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The translation–libration–screw model first introduced by Cruickshank, Scho-

maker and Trueblood describes the concerted motions of atomic groups. Using

TLS models can improve the agreement between calculated and experimental

diffraction data. Because the T, L and S matrices describe a combination of

atomic vibrations and librations, TLS models can also potentially shed light on

molecular mechanisms involving correlated motions. However, this use of TLS

models in mechanistic studies is hampered by the difficulties in translating

the results of refinement into molecular movement or a structural ensemble.

To convert the matrices into a constituent molecular movement, the matrix

elements must satisfy several conditions. Refining the T, L and S matrix elements

as independent parameters without taking these conditions into account may

result in matrices that do not represent concerted molecular movements. Here, a

mathematical framework and the computational tools to analyze TLS matrices,

resulting in either explicit decomposition into descriptions of the underlying

motions or a report of broken conditions, are described. The description of valid

underlying motions can then be output as a structural ensemble. All methods are

implemented as part of the PHENIX project.

1. Introduction

1.1. Independent and concerted molecular motions

It is currently difficult to derive a structural basis for

concerted molecular motions from the models emerging from

macromolecular crystallography, which describe each atom

with a central position r0 and additional displacement

parameters. Small-magnitude disorder (particularly thermal

motion) can be captured by the Debye–Waller factor, which

reflects the probability of an atom moving from its central

position by a certain distance. If a model includes this

approximation, the contribution of each atom to the structure

factor (h, k, l) must be scaled by

exp½�2�2h�O�1UCartðO
�1
Þ
�h�; ð1Þ

(see, for example, Grosse-Kunstleve & Adams, 2002 and

references therein). Here, O is the orthogonalization matrix

for the given crystal, h is the column vector of integer indices

(h, k, l), UCart is an atomic displacement parameter (ADP) and

the superscript � stands for the matrix and vector transpose

operation (here and in the following). [In Grosse-Kunstleve &

Adams (2002) the orthogonalization matrix is defined as A;
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here, this letter is reserved for the matrix in the development

of UCart, following Tickle & Moss (1999).] The symmetric

positive definite matrix UCart is defined by the average atomic

shifts (and their correlations) along each coordinate axis. The

matrix UCart varies between atoms and is diagonal (with equal

elements) for atoms that are assumed to be moving isotropi-

cally.

UCart can accumulate contributions from several different

sources, including overall crystal anisotropy (Ucryst), various

concerted motions (Ugroup) and independent displacement of

individual atoms (Ulocal) (see, for example, Dunitz & White,

1973; Prince & Finger, 1973; Johnson, 1980; Sheriff &

Hendrickson, 1987; Murshudov et al., 1999; Winn et al., 2001; ,

Dauter et al., 2012; Afonine et al., 2013).

Concerted motion contributing to Ugroup can be modelled

by the translation–libration–screw approximation (TLS)

introduced by Cruickshank (1956) and Schomaker & True-

blood (1968) and developed further in a number of publica-

tions, for example Johnson (1970), Scheringer (1973), Howlin

et al. (1989, 1993), Kuriyan & Weis (1991), Schomaker &

Trueblood (1998), Tickle & Moss (1999), Murshudov et al.

(1999), Winn et al. (2001, 2003) and Painter & Merritt (2005,

2006a,b). This approximation is of special interest to structural

biologists for two reasons. Firstly, TLS characterizes the

anisotropic mobility of atomic groups and can provide insight

into molecular mechanism. Secondly, it simplifies the crystallo-

graphic model by reducing the number of parameters while

simultaneously providing a more realistic description of

atomic displacements.

A common misconception of TLS parametrization is that its

sole merit is to provide an economical method of accounting

for anisotropic motions at low resolution. In fact, TLS para-

meterization can be useful regardless of the resolution of the

available diffraction data. TLS has been successfully used to

analyze functionally important molecular motions on several

occasions (Kuriyan & Weis, 1991; Harris et al., 1992; Šali et al.,

1992; Wilson & Brunger, 2000; Raaijmakers et al., 2001; Yousef

et al., 2002; Papiz et al., 2003; Chaudhry et al., 2004), demon-

strating that this approximation can provide critical structural

information. However, the use of TLS models to derive

functional insights is limited by the difficulty in analyzing the

resulting motions. Although analysis of the resulting aniso-

tropic displacement parameters is possible in some programs

(Howlin et al., 1993; Painter & Merritt, 2005), decomposing

TLS models into structural ensembles comprised of many

atomic models might enable more straightforward compar-

isons to other data sets, particularly in the case of diffuse X-ray

scattering (Van Benschoten et al., 2015). The major goal of this

work is to develop an approach for translating TLS matrices

into descriptions of corresponding molecular motions in terms

of rotations and translations. In turn, this allows the validation

of TLS parameters and the generation of structural ensembles.

The latter will enable the broader use of TLS refinement for

discovering and validating concerted molecular motions. In

accomplishing this goal, we encountered several complications

that suggest revisiting the fundamental processes of TLS

refinement.

1.2. TLS model

Since the displacement of a rigid group of atoms is a

composition of translation and rotation (see, for example,

Goldstein, 1950), Schomaker & Trueblood (1968) presented

the matrices Ugroup,n for the concerted motion of a group of

atoms n = 1, 2, . . . N as a sum,

Ugroup;n ¼ TþAnLA�
n þAnSþ S�A�

n: ð2Þ

The antisymmetric matrices An are functions of the Cartesian

coordinates (xn, yn, zn) of atom n

An ¼

0 zn �yn

�zn 0 xn

yn �xn 0

0
@

1
A: ð3Þ

Matrix S and the symmetric matrices T and L are common to

all atoms within each rigid group. L describes librations

(oscillating rotations) around three mutually orthogonal

rotation axes. T describes apparent translations of the atomic

group (the term ‘vibrations’ might actually be more appro-

priate for random translations around a central position). S

describes screw motions, i.e. the combination of librations and

vibrations. We use the term ‘apparent translation’ because

matrix T may have an additional contribution from librations

as discussed in x2.

Thus, explicit information about atomic movement can be

encoded into TLS matrices to produce inexplicit descriptors

of motion. Both frameworks have merit: explicit description

allows a straightforward interpretation and analysis of the

motions, while the inexplicit TLS formalism provides a simpler

framework for calculating structure factors. However, it is

important to remember that TLS parameterization always

arises from explicit atomic movement; thus, the TLS matrices

should obey certain restrictions in order to be decomposed

into structural ensembles representing concerted physical

motions. Current refinement programs treat elements of the

TLS matrices as independent variables with a constraint on

the trace of the matrix S [tr(S); as discussed in x4] and post-

refinement enforcement that the resulting Ugroup,n be non-

negative definite (Winn et al., 2001). As demonstrated below,

enforcing Ugroup,n to be non-negative definite is not sufficient

to guarantee that the refined TLS matrices are still consistent

with an underlying physical model of concerted motion.

Previously, Zucker et al. (2010) analyzed all PDB entries

containing TLS descriptions and suggested tools to validate

the TLS parameters. However, this analysis focused exclu-

sively on the ADP smoothness between neighbouring TLS

groups. Failure to enforce all conditions on the individual

components of Ugroup,n, i.e. on the TLS matrices, may result in

matrices that invalidate the TLS model. Using the methods

and tools presented in this manuscript, we analyzed all

structures from the PDB (Bernstein et al., 1977; Berman et al.,

2000; about 105 000 entries, 25 000 of which contain TLS

models, with a total of 200 000 sets of matrices). Our results

demonstrate that significant issues are present in current TLS

implementations. A third of the analyzed structures contain T

or L matrices that are non-positive semidefinite and another
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third (Table 1) cannot describe libration–vibration correlated

motions owing to the reasons discussed in xx2–5. Some of

these errors (but not all) are trivial to fix, e.g. correcting

marginally negative eigenvalues of T and L or modifying the

trace of S (examples are given in x6 and in Table 1).

1.3. On the physical meaning and use of TLS

Efforts to constrain TLS parameters to keep them physi-

cally meaningful have been discussed previously (Winn et al.,

2001; Painter & Merritt, 2006a). It is universally accepted that

B values need to be positive, occupancies must range between

0 and 1 and atomic coordinates should define model geometry

in accordance with chemical knowledge. Similarly, provided

that the TLS groups have been selected adequately, the TLS

parameters describing the anisotropic harmonic motion of

atomic groups (Schomaker & Trueblood, 1968) should be

physically meaningful, otherwise TLS modelling may not be

considered to be applicable. One such condition, but not the

only one, is that the T and L matrices are positive semidefinite.

While calculating TLS matrices from corresponding libra-

tion and vibration parameters is rather straightforward (x2),

the inverse procedure is less trivial. As discussed previously

(Johnson, 1970; Scheringer, 1973; Tickle & Moss, 1999), the

problem itself is poorly posed since the same set of diffraction

data (and consequently the same set of TLS matrices) may

correspond to different motions of the contributing atoms or

atomic groups. Moreover, there are computational difficulties

if all the conditions on the matrices have not been considered

(xx3–5).

