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Abstract

The use of novel biomarkers to detect incident acute kidney injury (AKI) in the critically ill is 

hindered by heterogeneity of injury and the potentially confounding effects of prevalent AKI. 

Here we examined the ability of urine NGAL (NGAL), L-type Fatty Acid Binding Protein (L-

FABP), and Cystatin C to predict AKI development, death, and dialysis in a nested case-control 

study of 380 critically ill adults with an eGFR over 60 ml/min/1.73 m2. One-hundred thirty AKI 

cases were identified following biomarker measurement and were compared to 250 controls 

without AKI. Areas under the receiver-operator characteristic curves (AUC-ROCs) for 

discriminating incident AKI from non-AKI were 0.58(95%CI: 0.52-0.64), 0.59(0.52-0.65), and 

0.50(0.48-0.57) for urine NGAL, L-FABP, and Cystatin C, respectively. The combined AUC-

ROC for NGAL and L-FABP was 0.59(56-0.69). Both urine NGAL and L-FABP independently 

predicted AKI during multivariate regression; however, risk reclassification indices were mixed. 

Neither urine biomarker was independently associated with death or acute dialysis [NGAL hazard 

ratio 1.35(95%CI: 0.93-1.96), L-FABP 1.15(0.82-1.61)] though both independently predicted the 

need for acute dialysis [NGAL 3.44(1.73-6.83), L-FABP 2.36(1.30-4.25)]. Thus, urine NGAL and 

L-FABP independently associated with the development of incident AKI and receipt of dialysis 

but exhibited poor discrimination for incident AKI using conventional definitions.
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Introduction

Acute Kidney Injury (AKI) frequently complicates critical illness and strongly associates 

with a dismal prognosis.1, 2 Efforts to improve care are limited by the inability to provide 

timely or accurate diagnosis, mechanistic insight, or prognostic information.3 Emerging 

biological markers with improved specificity and sensitivity for tubular injury have shown 

promise for addressing these limitations.4 However, validation studies across different 

clinical settings have demonstrated varied ability to predict the development of AKI or 

clinical outcomes. More robust performance has been observed in anticipated injury settings 

such as cardiac surgery or nephrotoxic exposures.5-7

Although likely to benefit from timely and informative injury markers, the critically ill 

present unique challenges that hinder both their study and application.8, 9 For example, 

patients with critical illness often already have AKI upon presentation, a finding that can be 

undiscoverable as pre-admission creatinine data is often missing. In addition, single marker 

studies are unlikely to account for the biological heterogeneity underlying different injury 

subtypes observed in this population. We hypothesized that measurement of multiple 

biologically distinct urine injury markers would improve diagnostic and prognostic 

performance in critically ill adults compared to any single marker alone. We also 

hypothesized that performance of biomarkers to detect incident AKI would improve beyond 

previously described results in the critically ill after minimizing the potential confounding 

effects of unrecognized prevalent AKI and underlying chronic kidney disease (CKD).10-12 

To test these hypotheses, we examined the individual and additive utility of urine Neutrophil 

Gelatinase-Associated Lipocalin (uNGAL) (inflammation/iron trafficking),13 urine L-type 

Fatty Acid Binding Protein (uL-FABP) (lipid peroxidation),14 and urine Cystatin C (uCysC) 

(proximal tubule metabolism)15 to predict the development of incident AKI and predict 

dialysis and death in a large nested case-control study of critically ill adults without overt 

CKD.

