp2 (2.5 ml, 0.7 or

1.4 mg), Rrp2-N (2 mg), Rrp2-N/D52A (2 mg), Rrp2-N/D52E

(2 mg) for 15 min or 30 min at 37uC. The reaction was terminated
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by addition of SDS-PAGE loading buffer and then loaded to 12%

SDS-PAGE without boiling. The gel was then exposed to a Kodak

X-ray film.

Supporting Information

Table S1 Primers used in this study

Found at: doi:10.1371/journal.ppat.1001104.s001 (0.04 MB

DOC)
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