The set of TLS matrices corresponding to physically

possible combinations of motions is obviously smaller than the

set of all TLS matrices. Since restricting the parameter space

of any function may inadvertently exclude a number of deep

minima, including the global minimum, structural refinement

that imposes conditions on TLS matrices may result in higher

R factors than if these conditions were ignored. Since TLS

modelling is an approximation to the true molecular motions

that strongly depends on the assignment of TLS groups, lower

R factors as result of using TLS may not always be indicative

of this model being decomposable into a valid macromolecular

motion.

1.4. Summary of the presented work

In this article, we address the following points.

(i) We describe an algorithm (Fig. 1) that interprets the TLS

matrices in terms of parameters of the corresponding motions.

This includes the direction of the principal axes of vibration

and libration, the corresponding root-mean-square displace-
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Table 1
Number of PDB entries in which at least one of the physical conditions on TLS matrices is broken.

The statistics are shown for the matrices in the PDB (25 904 entries with TLS matrices from a total number of 106 761 entries as of March 2015) with the default
condition tr(S) = 0 (upper line) and with the optimal choice of the diagonal S elements whenever possible as described in xx3 and 4 (bottom line). The conditions
are, from left to right: matrices T and L are positive semidefinite (T � 0 and L � 0); an absence of libration around one of the axes requires the corresponding
elements of the S matrix to be equal to 0 (s = 0 and w = 0); matrix T is positive semidefinite after the contribution owing to the displacement of libration axes is
removed (TC � 0); elements of the S matrix are limited by the corresponding elements of the T and L matrices according to the Cauchy conditions (S � TL); the
residual V matrix is positive semidefinite (V � 0). The column (V � 0) includes all conditions from xx4.3 and 4.4. When one of the conditions was broken further
conditions were not checked.

Conditions broken

Mode
Total No. of
PDB entries

Total No. of
TLS T � 0 and L � 0 s = 0 and w = 0 TC � 0 S � TL V � 0

Total No. of
TLS broken

Total No. of
TLS OK

Total No. of
PDB entries broken

tS = 0 25904 203261 71362 3104 52254 n/a 10492 137212 66049 22707
Best tS 25904 203261 71362 3104 52255 133 3776 130630 72631 22201

Figure 1
General flowchart of the TLS decomposition into libration and vibration
composite motions. Yellow ellipses indicate conditions to be verified.
Green rectangles indicate the output parameters of the composite
motions. The letters A–D indicate different steps of the procedure as
described in the text.



ments and the position of the libration axes, as well as the

correlations between vibration and libration displacements.

(ii) We present a complete list of conditions that must be

fulfilled to make the aforementioned TLS decomposition

possible; this includes widely known conditions (e.g. T and L

must be positive semidefinite) as well as a number of less

trivial conditions that to the best of our knowledge have not

been previously discussed.

(iii) We describe the calculation protocols in a ready-to-

program style so that they can be implemented in existing or

future software. Most of the calculations described in the

manuscript are straightforward; less trivial expressions and

proofs can be found in Appendix A as well as in the review by

Urzhumtsev et al. (2013).

(iv) We implemented the described algorithms in the

open-source Computational Crystallography Toolbox (cctbx;

Grosse-Kunstleve et al., 2002). We also made two end-user

applications available in the PHENIX suite (Adams et al.,

2010): phenix.tls_analysis for the analysis and validation of

refined TLS matrices and their underlying motions and

phenix.tls_as_xyz for generating ensembles of structures

consistent with TLS matrices.

(v) We applied these programs to all PDB entries

containing TLS matrices. We discovered that the majority of

these matrices cannot describe motions. In a number of cases a

marginal modification of the TLS matrices can correct the

errors.

(vi) We used phenix.tls_as_xyz to generate a predicted

structural ensemble for the calculation of X-ray diffuse

scattering from the glycerophosphodiesterase GpdQ (Van

Benschoten et al., 2015).

2. Calculating TLS matrices from elemental motions

This section provides a step-by-step protocol for calculating

TLS matrices from the parameters of the composite vibrations

and librations. Inverting this scheme provides a method of

extracting libration/vibration parameters from the TLS

matrices.

2.1. Constructing TLS matrices from the parameters of the
libration and vibration

The matrices in (2) depend on the basis in which the atomic

coordinates are given. We use an index in square brackets to

indicate which basis is used. Let the atoms be given in some

basis denoted [M]; for example, it may be the basis corre-

sponding to the model deposited in the PDB. Even if a rigid

group is involved in several simultaneous motions (assuming

that the amplitudes of these motions are relatively small and

the motions are harmonic), the total motion can be described

by a libration around three axes lx, ly, lz that are mutually

orthogonal and by a vibration along three other mutually

orthogonal axes, vx, vy, vz. These triplets of axes form the other

two bases, [L] and [V].

In (2) the matrix T is a sum of several components. In the

absence of librations (that is, matrices L and S are zero) it is

equal to the contribution Varising from pure vibrations. In the

basis [V] this matrix is diagonal,

V½V� ¼

ht2
xi 0 0

0 ht2
yi 0

0 0 ht2
zi

0
@

1
A: ð4Þ

Here, htx
2
i, hty

2
i, htz

2
i are the corresponding squared root-mean-

square deviations (r.m.s.d.s) along the principal vibration axes

vx, vy, vz and are expressed in Å2. If there are librations, the

matrix L is always diagonal in the basis [L],

L½L� ¼

hd2
xi 0 0

0 hd2
yi 0

0 0 hd2
zi

0
@

1
A: ð5Þ

Here, hdx
2
i, hdy

2
i, hdz

2
i are the squared r.m.s.d.s of the vibration

angles expressed in squared radians; for small deviations they

are numerically equal to the squared r.m.s.d.s of points at a

unit distance from the corresponding axes.

In reality, the principal vibration and libration axes are not

parallel to each other; practically, it is convenient to express

the matrices in a common basis. Basis [L] is more convenient

for this since in this basis the elements of S (see below) are

easily expressed through geometric parameters of librations.

Matrix V in this basis is no longer diagonal but is instead equal

to

V½L� ¼ R�
VLV½L�RVL: ð6Þ

Here, RVL is the transition matrix that describes the rotation

superposing the vectors vx, vy, vz with the vectors lx, ly, lz
(Appendix A). Frequently, vibration and libration motions are

not independent but instead are correlated to form screw

rotations. It is convenient to characterize screw rotations by

the parameters sx, sy, sz: for a screw rotation by dz radians

around an axis parallel to lz each atom is shifted by sz Å along

this axis. A similar definition is used for the other two para-

meters. If the axes pass through the origin, such a correlation

generates an additional contribution C[L] to the T matrix that

arises from screw motions,

TC½L� ¼ V½L� þ C½L� ¼ V½L� þ

s2
xhd

2
xi 0 0

0 s2
yhd

2
yi 0

0 0 s2
zhd

2
zi

0
@

1
A; ð7Þ

and also results in a nonzero S matrix,

S½L� ¼

sxhd
2
xi 0 0

0 syhd
2
yi 0

0 0 szhd
2
zi

0
@

1
A: ð8Þ

Finally, the principal libration axes do not necessarily pass

through the origin, or even have a common point (i.e. they

may not intersect). If they pass through the points wlx
[L] = (wx

lx,

wy
lx, wz

lx), wly
[L] = (wx

ly, wy
ly, wz

ly), wlz
[L] = (wx

lz, wy
lz, wz

lz), respectively,

this generates an additional component to the T matrix,

T½L� ¼ TC½L� þDW½L�; ð9Þ

where
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DW½L� ¼

ðwj
zÞ

2
hd2

yi þ ðw
k
yÞ

2
hd2

zi �wk
x wk

yhd
2
zi �wj

xwj
zhd

2
yi

�wk
x wk

yhd
2
zi ðwi

zÞ
2
hd2

xi þ ðw
k
xÞ

2
hd2

zi �wi
ywi

zhd
2
xi

�wj
xwj

zhd
2
yi �wi

ywi
zhd

2
xi ðwi

yÞ
2
hd2

xi þ ðw
j
xÞ

2
hd2

yi

2
664

3
775:

ð10Þ

Taking into account both the screw motion and the position of

the libration axes, the matrix S becomes

S½L� ¼

sxhd
2
xi wi

zhd
2
xi �wi

yhd
2
xi

�wj
zhd

2
yi syhd

2
yi wj

xhd
2
yi

wk
yhd

2
zi �wk

xhd
2
zi szhd

2
zi

0
@

1
A: ð11Þ

Finally, the matrices in the original basis [M] where they are

reported together with the atomic coordinates are obtained

from L[L] (5), T[L] (9), S[L] (11) as

L½M� ¼ RMLL½L�R
�
ML;

T½M� ¼ RMLT½L�R
�
ML;

S½M� ¼ RMLS½L�R
�
ML: ð12Þ

Here, RML is the transition matrix from the basis [M] to the

basis [L] (Appendix A).

2.2. Molecular basis and centre of reaction

The TLS matrices also depend on the choice of the origin.