Results

Subject Characteristics

Patients were selected from the previously described Validation of biomarkers for Acute 

Lung Injury Diagnosis (VALID) study.11, 16 Biomarker measurement occurred at two time 

points: study enrollment and 48 hours later (Figure 1). Cases were identified by acute 

increase of 0.3 mg/dl or 50% increase in serum creatinine following biomarker 

measurement. Controls not meeting injury criteria were selected randomly and paired with 

cases to approximate a total AKI case:non-AKI control ratio of 1:2 for each time interval 

(see methods). Table 1 is the summary of data taken at enrollment or from the time of 

biomarker measurement stratified according to whether patients went on to develop AKI 

(N=130) and patients who did not develop AKI (N=250); 3 patients with AKI and 5 non-

AKI controls did not have urine available for measurement. A trend towards older age, male 

gender, higher diabetes prevalence, injury severity (SAPS and modified APACHE II 

scores), and sepsis status was observed in the AKI group, which did not reach statistical 

significance. A higher proportion of patients in the AKI group came from the surgical ICU 

than in the non-AKI group. No differences were observed in median (IQR) serum creatinine 
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values [0.90(0.72-1.15) vs. 0.90(0.71-1.04) mg/dl, p=0.46] or eGFR measurements 

[88.1(71.3-108.1) vs. 89.8(75.7-112.2) ml/min/1.73 m2, p=0.57] at the time of biomarker 

measurement between AKI and non-AKI patients, respectively. Figure 2 shows the 

separation of serum creatinine values between patients who developed AKI and those that 

did not over the ensuing 48 hours following biomarker measurement. Patients with AKI 

during the first 48 hours after biomarker measurement were further staged according to the 

maximal stage reached over 7 days using AKIN criteria in the following distribution: Stage I 

(n=93, 73.2%), Stage II (n=18, 14.2%), and Stage III (n=16, 12.6%). Patients with AKI had 

a higher 7-day peak median (IQR) serum creatinine 1.54(1.20-2.24) versus 1.10(0.90-1.39) 

mg/dl and were more likely to die (31% versus 11%) than non-AKI controls, p<0.001.

Individual and Combined Biomarker Utility for Early Discrimination of AKI Status

Table 1 and Figure 3 describe uNGAL, uL-FABP, and uCysC levels grouped according to 

AKI status. Adjusting for urine creatinine, patients who went on to develop AKI within 48 

hours had higher median levels of uNGAL [63(IQR: 24-232) vs. 41(IQR: 16-118) ng/mg, 

p=0.004] and uL-FABP [177.2(IQR: 61.2-545.5) vs. 94.7(IQR: 41.5-271.2) ng/mg, 

p=0.003] than non-AKI controls. No differences in median uCysC levels were observed 

between patients developing AKI [100(IQR: 49.1-310.8)] ng/mg and not developing AKI 

within 48 hours [102.5(IQR: 46.2-367.0)] ng/mg, p=0.87. A moderate and significant 

statistical correlation was noted between uNGAL and uL-FABP(Spearman ρ=0.56,p<0.01).

The areas under the receiver-operating characteristic curve (AUC-ROC) for uNGAL, uL-

FABP, and uCysC for diagnosis of AKI were 0.58(95%CI: 0.52-0.64), 0.59(95%CI: 

0.52-0.65), and 0.51(95%CI: 0.48-0.57) respectively. (Figure 4a) As uCysC levels were not 

different between patients who developed and did not develop AKI, only uNGAL and uL-

FABP were included in further analysis. The combined AUC using both uNGAL and uL-

FABP for detection of AKI over the next 48 hours of 0.59(95%CI: 0.56-0.69). 

Discrimination was improved between patients with more severe injury (combined AKIN II 

and III) versus no injury with AUC-ROCs for uNGAL, uL-FABP, or both biomarkers of 

0.69(95%CI: 0.59-0.77), 0.65(95%CI: 0.55-0.74) and 0.69(95%: 0.65-0.82), respectively. 

(Figure 4b)

The incremental benefit in discriminative performance conferred by biomarkers relative to a 

pre-specified clinical model was also tested. The a priori selected variables in the clinical 

model included age, modified APACHE II score, serum creatinine, sepsis status, and patient 

location. The AUC-ROC for the clinical model alone was 0.63(95%CI: 0.59-0.71). The 

AUC-ROCs with the addition of uNGAL, uL-FABP, or both biomarkers to the clinical 

predictive model were 0.65(95%CI: 0.61-0.73), 0.65(95%CI: 0.61-0.73), and 0.65(95%CI: 

0.62-0.73), respectively.