Clearly, the coordinates of the position of the libration axes

change as function of the origin. Usually, the origin is taken to

be the centre of mass of the atomic group or the point where

the mean atomic displacements are similar in magnitude to

each other owing to librations around each of the principal

axes. This second point is called the centre of diffusion

(Brenner, 1967) or the centre of reaction (Tickle & Moss,

1999). Choosing the origin at the centre of reaction minimizes

the trace of T and makes S symmetric (Brenner, 1967; Tickle &

Moss, 1999; Urzhumtsev et al., 2013). Shifting from one origin

to another changes T and S but does not change L and does

not modify the algorithm of the search for the composite

motions. In the following, we consider the matrices to be in

their original basis (for example, as they are defined in the

PDB).

3. Calculating elemental motions from TLS matrices:
libration axes

This section provides a step-by-step explanation of the inverse

problem, i.e. calculating the vibration and libration axes and

the corresponding r.m.s.d.s, the position of the libration axes

and the parameters describing the correlations between

librations and vibrations from given TLS matrices.

3.1. Diagonalization of the L matrix ([L] basis; step A)

Suppose that we know the elements of the matrices (12) in

the basis [M]. By construction, the matrices T and L should be

positive semidefinite (Appendix B) and symmetric, T[M]xy =

T[M]yx, T[M]xz = T[M]zx, T[M]yz = T[M]zy and L[M]xy = L[M]yx,

L[M]xz = L[M]zx, L[M]yz = L[M]zy. These properties hold for any

rotation of the coordinate system, i.e. in any Cartesian basis;

this is important for further analysis of the T matrices.

We start the procedure from the matrix L[M], which depends

only on the libration parameters. The principal libration axes

correspond to its three mutually orthogonal eigenvectors.

Firstly, we search for the corresponding eigenvalues 0 � �1 �

�2 � �3, which must be non-negative (see equation 5; eigen-

values do not change with the coordinate system). Let l1, l2, l3
be the corresponding normalized eigenvectors from which we

construct a new basis [L] as

lx ¼ �l1; ly ¼ l2; lz ¼ l3: ð13Þ

The appropriate sign for lx is chosen so that the vectors in (13)

form a right-hand triad; for example, one can take lx = ly � lz
which guarantees such a condition. The TLS matrices in the

[L] basis are

L½L� ¼ R�
MLL½M�RML;

T½L� ¼ R�
MLT½M�RML;

S½L� ¼ R�
MLS½M�RML; ð14Þ

where RML is the transition matrix from basis [M] into basis

[L] (Appendix A). In this new basis, matrix L[L] is diagonal

with elements L[L]xx = �1, L[L]yy = �2, L[L]zz = �3, giving the

estimates hdx
2
i = L[L]xx, hdy

2
i = L[L]yy, hdz

2
i = L[L]zz of the

squared libration amplitudes around the three principal

libration axes.

3.2. Position of the libration axes in the [L] basis (step B)

In the basis [L] the libration axes are parallel to the co-

ordinate axes but do not necessarily coincide with them. Let

them pass through some points wlx, wly, wlz, respectively, that

must be identified. Using (11), we calculate the coordinates of

these points as

wlx
½L�y ¼ �

S½L�xz

L½L�xx

; wlx
½L�z ¼

S½L�xy

L½L�xx

;

w
ly
½L�x ¼

S½L�yz

L½L�yy

; w
ly
½L�z ¼ �

S½L�yx

L½L�yy

;

wlz
½L�x ¼ �

S½L�zy

L½L�zz

; wlz
½L�y ¼

S½L�zx

L½L�zz

: ð15Þ

A zero value for any denominator in (15) means that there is

no rotation around the corresponding axis; in this case, the two

corresponding numerator values must also be equal to zero

and thus assign zero values to the corresponding coordinates

in (15). Otherwise, the input matrices are incompatible and the

procedure must stop (Appendix B). The x component of wlx,

the y component of wly and the z component of wlz in the basis

[L] can be any values. For presentation purposes, it might be

useful to assign them as

wlx
½L�x ¼

1
2ðw

ly
½L�x þ wlz

½L�xÞ;

wly
½L�y ¼

1
2ðw

lx
½L�y þ wlz

½L�yÞ;

wlz
½L�z ¼

1
2ðw

lx
½L�z þ w

ly
½L�zÞ ð16Þ
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that will position each of these points in the middle of the two

other axes. This choice also reduces eventual rounding errors.

Knowing the positions (15 and 16) of the libration axes and

elements of L[L], we can calculate the contribution DW[L] (10)

from an apparent translation owing to the displacement of the

libration axes from the origin. Then, by inverting (9) we can

calculate the residual matrix TC[L] after removal of this

contribution,

TC½L� ¼ T½L� �DW½L�: ð17Þ

Matrix (17) must be positive semidefinite (Appendix B) as it is

a sum (7) of two positive semidefinite matrices. Matrices S[L]

and L[L] are not modified at this step.

4. Calculating elemental motions from TLS matrices:
screw components (step C)

4.1. Correlation between libration and vibration and a choice
of the diagonal elements of S

Next, we use the matrices L[L] and S[L] to determine the

screw parameters sx, sy, sz, remove the screw contribution from

the TC[L] matrix using (7) and (17) and finally extract the

matrix V[L] for uncorrelated vibrations. However, there is an

ambiguity in the definition of S[L] which is apparent from the

observation that the matrices Uconcerted,n of individual atoms

will not change if the same number t is added or removed

simultaneously from all three diagonal elements of S[L]. This is

usually known as indetermination of the trace of this matrix

(Schomaker & Trueblood, 1968). A current practice (an

illustration is provided in x6.1) is to choose t such that it

minimizes the trace (rather its absolute value) of the resulting

matrix,

SCðtÞ ¼ S½L� � tI ð18Þ

(where I is a unit matrix), i.e. minimizing vibration–libration

correlation (Urzhumtsev et al., 2013), or simply makes the

trace equal to zero (http://www.ccp4.ac.uk/html/restrain.html;

Coppens, 2006). The unconditioned minimization

min
t
jSCðtÞj ¼ min

t
jðS½L�xx þ S½L�yy þ S½L�zzÞ � 3tj ¼ 0 ð19Þ

gives

t0 ¼
1
3ðS½L�xx þ S½L�yy þ S½L�zzÞ ¼

1
3trðS½L�Þ: ð20Þ

However, this value may lead to matrices for which libration–

vibration decomposition is impossible and, in particular,

prohibits the generation of structural ensembles. For example,

if the elements of matrix S and the corresponding values sx, sy,

sz are too large, the matrix V in (7) may be not positive definite

for a given TC[L]. The next sections describe a procedure that

defines the constraints on the diagonal elements of matrix S

when using (18).

4.2. Cauchy–Schwarz conditions

After removing DW[L] (17), the set of matrices TC[L], L[L]

and the matrix S[L] with the removed off-diagonal elements

(reducing the matrix in equation 11 to the form in equation 8)

correspond to a combination of vibrations with screw rota-

tions around the axes crossing the origin. The diagonal

elements of these matrices must satisfy the Cauchy–Schwarz

inequality (Appendix A),

S2
C;xx � TC½L�xxL½L�xx;

S2
C;yy � TC½L�yyL½L�yy;

S2
C;zz � TC½L�zzL½L�zz; ð21Þ

that in turn defines the conditions (Appendices A and B)

ðS½L�xx � tÞ
2
� TC½L�xxL½L�xx;

ðS½L�yy � tÞ
2
� TC½L�yyL½L�yy;

ðS½L�zz � tÞ2 � TC½L�zzL½L�zz ð22Þ

or

tmin;C � t � tmax;C ð23Þ

with

tmin;C ¼ maxfS½L�xx � rx; S½L�yy � ry; S½L�zz � rzg;

tmax;C ¼ minfS½L�xx þ rx; S½L�yy þ ry; S½L�zz þ rzg;

rx ¼ ð
1
2TC½L�xxL½L�xxÞ

1=2;

ry ¼ ð
1
2TC½L�yyL½L�yyÞ

1=2;

rz ¼ ð
1
2TC½L�zzL½L�zzÞ

1=2: ð24Þ

In particular, this unambiguously defines the t value if one of

the diagonal elements of the matrix L[L] is zero so that the

trace of S[L] cannot be changed or assigned arbitrarily (see

x4.4).