Among the more severely injured (AKIN II and III), the AUC-ROC for the clinical model 

(modified APACHE II score, serum creatinine, and sepsis) for distinguishing severe injury 

from non-injury improved to 0.68(95%CI: 0.59-0.78). The addition of uNGAL, uL-FABP, 

or both biomarkers to the clinical predictive model increased the AUC-ROCs to 

0.72(95%CI: 0.63-0.82), 0.73(95%CI: 0.64-0.82), and 0.73(95%CI: 0.66-0.83), respectively.
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Biomarker Associations with the Risk of Developing AKI

Associations between biomarker levels and the risk of developing AKI were tested using 

multivariable logistic regression. After adjusting for a priori selected clinical predictors 

including age, modified APACHE II score, serum creatinine at biomarker measurement, the 

presence of sepsis, and ICU type, an increase in the inter-quartile range for both uNGAL and 

uL-FABP independently associated with the development of AKI with Odds Ratios of 

1.40(95%CI: 1.05-1.87, p=0.02) and 1.51(95%CI: 1.11-2.06, p=0.001), respectively. The 

potential for these markers to improve risk prediction beyond a clinical model alone was 

further assessed using category free Net Reclassification Improvement (NRI) and the 

Integrated Discrimination Improvement (IDI). (Table 2) Total NRI and IDI values for 

uNGAL were 18.3%(95%CI: -3.3-39.9, p=0.10) and 0.0158(95%CI: 0.0030-0.0290, 

p=0.018). NRI and IDI values for uL-FABP were 24.8%(95%CI: 3.2-46.4, p=0.024) and 

0.0190(95%CI: 0.003-0.0350, p=0.017). When both markers were combined, NRI and IDI 

were 19.2%(95%CI: -2.4-40.8, p=0.081) and 0.0230(95%CI: 0.005-0.040, p=0.010), 

respectively.

When AKIN II and III were used to define AKI, an increase in the inter-quartile range for 

uNGAL and uL-FABP remained associated with developing severe AKI after adjusting for 

modified APACHE II score, serum creatinine at biomarker measurement, and sepsis status 

with ORs for uNGAL and uL-FABP of 1.55(95%CI: 1.00-2.39, p=0.05) and 1.92(95%CI: 

1.18-3.11, p=0.01), respectively. NRI and IDI values for uNGAL were 21.8%(95%CI: 

-14.1-57.7, p=0.23) and 0.015(95%CI: -0.008-0.037, p=0.22), respectively. NRI and IDI 

values for uL-FABP were 24.9%(95%CI: -11.0-61.0, p=0.17) and 0.033 (95%CI: 

-0.006-0.075, p=0.09).

Individual Biomarker and Clinical Outcomes in Patients with AKI

Among patients with AKI, ten received dialysis and 38 patients died within 28 days 

following enrollment. Patients experiencing the composite outcome of death or dialysis 

(N=46) had significantly higher levels of uNGAL than those who did not [116(IQR: 

41-1493) vs. 50(IQR: 21-130) ng/mg, p=0.006)]. No statistically significant differences in 

uL-FABP levels were observed in patients who reached composite outcome than in those 

who did not [181.1(IQR: 81.3-929.6) vs. 177.2(58.9-452.2) ng/mg, p=0.199](Figure 5). 

Exploratory component analyses revealed that both uNGAL and uL-FABP levels were 

higher in those who required dialysis (n=10) than in those who did not, [838(IQR: 

148-4243) vs. 60(IQR: 22-158) ng/mg], p=0.007)] and [510.9(IQR: 218.6-1016.3) vs. 