4.3. Positive semidefinition of the V matrix

The last condition to check is that the matrix V is positive

semidefinite. Let us suppose that all diagonal elements of the

matrix L[L] are different from zero; x4.4 considers the alter-

native case. From (5), (7), (8) and (18) we find the expression

for the screw contribution

C½L�ðtÞ ¼

S2
C;xxL�1

½L�xx 0 0

0 S2
C;yyL�1

½L�yy 0

0 0 S2
C;zzL�1

½L�zz

0
B@

1
CA

¼

ðS½L�xx � tÞ2L�1
½L�xx 0 0

0 ðS½L�yy � tÞ
2
L�1
½L�yy 0

0 0 ðS½L�zz � tÞ
2
L�1
½L�zz

2
664

3
775

ð25Þ

to be subtracted from matrix (17) as

V½L� ¼ TC½L� � C½L�ðtÞ: ð26Þ

Matrix V[L] is positive semidefinite along with
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V� ¼

vXX vXY vXZ

vYX vYY vYZ

vZX vZY vZZ

0
B@

1
CA ¼ K�V½L�K

¼ K�TC½L�K� K�C½L�ðtÞK ¼ T� � C�ðtÞ; ð27Þ

where

K ¼ K�
¼

L
1=2
½L�xx 0 0

0 L
1=2
½L�yy 0

0 0 L
1=2
½L�zz

0
B@

1
CA; ð28Þ

T� ¼

TC½L�xxL½L�xx TC½L�xyL
1=2
½L�xxL

1=2
½L�yy TC½L�xzL

1=2
½L�xxL

1=2
½L�zz

TC½L�yxL
1=2
½L�xxL

1=2
½L�yy TC½L�yyL½L�yy TC½L�yzL

1=2
½L�yyL

1=2
½L�zz

TC½L�zxL
1=2
½L�xxL

1=2
½L�zz TC½L�zyL

1=2
½L�yyL

1=2
½L�zz TC½L�zzL½L�zz

0
B@

1
CA;

ð29Þ

C�ðtÞ ¼

ðS½L�xx � tÞ
2 0 0

0 ðS½L�yy � tÞ
2 0

0 0 ðS½L�zz � tÞ
2

2
64

3
75: ð30Þ

Necessarily, all diagonal terms of (30) cannot be larger than

the maximal eigenvalue �max of matrix (29), giving a necessary

condition (Appendix B)

tmin;� � t � tmax;�

tmin;� ¼ maxfS½L�xx; S½L�yy; S½L�zzg � �
1=2
max

tmax;� ¼ minfS½L�xx; S½L�yy; S½L�zzg þ �
1=2
max: ð31Þ

The condition that all diagonal terms of (30) are not larger

than the minimum eigenvalue �min of (29) is sufficient but not

necessary.

Matrix V� is positive semidefinite if and only if all three of

its real eigenvalues are non-negative (some of them may

coincide with each other). They are the roots of the cubic

characteristic equation

�3 þ aS�
2 þ bS�þ cS ¼ 0; ð32Þ

with the coefficients

aSðtÞ ¼ �trðV�Þ; ð33Þ

bSðtÞ ¼ det
vXX vXY

vYX vYY

� �
þ det

vYY vYZ

vZY vZZ

� �

þ det
vZZ vZX

vXZ vXX

� �
; ð34Þ

cSðtÞ ¼ � detðV�Þ: ð35Þ

The roots of (32) are positive if and only if the three

inequalities below hold simultaneously,

aSðtÞ � 0; bSðtÞ � 0; cSðtÞ � 0; ð36Þ

where the left parts are polynomials of order two, four and six

of the parameter t, all with the unit highest-order coefficient

(Appendix A). The first condition in (36) defines the interval

for t values (Appendix B),

tmin;a ¼ t0 � ta � t � tmax;a ¼ t0 þ ta ð37Þ

with

ta ¼ ½t
2
0 þ

1
3trðT�Þ �

1
3ðS

2
½L�xx þ S2

½L�yy þ S2
½L�zzÞ�

1=2: ð38Þ

We failed to find analytical expressions corresponding to the

two other inequalities. As a result, the following numerical

procedure is suggested to find the best t value that is physically

acceptable.

(i) Calculate the t0 value (20).

(ii) Calculate the interval (tmin, tmax) for allowed t values

as the intersection of intervals (23), (31) and (37), tmin =

max{tmin,C, tmin,�, tmin,a}, tmax = min{tmax,C, tmax,�, tmax,a}; if tmin >

tmax the problem has no solution and the procedure stops

(Appendix B).

(iii) If tmin = tmax we check the conditions bS(tmin) � 0,

cS(tmin)� 0, or the condition that V� is positive semidefinite; if

the conditions are satisfied we assign tS = tmin, otherwise the

problem has no solution and the procedure stops (Appendix

B).

(iv) If tmin < tmax we search numerically, in a fine grid, for the

point tS in the interval (tmin, tmax) and closest to t0 such that

bS(tS) � 0, cS(tS) � 0; if for any point of this interval at least

one

of these inequalities is wrong then the procedure stops

(Appendix B).

(v) We accept the value obtained at the step (iii) or (iv) as

the final tS.

4.4. Singular sets of rotation

When one of the L[L]xx, L[L]yy, L[L]zz values is zero (that is,

there is no rotation around the corresponding axis), straight-

forward use of the standard procedure including (25) becomes

impossible. However, in this case the tS value must be equal to

S[L]xx, S[L]yy or S[L]zz, corresponding to the axes with no rota-

tion, making the corresponding diagonal element in (25) equal

to zero and turning the corresponding inequality in (24) into

an equality. For example, if L[L]xx = 0 then tS = S[L],xx, resulting

in C[L]xx = 0. We simply need to check two other conditions in

(21) and confirm that the residual matrix is positive semi-

definite (for example, by calculating equation 36). If tS does

not satisfy these conditions, the problem has no solution

(Appendix B).

4.5. Screw parameters

For the t = tS determined above we calculate the matrix

SC(tS) (18). From this matrix we obtain the screw parameters

sx = SC,xxL�1
[L]xx, sy = SC,yyL�1

[L]yy, sz = SC,zzL�1
[L]zz for the rotation

axes currently aligned with the coordinate axes of the basis

[L]. If one of the L[L]xx, L[L]yy, L[L]zz values is equal to zero, the

corresponding diagonal element of SC must also be equal to

zero, and we assign the corresponding screw parameter, sx, sy

or sz, to be zero. Otherwise, the matrices are inconsistent with

each other and the procedure stops (Appendix B).
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5. Calculating elemental motions from TLS matrices:
vibration components (step D)

5.1. Matrix V and vibration parameters in [L] basis

For the known tS, the matrices C[L](tS) and then V[L] are

calculated using (25) and (26). The parameter values of the

independent vibrations are calculated from the V[L] matrix

similarly to those for the independent librations, as we obtain

them from L[M]. Firstly, we calculate the three eigenvalues 0 �

�1 � �2 � �3 of matrix V[L] (Appendix B; in practice, all of

them are strictly positive). We then identify three corre-

sponding unit eigenvectors v1, v2, v3 that are orthogonal to

each other and assign

vx ¼ �v1; vy ¼ v2; vz ¼ v3 ð39Þ

[the sign for vx is taken so that the vectors (39) form a right-

hand triad]. We remind the reader that these axes define the

basis [V] in which matrix V[V] (6) is diagonal with elements

V[V]xx = �1, V[V]yy = �2, V[V]zz = �3. This defines the last

missing parameters, namely the values of the squared r.m.s.d.s

along these axes: htx
2
i = V[V]xx, hty

2
i = V[V]yy, htz

2
i = V[V]zz.

5.2. Vibration and libration axes in [M] basis

The libration and vibration amplitudes and screw para-

meters are independent of the choice of the basis, and the

direction of the libration axes is known in the principal [M]

basis. However, the directions of the uncorrelated translations

v1, v2, v3 that were calculated in x4 and the points wlx
[L], wly

[L], wlz
[L]

belonging to the libration axes (x3.2) are now known in the [L]

basis.

To obtain the coordinates (wlx
[M]x, wlx

[M]y, wlx
[M]z), (wly

[M]x, wly
[M]y,

wly
[M]z), (wlz

[M]x, wlz
[M]y, wlz

[M]z) of these points in the [M] basis, we

apply the transformation

wlx
½M� ¼ RMLwlx

½L�; w
ly
½M� ¼ RMLw

ly
½L�; wlz

½M� ¼ RMLwlz
½L�: ð40Þ

Similarly, the vectors defining the direction of the axes vx, vy, vz

in the basis [M] can be obtained as

v½M�x ¼ RMLv½L�x; v½M�y ¼ RMLv½L�y; v½M�z ¼ RMLv½L�z:

ð41Þ

This step finalizes the extraction of the parameters of the

motions that correspond to the given set of TLS matrices. x6
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Figure 2
The number of PDB entries (in thousands) as a function of various parameters. The blue histogram in (b), (c) and (d) is for the minimum eigenvalue and
the red histogram is for the maximum eigenvalue. The leftmost and rightmost bins include all cases with values less than or greater than the limits given
on the axis, respectively. The eigenvalues are given in rad2 for L and in Å2 for T. The total number of TLS groups is 203 261 for (a), (b) and (c) and about
70 000 for (d) when the matrix V could be calculated. (a) The number of TLS groups per entry; the largest is 283. (b) Distribution of eigenvalues of the
matrix L; the minimum eigenvalue varies from�0.285 to 0.164 and the maximum eigenvalue varies from�0.001 to 0.409. (c) Distribution of eigenvalues
of the matrix T; the minimum eigenvalue varies from �20.716 to 6.852 and the maximum eigenvalue varies from �1.551 to 28.676. (d) Distribution of
eigenvalues of the matrix V (the S matrix optimized as described in the article); the minimum eigenvalue varies from �0.001 to 2.815 and the maximum
eigenvalue varies from 0 to 5.950.



provides some examples of this procedure applied to models

deposited in the PDB. x7 describes an example in which

knowledge of the motion parameters extracted from the TLS

matrices is necessary to explicitly simulate the ensemble of

corresponding structures and the corresponding X-ray diffuse

scattering.

6. Examples of TLS matrix analysis

As discussed in x1, there are numerous examples of fruitful

application of the TLS formalism to structural studies of

concerted motion. The goal of this section is to illustrate the

algorithm described above, to describe possible traps that

emerge during refinement and to discuss further develop-

ments.

6.1. Survey of available TLS matrices in the PDB

We have analyzed all available TLS matrices in the PDB.

From an overall 106 761 entries (as of March 2015), 25 904 use

TLS modelling. More than 20 000 of these entries have several

TLS groups, resulting in a total of 203 261 sets of TLS matrices

(Fig. 2a), with the largest number of groups per entry being

283 (PDB entry 3u8m; Rohde et al., 2012). About a third of

these sets have negative eigenvalues for the deposited T or L

matrices. Some of these values are only slightly negative

(Figs. 2b and 2c) and can be considered to be rounding errors,

while the worst values are as small as �0.28 rad2 for L and

�20.72 Å2 for T. For 11 412 T matrices and 138 L matrices all

three eigenvalues are negative.

Another third of the TLS groups

cannot be interpreted by elemental

motions owing to other reasons, as

described in xx3 and 4 (Table 1).

After an initial screen to find the

positive definite T and L matrices, we

then ran a search for the elemental

motions in two modes. Firstly, we tried

to decompose the TLS matrices as

taken directly from the PDB files. As

expected, the average value of tr(S) is 3

� 10�5 Å (i.e. practically zero) and the

corresponding r.m.s.d. is � = 10�2 Å.

About 120 000 S matrices have |tr(S)| <

10�4 Å. The numbers of matrices with

|tr(S)| larger than 1�, 3�, 10� and 20�
are only 3772, 486, 31 and three,

respectively. We then applied the

aforementioned algorithm with the

optimal choice of the value tS to be

subtracted from the diagonal S elements

in each case.

Table 1 shows the results of both runs

and illustrates that it is possible to fix

the problems found in 6500 of the TLS

sets (corresponding to about 500 PDB entries) by a correction

of the diagonal elements of the S matrix as described above.

The table takes into account possible rounding errors by

correcting slightly negative eigenvalues (those closer in value

to zero than 10�5 of the default units: Å2, rad2 and Å rad for T,

L and S, respectively). For example, when running the algo-

rithm in the S optimizing mode the program can formally

calculate the V matrix for about 70 000 sets. For 2296 cases this

matrix has negative eigenvalues (Fig. 2d), while in 2294 cases

these eigenvalues are closer to 0 than 10�5 Å2; for such

matrices the program makes automatic corrections and

continues the process.

It is important to note that even if the parameters of the

elemental motions can be formally extracted from the TLS

matrices, this does not guarantee that they will make physical

sense and therefore be valid for decomposition into a repre-

sentative structural ensemble. Clearly, vibration amplitudes

on the order of 20 Å2 cannot represent harmonic vibrations

(Fig. 2d). Similarly, the linear rotation approximation

contained in TLS theory is valid only up to approximately

0.1 rad; however, much larger values can be found in the PDB

(Fig. 2b). Similar restrictions also hold for the screw para-

meters. The products sxdx, sydy, szdz show the mean shifts along

the screw axes owing to librations around these axes; the

values found in the PDB approaching 3 Å seem to be too large

to describe harmonic motions.

For a more detailed analysis, we selected several entries

from the PDB. For each structure, we applied a standard TLS

refinement protocol as implemented in phenix.refine (Afonine

et al., 2012) including automatic determination of the TLS

groups. During refinement, 20 matrix elements were refined

independently, six for T, six for L and eight for S; the three
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Table 2
Examples of the TLS matrices.

The matrix elements extracted from the PDB files after refinement (x6).

PDB
code

Chain,
residue No. T (Å2) L (deg2) S (Å deg)

1dqv A1–A97 0.1777 0.0090 �0.0044 1.4462 �0.0160 �0.2656 0.0467 �0.0523 0.0566
0.0090 0.1306 0.0019 �0.0160 1.2556 0.4713 0.1010 0.0032 �0.0164
�0.0044 0.0019 0.1372 �0.2656 0.4713 0.8689 0.0090 0.0188 0.0560

B1–B97 0.1777 0.0090 �0.0044 1.4462 �0.0160 �0.2656 0.0467 �0.0523 0.0566
0.0090 0.1306 0.0019 �0.0160 1.2556 0.4713 0.1010 0.0032 �0.0164
�0.0044 0.0019 0.1372 �0.2656 0.4713 0.8689 0.0090 0.0188 0.0560

1exr A2–A30 0.0899 0.0040 �0.0004 1.3491 �0.3760 �0.3971 �0.0249 �0.3537 �0.0874
0.0040 0.1333 0.0058 �0.3760 0.6103 �0.3389 0.1275 0.0783 �0.0144
�0.0004 0.0058 0.0728 �0.3971 �0.3389 0.3698 0.0183 0.0542 �0.0103

A31–A74 0.0925 0.0037 0.0041 0.3464 0.3638 0.2923 �0.0220 �0.0419 �0.0793
0.0037 0.0673 0.0062 0.3638 0.3283 0.1212 �0.0061 0.0018 0.1161
0.0041 0.0062 0.1119 0.2923 0.1212 0.3799 �0.0041 �0.0385 �0.0009

A75–A84 0.2433 0.0144 0.0917 0.0736 0.0171 0.0565 0.4357 0.1151 0.2346
0.0144 0.2867 0.1720 0.0171 0.0068 �0.0203 �0.2521 �0.3549 �0.2041
0.0917 0.1720 0.1749 0.0565 �0.0203 0.0336 �0.3793 �0.1499 0.0111

A85–A147 0.0747 �0.0110 0.0066 0.6097 �0.0786 �0.1864 0.0180 0.1466 0.0378
�0.0110 0.1384 0.0062 �0.0786 0.6474 �0.6233 0.0155 �0.0872 �0.0542
0.0066 0.0062 0.0673 �0.1864 �0.6233 0.9637 �0.0440 0.1022 �0.0852

4b3x A1–A65 0.4663 0.0991 �0.0764 0.4738 0.0063 0.2318 0.0391 �0.0307 �0.4316
0.0991 0.5443 �0.0321 0.0063 0.2120 �0.0584 0.0587 0.1786 �0.2003
�0.0764 �0.0321 0.5001 0.2318 �0.0584 0.1312 0.3665 0.4293 0.0403

A66–A363 0.1649 �0.0259 0.0184 0.8808 �0.0912 �0.1736 �0.0345 0.0102 �0.0661
�0.0259 0.1422 0.0055 �0.0912 0.9522 0.0972 0.1159 �0.0222 0.0999
0.0184 0.0055 0.2028 �0.1736 0.0972 1.6563 0.0424 �0.1330 �0.0237



diagonal elements of S were constrained

such that the trace of the matrix is equal

to 0. The procedure described above

(xx3–5) was then applied to all sets of

obtained TLS matrices.

We remind the reader that the

elements of the L and S matrices are

expressed in rad2 and Å rad, while in

the PDB files they are in deg2 and in

Å deg, respectively (Table 2).

6.2. Synaptotagmin

The crystals of synaptotagmin III

(PDB entry 1dqv; Sutton et al., 1999)

contain two copies of the molecule in the asymmetric unit. The

structure after re-refinement by phenix.refine without TLS

modelling has an Rwork of 0.200 and an Rfree of 0.231 at a

resolution of 2.5 Å. Performing TLS refinement with each

molecule taken as a single TLS group reduced the R factors to

Rwork = 0.177 and Rfree = 0.211, indicating that this additional

modelling significantly improves the agreement with the

experimental data. Table 2 shows the two sets of matrices and

Table 3 contains the corresponding motion parameters

extracted using our approach. For the two groups both

vibrations and librations are practically isotropic and are of

the same order of magnitude. Fig. 3(a) shows the principal

axes of these motions.

6.3. Calmodulin

The structure of calmodulin (PDB entry 1exr; Wilson &

Brunger, 2000) has been determined previously at a resolution

of 1.0 Å. This example illustrates possible problems that can

be solved by a minimal correction of the TLS values. For

re-refinement with phenix.refine the model was automatically

split into four TLS groups. For the first group, one of the

eigenvalues of the matrix L was equal to�2� 10�5 rad2. If we

consider this value to be zero (in this case the zero value must

be also assigned to off-diagonal elements of the first row of the

matrix S), the composite motions contain only two libration

axes and their parameters can be extracted. Corresponding

modifications of the resulting matrices Ugroup,n (2) can be

compensated for by respective adjustment of the individual

contributions Ulocal,n. This keeps the total ADP parameters

UCart,n unchanged, thus maintaining the previously calculated

structure factors and R factors. An accurate separation of total

atomic displacement parameter values into contributions from

several sources (see, for example, Murshudov et al., 1999; Winn

et al., 2001, 2003; Afonine et al., 2012) is a separate ongoing

project (Afonine & Urzhumtsev, 2007).