152.9(IQR: 57.1-496.5), p=0.021, respectively. No statistically significant differences in 

biomarker levels between those that died or survived were observed [NGAL: 85(IQR: 

37-612) vs. 60(IQR: 24-151) ng/mg, p=0.191)] [uL-FABP: 146.7(IQR: 50.6-872.2) vs. 

200.9(IQR: 64.8-505.8) ng/mg, p=0.996).

Separate Cox regression models to examine the association between the risk of the 

developing the composite outcome were created for uNGAL and uL-FABP and were 

adjusted for modified APACHE II score, sepsis status at enrollment, and creatinine levels at 

biomarker measurement (Table 3). Hazard ratios describing the association between 

biomarker levels and the risk of developing the composite outcome for uNGAL and uL-
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FABP after adjusting for clinical covariates were HR 1.35(95%CI: 0.93-1.96, p=0.12) and 

uL-FABP HR 1.15(95%CI: 0.82-1.61), p=0.43, respectively. Exploratory analyses revealed 

that both markers were independently associated with the risk for acute dialysis after 

adjusting for serum creatinine at biomarker measurement [uNGAL HR 3.44 (95%CI: 

1.73-6.83), p=0.004],[uL-FABP HR 2.36(1.30-4.25), p=0.005]. Neither biomarker was 

independently associated with time to mortality after adjusting for APACHE II score and 

sepsis status.

Sensitivity Analyses

We performed two separate sensitivity analyses. The first required patients to meet AKI 

criteria for at least 48-72 hours from the time of initial diagnosis. Sixty-one (61) of the 

original 127 cases survived long enough and had creatinine data available to meet these met 

these criteria. Median(IQR) levels of uNGAL for patients developing AKI and those not 

developing AKI were 80.5(32.8-372.5) ng/mg and 41.3(16.0-117.8) ng/mg, p<0.001, 

respectively. Median(IQR) levels of uL-FABP for patients developing AKI and those not 

developing AKI were 218.0(81.2-801.5) ng/mg and 94.7(41.5-271.2) ng/mg, p<0.001, 

respectively. Discrimination showed modest improvement with areas under the receiver-

operator characteristic curves (AUC-ROCs) values for distinguishing subsequent AKI from 

non-AKI status of 0.66(95%CI: 0.56-0.73), 0.64(95%CI: 0.57-0.71), and 0.55(95%CI: 

0.50-0.63) for uNGAL, uL-FABP, and uCysC, respectively.

The second sensitivity analysis restricted analysis to patients with sepsis at the time of 

biomarker measurement. A total of 53 patients who subsequently developed AKI were 

compared with 81 non-AKI patients. Median(IQR) uNGAL levels in sepsis patients 

developing AKI and not developing AKI were 139.7(58.5-598.2) ng/mg and 

91.7(38.7-313.6), p=0.04, respectively. Median uL-FABP levels in sepsis patients 

developing AKI and not developing AKI were 197.0(67.0-803.6) ng/mg and 

124.1(53.1-411.7) ng/mg, p=0.15, respectively. Discrimination was similar to the parent 

analysis with AUC-ROC values of 0.59(95%CI: 0.51-0.67) for uNGAL and 0.61(95%CI: 

0.53-0.68) for uL-FABP, respectively.

Discussion

We hypothesized that biologically distinct biomarkers would be robust for the detection of 

incident AKI in a heterogeneous group of critically ill adults without overt CKD and provide 

important prognostic information. Despite these allowances, no significant differences in 

uCysC levels were observed between patients who did or did not develop AKI and both 

uNGAL and uL-FABP did not reliably discriminate between those who did and did not 

subsequently develop AKI. Both uNGAL and uL-FABP independently predicted AKI in a 

multivariate regression model, however, risk reclassification indices were mixed with only 

uL-FABP showing modest improvements in both IDI and NRI. Both markers also 

independently predicted subsequent dialysis but neither independently associated with the 

composite outcome of death or dialysis.