For the second TLS group, the refined TLS matrix elements

contained one degenerate libration. The procedure described

in xx3–5 was successfully applied. Note that this procedure

modified the diagonal elements of the matrix S, removing an

appropriate value of the parameter tS (x4.4) and making tr(S)

nonzero.
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Table 3
Examples of parameters of the elemental motions found from decomposition of the TLS matrices.

The parameters are given in the units used in this article, allowing an easy estimation of the corresponding
atomic displacements. The directions of the libration and rotation axes are not given.

PDB
code

Chain,
residue No. T: tx, ty, tz (Å) L: dx, dy, dz (rad) S: sx, sy, sz (Å) tr(S)

1dqv A1–A97 0.3455 0.3671 0.4172 0.01239 0.02044 0.02273 1.343 1.137 �1.319 0
B1–B97 0.3634 0.3885 0.4166 0.01608 0.01753 0.03069 0.679 �1.177 0.200 0

1exr A2–A30 0.1944 0.2663 0.2870 0.00000 0.01602 0.02182 0.000 2.951 3.408 >0
A31–A74 0.2110 0.2939 0.3068 0.00000 0.00860 0.01637 0.000 �18.14 �5.028 <0
A75–A84 0.1692 0.4906 0.6598 0.00000 0.00000 0.00000 0.000 0.000 0.000 0
A85–A147 0.0002 0.2270 0 3078 0.00553 0.01418 0.02109 20.83 0.800 �1.672 	0

4b3x A1–A65 0.0994 0.6064 0.7116 0.00000 0.00825 0.01343 0.000 2.718 �11.05 <0
A66–A363 0.3306 0.4102 0.4413 0.01568 0.01720 0.02283 3.164 �2.276 �0.197 0

Figure 3
Examples of the vibration–libration ensembles. Red/salmon/magenta
sticks indicate the principal vibration axes, with the origin in the centre of
the group; blue/marine/black sticks are the libration axes. Yellow spheres
in the 1dqv model show the reaction centres. (a) 1dqv model. (b) 1exr
model; note pure vibrations for group 3 (the helix) and the absence of one
of the libration axes for groups 1 and 2. (c) 4b3x model. Libration axes for
the first group are not shown as they are too far from the molecule.



For the third group, all three eigenvalues of the matrix L

were extremely small (0.0, 0.8 � 10�5 and 3 � 10�5 rad2),

producing high computational instability and extremely large

screw parameters that resulted in the inability of the proce-

dure to find a positive semidefinite V[L] (27). If we define all

librations to be absent and replace matrix L (and respectively

S) by zero matrices, the vibration parameters can easily be

found from T. In fact, this TLS group is a helix held at both

ends by large domains, which leads to the expectation of a

pure vibration motion.

Finally, for the fourth group one of the diagonal elements of

the matrix T was marginally negative. Increasing all of the

diagonal elements of the matrix T by 0.002 Å2 makes this

matrix positive definite (this corresponds to B = 0.16 Å2). As

discussed above, this adjustment can be compensated for by

removing the equivalent amount from individual atomic

contributions Ulocal,n (such a subtraction keeps the individual

atomic contributions positive). This group vibrates in a plane

(Fig. 3b) and the principal vibration axis of group 3 (the helix)

is parallel to this plane, leading to the plausible hypothesis that

groups 3 and 4 at least partially move together or slide along

each other.

To check the influence of the manual modification on the

TLS matrices, we recalculated the R factors before and after

performing these changes without updating the individual

atomic contributions Ulocal,n. For all of the modifications

described above, including the ensemble of modifications

applied together, the R factors only varied in the fourth

significant digit.

This example demonstrates that although current refine-

ment procedures may result in TLS matrices that are unable to

satisfy the previously mentioned conditions, small changes to

them may provide sufficient correction. This highlights the

need to use appropriate restraints or constraints on refinable

parameters within the TLS model.

6.4. Initiation translation factor 2 (IF2)

The structure of IF2 (PDB entry 4b3x) has recently been

solved in one of our laboratories (Simonetti et al., 2013) with

an Rwork of 0.180 and an Rfree of 0.219 at a resolution of 1.95 Å.

A posteriori TLS refinement was performed with two groups:

the first group included the N-terminus and the following long

helix, and the second included the rest of structure. Re-

refining the model produced better statistics, with Rwork =

0.176 and Rfree = 0.203. In this example, the TLS matrices from

the first group were not directly interpretable because the

residual matrix V[L] was not positive semidefinite (the minimal

eigenvalue was �0.05). Similarly to the last TLS group in

calmodulin, we artificially added 0.06 Å2 to all diagonal

elements of the matrix T, corresponding to roughly 5 Å2 (the

same amount has been removed from the residual atomic B

values, thus leaving the R factors unchanged). This correction

allowed interpretation of the TLS matrices in terms of

elemental motions. We note that for the first TLS group one of

the rotations was degenerate and that the assignment tr(S) = 0

would make this matrix incompatible with L. Table 3 shows

that the vibrations of this group are essentially anisotropic.

Fig. 3(c) also shows that the libration axes for this group pass

quite far away from the molecule, which makes the corre-

sponding rotation similar to a translation. Additionally, we

believe that the large sz value indicates that the matrix S is not

well defined. The matrices for the second group were inter-

preted and revealed isotropic vibrations and librations.

Finally, we tried to apply the same procedure after choosing

the TLS groups manually as residues 1–50 (N-terminus), 51–69

(helix), 70–333 (G domain) and 343–363 (the connector to the

C domain, which is absent in this structure). As before, the

matrices were interpretable for the G domain. For groups 2

and 4, after an adjustment similar to those discussed above (a

slight increase of the diagonal T elements with a decrease of

the residual atomic B values), we obtained a pure vibration for

the helix (as for the calmodulin case) and a libration around a

single axis for the terminal group. In contrast, we failed to find

reasonably small corrections for the matrices of the first group

that would make them interpretable in terms of physical

motions that in particular can be represented by a structural

ensemble.

This case exemplifies a situation in which the current TLS

refinement protocols result in matrices that significantly

reduce the R factors without providing refined TLS para-

meters that can be decomposed into a physically realistic

motion of one of the groups. This highlights the need to

improve TLS refinement algorithms by making use of

constraints on aforementioned conditions on TLS matrices.

7. Interpreting TLS matrices with a structural ensemble

7.1. Generation of an explicit set of atomic models with a
variability consistent with TLS

Some structural problems may explicitly require a set of

models that describe a given mobility, for example corre-

sponding to the TLS matrices for harmonic motion. An

example of such a problem is described in the accompanying

paper by Van Benschoten et al. (2015) (and is briefly presented

in x7.4), in which X-ray diffuse scattering data were compared

with calculated data corresponding to different types of

molecular motion. Other examples may include analyzing

larger-scale anharmonic motions, for which techniques such as

molecular-dynamics trajectories have traditionally been used

(McCammon et al., 1977).

If a model deposited in the PDB contains TLS matrices, the

matrices can be decomposed as described above. As soon as a

combination of vibrations and librations is extracted from the

TLS matrices, we can explicitly build a corresponding set of

models. Knowledge of the three vibrations and three librations

provides the atomic shifts underlying the total displacement.

It is generally more convenient to generate each group of

atomic shifts in its own basis: shifts �V
[V]rn owing to vibration in

the [V] basis and shifts �L
[L]rn owing to libration in the [L]

basis. Here, we are working in a linear approximation such

that rotation angles are on the order of 0.1 rad. For each

research papers

1678 Urzhumtsev et al. � Analysis of TLS matrices Acta Cryst. (2015). D71, 1668–1683



particular set of generated shifts, they are transformed into the

[M] basis as �V
[M]rn and �L

[M]rn and their sum,

�½M�rn ¼ �L
½M�rn þ�V

½M�rn; ð42Þ

is applied to the corresponding atoms. Details of model

generation are discussed in the next sections. This procedure is

repeated independently multiple times, leading to structural

models distributed according to the TLS matrices.

7.2. Calculation of the model shift owing to libration

Let us suppose that we know (in the basis [M]) the direction

of the three mutually orthogonal axes lx, ly, lz for independent

libration as well as the coordinates of the points wlx
[M], wly

[M],

wlz
[M] belonging to each axis. We recalculate the coordinates of

these points and the coordinates (x[M]n, y[M]n, z[M]n), n = 1, 2,

. . . , N, of all atoms r[M]n of the group into the [L] basis as

r½L�n ¼ R�1
MLr½M�n ¼ R�

MLr½M�n ð43Þ

(similar relations are derived for the points wlx
[M], wly

[M], wlz
[M]).