The examination and application of AKI biomarkers in the critically ill is frequently 

complicated by unrecognized prevalent AKI. This poses potential problems if biomarker 

Siew et al. Page 5

Kidney Int. Author manuscript; available in PMC 2014 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



elevation is only transient or AKI versus CKD status cannot be verified due to unknown or 

unavailable baseline serum creatinine values. The latter can result in misclassification of 

disease status, particularly if patients whose serum creatinine values do not continue to rise 

are misclassified as non-AKI controls. As much of the initial justification for the need of 

biomarkers has focused on achieving a more timely diagnosis, our study design attempted to 

minimize the confounding effects of undiagnosed prevalent AKI. In addition, widespread 

adoption of incrementally smaller changes in serum creatinine to define AKI may carry 

lower specificity, particularly among those with CKD, further challenging the interpretation 

of results.17 We previously demonstrated in subgroup analyses that discrimination of disease 

status by biomarker candidates improves among patients with higher eGFR.11, 16 Despite 

both the expansion of these subgroup analyses to a formal case-control study and reducing 

the impact of prevalent AKI or CKD on biomarker expression or AKI diagnosis, a 

substantial robustness in the diagnostic performance of uNGAL and uL-FABP was not 

observed.

These findings illustrate important challenges faced in biomarker studies focused on “early 

detection”.18 Even when the timing of injury can be pinpointed, emerging data from large 

validation cohorts suggest “early” diagnostic utility for AKI using candidate markers may be 

limited when confirmed using current creatinine-based criteria.19, 20 Whether results reflect 

the inherent performance limitations of the creatinine standard, regardless of what threshold 

is applied, or poor performance of the biomarkers themselves for diagnostic purposes 

remains unclear. As performance did improve modestly when defining AKI using persistent 

or more severe stages of injury, one possible explanation is that current creatinine-based 

criteria to meet the minimum criteria for injury may be less useful for discerning between 

temporary hemodynamic changes versus true parenchymal injury among patients with 

sufficient renal reserve. However, whether such patients are truly less susceptible to tubular 

injury or simply require a more severe insult to meet diagnostic criteria remains unknown. 

Of note, much of the observed NRI improvement was driven by reclassification of non-AKI 

patients to a lower risk category suggesting that lower biomarker levels may be informative 

in patients without AKI, though the mean change in the predicted risk by the IDI was small. 

The latter may be due to the ability of the clinical model to identify patients at low risk for 

injury. In contrast, the interpretation of higher biomarker levels for diagnosis using a 

creatinine standard remains difficult.

These findings highlight the need for further detailed studies that examine how clinically 

relevant outcomes develop in patients in which biomarker and creatinine data both agree and 

disagree on injury status. Indeed, a recent NIDDK workshop held to determine the optimal 

approach to clinical trials of AKI highlighted a need to better establish the relationship 

between biomarkers and hard clinical endpoints before recommending their use as surrogate 

short-term outcomes.21 A multi-center study among adults emergency room patients 

demonstrated that biomarkers were not superior to serum creatinine in distinguishing 

intrinsic from prerenal injury.22 While these findings were likely partially due to this 

outcome being creatinine-based, a key finding of recent studies in other settings was that 

biomarker data was able to predict mortality or dialysis in those both with and without serum 

creatinine elevation.22, 23
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As the overarching goal of this area of research is to better phenotype AKI and its clinical 

impact, it is likely that the simultaneous incorporation of both functional and injury markers 

will be required. Examining clinically relevant outcomes in populations where underlying 

disease prevalence is higher, such as those already meeting conventional diagnostic 

thresholds for AKI or recently proposed criteria to suggest that early injury maybe be 

occurring may better reveal the purported utility of novel injury markers.8 Our exploratory 

analysis failed to demonstrate an independent association of either uNGAL or uL-FABP 

with the composite outcome of dialysis or death. However, these data were taken before 

established AKI where mortality, an outcome governed by factors besides kidney damage, 

predominated the composite outcome. Both markers independently associated with the need 

for acute dialysis, however, sample size was limited and results should be considered 

exploratory in nature.