We remind the reader that the squared libration amplitudes

hdx
2
i = L[L]xx = �1, hdy

2
i = L[L]yy = �2, hdz

2
i = L[L]zz = �3 (x3.2) and

the screw parameters sx, sy, sz (x4.5) are independent of the

basis.

For an atom at a distance R = 1 Å from the rotation axis, the

probability of the shifts dx, dy, dz, which are numerically equal

to the rotation angle in radians, are equal to

axis parallel to lx : PðdxÞ ¼ ð2��1Þ
1=2 expð�d2

x=2�1Þ;

axis parallel to ly : PðdyÞ ¼ ð2��2Þ
1=2 expð�d2

y=2�2Þ;

axis parallel to lz : PðdzÞ ¼ ð2��3Þ
1=2 expð�d2

z=2�3Þ: ð44Þ

If one of the eigenvalues is equal to 0 then the corresponding d

is equal to 0 with unit probability. The particular values of dx0,

dy0, dz0 are obtained using a random-number generator with

an underlying normal distribution (44).

For each of the axes lx, ly, lz for each atom n described by the

vector rn, we calculate the coordinates, in the [L] basis, of its

shifts �lx
[L]rn, �ly

[L]rn, �lz
[L]rn owing to the corresponding rota-

tions by dx0, dy0, dz0 (Appendix A). The overall shift owing to

libration around the three axes is the sum

�L
½L�rn ¼ �lx

½L�rn þ�ly
½L�rn þ�lz

½L�rn: ð45Þ

It changes from one atom of the group to another and must be

calculated for all atoms of the group with the same (dx0, dy0,

dz0) values for a particular instance of the three rotations.

To transform the atomic shift (45) from the [L] basis into

the initial [M] basis, we invert (43),

�L
½M�rn ¼ RML�L

½L�rn: ð46Þ

7.3. Calculation of the model shift owing to vibration

In the harmonic approximation, the independent vibration

shifts tx, ty, tz expressed in the [V] basis are distributed

accordingly to the probability laws
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Figure 4
GpdQ TLS ensembles. The GpdQ TLS groups are projected onto the protein structure. The corresponding ensembles produced by phenix.tls_as_xyz are
shown below. Each TLS PDB ensemble is shown as a single asymmetric unit outlined by the unit cell. An increase in overall motion is apparent going
from left to right. The 20-member ensemble is shown for visual simplicity.



PðtxÞ ¼ ð2�V½V�xxÞ
1=2 expð�t2

x=2V½V�xxÞ ¼ ð2��1Þ
1=2 expð�t2

x=2�1Þ;

PðtyÞ ¼ ð2�V½V�yyÞ
1=2 expð�t2

y=2V½V�yyÞ ¼ ð2��2Þ
1=2 expð�t2

y=2�2Þ;

PðtzÞ ¼ ð2�V½V�zzÞ
1=2 expð�t2

z=2V½V�zzÞ ¼ ð2��3Þ
1=2 expð�t2

z=2�3Þ:

ð47Þ

Using a random-number generator, for each model we obtain

particular values of tx0, ty0, tz0 using (47). If one of the eigen-

values � is equal to zero, the zero value is assigned to the

corresponding shift. The overall translational shift, common to

all atoms of the rigid group, is equal to

�V
½V�rn ¼ tx0vx þ ty0vy þ tz0vz: ð48Þ

In order to obtain this shift in the [M] basis, we calculate,

similarly to (46),

�V
½M�rn ¼ RMV�V

½V�rn: ð49Þ

7.4. Validation and application to GpdQ

We generated the ensembles produced by alternative TLS

refinements of the glycerophosphodiesterase GpdQ (Jackson

et al., 2007). GpdQ is found in Enterobacter aerogenes and

contributes to the homeostasis of the cell membrane by

hydrolyzing the 30–50 phosphodiester bond in glycerophos-

phodiesters. Each dimer contains three distinct domains per

monomer: an �/	 sandwich fold containing the active site, a

domain-swapped active-site cap and a novel dimerization

domain comprised of dual-stranded antiparallel 	-sheets

connected by a small 	-sheet. Owing to the high global B

factors and the presence of diffuse signal (Fig. 4), Jackson et al.

(2007) performed three separate TLS refinements to model

the crystalline disorder: entire molecule, monomer and

subdomain. All TLS refinement attempts improved the Rfree

values when compared with the standard isotropic B-factor

refinement; however, there was no significant difference

among the final Rfree values from the various TLS runs. We

hypothesized that the diffuse scattering produced by each TLS

motion would contain significant differences, as diffuse signal

is a direct result of correlated motion. The notion that TLS

refinement produces unique diffuse signal has been suggested

previously (Tickle & Moss, 1999). Physical ensembles of the

TLS motion, rather than a mathematical description, were

required to generate three-dimensional diffuse scattering

maps from phenix.diffuse. Visual inspection confirmed that

the ensembles produced by phenix.tls_as_xyz replicated the

anisotropic motion predicted by TLS thermal ellipsoids

(Fig. 5). Additionally, we calculated the structure factors

predicted by the original TLS refinement ‘entire molecule’

and compared them with the Fmodel values (for example, as
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Figure 5
phenix.tls_as_xyz ensembles replicate TLS anisotropic motion. (a) GpdQ backbone with thermal ellipsoid representation of ‘entire molecule’ TLS
anisotropic B factors. (b) phenix.tls_as_xyz ensemble backbones produced from ‘entire molecule’ TLS refinement. (c) Complete electron density
predicted by ‘entire molecule’ TLS refinement. (d) Global correlation coefficient between experimental structure-factor amplitudes Fobs of the original
GpdQ ‘entire motion’ refinement and phenix.tls_as_xyz ensembles of various sizes. Convergence values plateau at 0.935.



defined in Afonine et al., 2012) produced by various

phenix.tls_as_xyz ensemble sizes. The structure factors

converged to a global correlation value of 0.965, demon-

strating that phenix.tls_as_xyz ensembles accurately represent

the motions predicted by TLS refinement. Physical repre-

sentation of the underlying motion also revealed that while

two of the TLS refinements produced motion with small

variances (a necessity within TLS theory), using each func-

tional region as a TLS group produced fluctuations that are

clearly improbable (Fig. 4). Thus, viewing TLS refinement in

the form of a structural ensemble is a valuable check of the

validity of the results, as matrix elements that satisfy the

previously described conditions may still produce motions that

are clearly implausible.

8. Discussion

While our previous review on the subject (Urzhumtsev et al.,

2013) described the computational details of obtaining the

TLS matrices from a known set of vibration and libration

parameters (including the position of the axes and correlation

of these motions), the current work focuses on the opposite

problem of extracting these parameters from a given set of

TLS matrices. The problem is not as simple as it may at first

seem.

This difficulty arises because current structure-refinement

programs vary the matrix elements as independent parameters

and often ignore critical constraints on real-space motions. A

second challenge is that identical motions may be represented

by different vibration–libration combinations. As a conse-

quence, there is no one-to-one relationship between these

parameters and the set of TLS matrices. In particular, the

traditional way of choosing the matrix S so that its trace is

equal to zero may result in a mutually inconsistent combina-

tion of TLS matrices.

This manuscript describes the constraints that can be used

to validate a given set of T, L and S matrices and to improve

the refinement of TLS parameters. Beyond the well known

conditions of non-negativity for the eigenvalues of T and L, we

also discuss the conditions that relate the matrices, a crucial

step in ensuring that the results of TLS refinement correspond

to physically possible combinations of librations and vibra-

tions. Taking all these conditions into account provides the

possibility of correcting TLS matrices in some cases, if needed.

Building these conditions into refinement protocols can

eliminate nonplausible refined TLS matrices

The TLS matrix representation is a convenient way of

encoding concerted motions into a form suitable for the

calculation of structure factors and, in turn, structure refine-

ment. There are two drawbacks to the standard implementa-

tion of this method. Firstly, TLS matrices cannot readily be

interpreted in terms of underlying motions, but rather require

additional processing in order for this information to be

extracted. Secondly, direct refinement of the TLS matrix

elements may result in refined matrices that cannot be

represented as a structural ensemble. To address these two

drawbacks, we propose using the set of vibration and libration

parameters as refinable variables (an ongoing project for the

authors) and reporting them in the PDB files. Indeed, using

actual motion descriptors as refinement variables will allow

more effective application of physical constraints and in turn

guarantee that refined values can be translated to structural

ensembles, simplifying the analysis of refinement results, as

they will be readily available for interpretation. Finally, this

strategy will reduce the chance of overfitting data with atomic

models that represent implausible concerted motions.

The survey of PDB entries refined with TLS revealed that

roughly 85% of these deposited models contain matrices that

are not consistent with the underlying physical model of the

concerted motions. Therefore, these matrices cannot be

interpreted in terms of rigid-body rotations and translations,

and in turn cannot represent these motions (Table 1). This

highlights two urgent needs. Firstly, existing refinement

programs should be updated so that they apply appropriate

restraints or constraints on refinable parameters of the TLS

model. This should be followed by the implementation and use

of comprehensive validation of TLS refinement results.