Recognizing that a single biomarker is unlikely to reflect the multiple pathways (e.g., 

inflammatory, ischemic, nephrotoxic, oxidative stress) involved in the generation of AKI in 

a broadly selected patient population, we attempted to improve diagnostic performance by 

leveraging distinct markers. Urine Cystatin C is a member of cysteine protease family 

produced by all nucleated cells, filtered freely at the glomerulus, and metabolized by the 

proximal tubule.15, 24 We hypothesized that tubular injury would hamper tubular 

metabolism and increase urine levels relative to patients without ongoing injury. 

Unfortunately, no differences were observed between AKI and non-AKI patients and early 

diagnostic performance was subsequently poor. This is in-line with other recently published 

data and may be partially explained by the offsetting effect of diminished filtration during 

evolving injury.25, 26 NGAL is a 25-kD protein of the lipocalin family that modulates local 

iron channeling and serves as a growth and differentiation factor for renal tubular 

epithelia.13, 27 Increased expression in the proximal, and to a lesser extent, distal renal 

tubule during ischemic injury has provided a rationale for its use as an early biomarker of 

AKI. L-type fatty acid-binding protein (L-FABP) is a 14-kD protein that participates in fatty 

acid trafficking and as a protective cellular antioxidant against reactive lipids generated 

during hypoxic injury. Shedding of uL-FABP in the urine from the proximal tubule has been 

demonstrated in various AKI settings including septic shock.28 Despite their biological 

diversity, the combination of uNGAL and uL-FABP did not substantially improve 

diagnostic performance or risk prediction. One potential explanation may be found in the 

partial correlation observed between these markers suggesting the possibility of a shared 

mechanism of injury or similar thresholds for expression urine. The failure of correlated 

markers to provide independent value in other disease states has been previously 

demonstrated and highlights the need to further determine the degree of biological or 

statistical correlation between markers in different injury settings.29

Strengths of the study include the use of a large, well-phenotyped, and diverse ICU-

population unlikely to be confounded by prevalent injury or CKD. As discussed previously, 

significant limitations include the use of serum creatinine elevations as a reference standard 

to define AKI, which, to date, remains the most feasible reference standard available. As 

patient selection for this case-control study was based on AKI versus non-AKI status, 

studies relating to other clinical outcomes should be considered exploratory. In addition, the 
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lack of serial measurements within a given 48-hour period limits a more accurate detailing 

of the temporal profiles of these markers.

In summary, uNGAL and uL-FABP were both independently associated with the 

development of AKI and the need for dialysis in a critically ill population without prevalent 

kidney injury and may add incremental information to current risk prediction tools. 

However, both markers had only modest utility for discriminating incident injury from non-

injury using current conventional definitions. Future studies the relative contribution of both 

conventional functional markers along with injury markers to inform the risk of poor clinical 

outcomes in patients early in the course of injury is warranted.

Materials and Methods

Patients

A nested case-control study was performed with patients from the Validation of biomarkers 

for Acute Lung Injury Diagnosis (VALID) study.11 A portion of patient data in this study 

has been previously reported.11 In brief, VALID is a single-center, multi-ICU prospective 

cohort study with a total enrollment of 2550 patients whose primary objective is to discover 

and validate new and existing protein biomarkers to diagnose organ injury including to, but 

not limited to, Acute Lung Injury and Acute Kidney Injury. All adult (≥18 years of age) 

patients admitted to one of four ICUs (Medical, Cardiac, Surgical, Trauma) at Vanderbilt 

University Medical Center (VUMC) who were eligible were enrolled within 24 hours of 