The utility of our presented algorithm is twofold: it validates

TLS matrices to confirm that they can represent concerted

structural motions and interprets TLS matrices in terms of the

elemental motions that they describe. The information about

atomic group motions conveyed by the TLS model can be used

to analyze possible molecular mechanisms (as illustrated

previously). Descriptions of TLS motion may also be used to

generate an ensemble of molecular conformations, from which

the predicted diffuse scattering signal can be calculated (see

the accompanying paper by Van Benschoten et al., 2015.).

The current procedures for analyzing and validating TLS

parameters, as well as the algorithm for generating a set of

models from given libration and vibration parameters, are

implemented in the PHENIX suite and are called phenix.

tls_analysis and phenix.tls_as_xyz, respectively. The programs

are available starting with version dev-1890.

APPENDIX A
Technical details of the algorithm

A1. Definition of the transition matrices

Let us have three mutually orthogonal unit vectors lx, ly, lz
described respectively by their coordinates [(lx)[M]x, (lx)[M]y,

(lx)[M]z], [(ly)[M]x, (ly)[M]y, (ly)[M]z], [(lz)[M]x, (lz)[M]y, (lz)[M]z] in

the Cartesian basis [M]. These vectors can be considered as a

new basis [L]. The coordinates of a vector r in [L] and [M] are

expressed through each other using the transition matrix RML

as

x½M�
y½M�
z½M�

0
@

1
A ¼ RML

x½L�
y½L�
z½L�

0
@

1
A ¼

ðlxÞ½M�x ðlyÞ½M�x ðlzÞ½M�x
ðlxÞ½M�y ðlyÞ½M�y ðlzÞ½M�y
ðlxÞ½M�z ðlyÞ½M�z ðlzÞ½M�z

2
4

3
5 x½L�

y½L�
z½L�

0
@

1
A:
ð50Þ

Transition matrices for other pairs of bases, for example from

[V] to [L] (x2.1), [M] to [V] and vice versa (x7.3) are defined in

a similar way.
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A2. Cauchy conditions on the elements of the TLS matrices

Let dx, dy, dz and ux, uy, uz be random displacements owing

to rotations and translations, respectively. Since Sxx = hdxuxi,

Vxx = huxuxi, Lxx = hdxdxi (Schomaker & Trueblood, 1968; see

also equations 8.5–8.7 in Urzhumtsev et al., 2013), it follows

from the Cauchy inequality that

S2
xx � TxxLxx: ð51Þ

In the basis [L] with S[L] = SC(tS) (18), condition (51) becomes

ðS½L�xx � tÞ
2
� TC½L�xxL½L�xx: ð52Þ

Similarly, we obtain two other conditions

ðS½L�yy � tÞ2 � TC½L�yyL½L�yy; ðS½L�zz � tÞ2 � TC½L�zzL½L�zz:

ð53Þ

A3. Polynomials for the coefficients of the characteristic
equation

If txx, txy, txz etc. are respective elements of the matrix T�

(29), the coefficients (36) of the characteristic equation as

functions of the parameter t are

aSðtÞ ¼ ½ðt � S½L�xxÞ
2
� txx� þ ½ðt � S½L�yyÞ

2
� tyy�

þ ½ðt � S½L�zzÞ
2
� tzz�; ð54Þ

bSðtÞ ¼ ½ðt � S½L�xxÞ
2
� txx�½ðt � S½L�yyÞ

2
� tyy�

þ ½ðt � S½L�yyÞ
2
� tyy�½ðt � S½L�zzÞ

2
� tzz�

þ ½ðt � S½L�zzÞ
2
� tzz�½ðt � S½L�xxÞ

2
� txx�

� ðt2
xy þ t2

yz þ t2
zxÞ; ð55Þ

cSðtÞ ¼ ½ðt � S½L�xxÞ
2
� txx�½ðt � S½L�yyÞ

2
� tyy�½ðt � S½L�zzÞ

2
� tzz�

� t2
yz½ðt � S½L�xxÞ

2
� txx� � t2

xz½ðt � S½L�yyÞ
2
� tyy�

� t2
xy½ðt � S½L�zzÞ

2
� tzz� � 2txytyztxz: ð56Þ

A4. Explicit expression for the atomic shifts owing to
rotations with given parameters

Let (x[L], y[L], z[L]) be the Cartesian coordinates of a point r

in the basis [L]. For a rotation around the axis parallel to lz and

crossing the point wlz
[L] = (wlz

[L]x, wlz
[L]y, wlz

[L]z), we first recalculate

the coordinates of the vector r � wlz
[L] with respect to the

rotation axis,

x½A� ¼ x½L� � wlz
x ; y½A� ¼ y½L� � wlz

y ; z½A� ¼ z½L�n � wlz
z : ð57Þ

If r0 stands for the position of the same point after rotation by

angle dz0 around this axis, the coordinates of r0 � wlz
[L], the

point with respect to the axis, are

ðx½A� cos dz0 � y½A� sin dz0Þ; ðx½A� sin dz0 þ y½A� cos dz0Þ;

ðz½A� þ szdz0Þ: ð58Þ

This gives the atomic shift

�lz
½L�r ¼ r0 � r ¼ ðr0 � wlz

½L�Þ � ðr� wlz
½L�Þ

¼ ½ðx½L� � wlz
x Þðcos dz0 � 1Þ � ðy½L� � wlz

y Þ sin dz0�lx

þ ½ðx½L� � wlz
x Þ sin dz0 þ ðy½L� � wlz

y Þðcos dz0 � 1Þ�ly

þ szdz0lz:

ð59Þ

There are similar expressions for the shift owing to rotations

around the other two axes:

�lx
½L�r ¼ ½ðy½L� � wlx

y Þðcos dx0 � 1Þ � ðz½L� � wlx
z Þ sin dx0�ly

þ ½ðy½L� � wlx
y Þ sin dx0 þ ðz½L� � wlx

z Þðcos dx0 � 1Þ�lz

þ sxdx0lx;

ð60Þ

�ly
½L�r ¼ ½ðz½L� � wly

z Þðcos dy0 � 1Þ � ðx½L� � wly
x Þ sin dy0�lz

þ ½ðz½L� � wly
z Þ sin dy0 þ ðx½L� � wly

x Þðcos dy0 � 1Þ�lx

þ sydy0ly:

ð61Þ

APPENDIX B
List of abnormal situations requiring interruption of the
procedure

This appendix summarizes the situations when the described

algorithm breaks. Each condition below starts from the

corresponding program message and then refers to the main

text and to Fig. 1. To analyze the PDB content, the program

can be run in a special regime when at step C we assign tS = 0,

i.e. when the matrix S is taken without any correction [in most

cases this corresponds to the current default constraint tr(S) =

0]. In this regime, we directly calculate the matrices C and

check the conditions (x)–(xii).

Step A: basis [L]; determination of the libration axes and

amplitudes.

(i) ‘Input matrix L[M] is not positive semidefinite’, x3.1.

(ii) ‘Input matrix T[M] is not positive semidefinite’, x3.1.

Step B: determination of the points w at the libration axes.

(iii) ‘Non-zero off-diagonal S[L] and zero L[L] elements’,

x3.2, (15).

(iv) ‘Matrix T_C[L] is not positive semidefinite’, x3.2, (17).

Step C: determination of the screw parameters: left branch

(librations around all three axes).

(v) ‘Empty (tmin_c, tmax_c) interval’, x4.2, (23). tmin,C >

tmax,C.

(vi) ‘Empty (tmin_t, tmax_t) interval’, x4.3, (31). tmin,� >

tmax,�.

(vii) ‘Negative argument when estimating tmin_a’, x4.3,

(38).

(viii) ‘Intersection of the intervals for t_S is empty’, x4.3,

step (ii). tmin > tmax.

(ix) ‘t_min = t_max giving non positive semidefinite

V_lambda’, x4.3, step (iii).
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(x) ‘Interval (t_min, t_max) has no t value giving positive

semidefinite V’, x4.3, step (iv).

Step C: determination of the screw parameters: right branch

(no libration around at least one of the axes).

(xi) ‘Cauchy-Schwarz conditions are wrong for the found

t_S’, (22) with tS calculated in x4.4.

(xii) ‘Non-zero diagonal S[L] element for a zero L[L]

element’, x4.4.

Step D: determination of the vibration parameters.

(xiv) ‘Matrix V[L] is not positive semidefinite’, x5.1.

Extra checks at step C when some conditions may fail owing

to rounding errors.

(1) When calculating square roots in (24), the arguments are

non-negative by previous conditions (i) and (iv) since the

diagonal elements of a positive semidefinite matrix are non-

negative.

(2) When calculating square roots in (28), the arguments are

non-negative by previous condition (i).

(3) When calculating square roots in (31), the argument

�max is non-negative since the eigenvalues of TC[L] are also

non-negative by previous condition (iv).
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