ICU admission. Patients were excluded from the parent study if they had chronic lung 

disease requiring oxygen supplementation, pulmonary fibrosis, experienced a cardiac arrest 

prior to enrollment, had transfer orders written or anticipated within 4 hours, died or were 

discharged within 48 hours of ICU admission, were admitted for uncomplicated overdose, or 

were in the ICU for more than 3 days prior to enrollment. Secondary exclusion criteria for 

this study included patients with known renal transplant or history of chronic dialysis. To 

limit the effects of prevalent AKI occurring before admission, patients were required to have 

an eGFR at enrollment of > 60 ml/min/1.73 m2 as estimated using the abbreviated 

Modification of Diet and Renal Disease (MDRD) equation and not experience a 0.3 mg/dl or 

50% increase in serum creatinine between hospital admission and study enrollment.17 The 

study protocol and consent forms were approved by the Vanderbilt University Medical 

Center Human Subjects Institutional Review Board prior to study initiation and were in 

accordance with the Declaration of Helsinki.

Clinical Data Collection

Demographic and physiological data were collected at the time of enrollment. APACHE Il30 

and SAPS Il31 were calculated at the time of ICU admission. The presence of the systemic 

inflammatory response syndrome (SIRS), sepsis, or severe sepsis was determined on a daily 

basis according to the American College of Chest Physicians/Society of Critical Care 

Medicine Consensus definition.32 Details on Vasopressor use, nephrotoxin exposure, blood 

product transfusion, twenty-four hour urine output, and fluid balance were collected during 

the ensuing 72-hours. Patients were followed prospectively until hospital discharge and ICU 

and hospital length of stay, and hospital mortality were recorded. The VALID database has 
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been cross-referenced to the Social Security Death Index to allow for longitudinal 

determination of mortality. The Social Security Death Index is 88.2% sensitive for death for 

the general population.33 Patients without a recorded death in the death index were 

considered alive at 28 days after the study enrollment.

Biosample Collection and Definitions

Urine biomarker measurement occurred at two points: study enrollment and at 48 hours 

later. Serum creatinine was measured per clinical care for critically ill patients. Cases were 

defined by an acute increase of 0.3 mg/dl or 50% in serum creatinine measured at any point 

within 48 hours of biomarker measurement. For patients with multiple measurements within 

a given 24-hour period, the highest value was used to determine AKI or non-AKI status. For 

the first time interval, the serum creatinine closest to the first biomarker measurement was 

used as the baseline value. Patients without AKI following the first biomarker measurement 

were allowed to become potential cases following the 2nd biomarker measurement. For the 

second time period, the lowest of either the serum creatinine closest to the 2nd biomarker 

measurement or the enrollment value was used as the baseline value. The rationale for the 

latter was to keep the threshold for an increase in serum creatinine required to meet injury 

criteria consistent. Controls not meeting injury criteria were selected randomly and paired 

with cases for a total AKI case:non-AKI control ratio of 1:2 for each time interval. Lastly, as 

lower eGFR is a potent risk factor for AKI,34 we frequency-matched cases:controls 

according by eGFR groups at the time of biomarker measurement of >90 ml/min/1.73 m2 

and 60-90 ml/min/1.73 m2. Glomerular filtration rate was estimated by the abbreviated 

Modification of Diet and Renal Disease (MDRD) equation [GFR (mL/min/1.73 m2) = 186 × 

(SCr)-1.154 × (Age)-0.203 × (0.742 if female) × (1.210 if African-American)].35

Laboratory Data Collection

Urine samples were collected the morning of enrollment and 48 hours later from the 

proximal meter reservoir of the Foley catheter, immediately placed on ice, pipetted into 400 

microliter aliquots and frozen at -80°C within 1 hour of collection. Urine NGAL, L-FABP, 

and Cystatin C levels were measured in urine using the Enzo Life Sciences (Plymouth 

Meeting, PA,) Hycult Biotech (Plymouth Meeting, PA,) and R & D Systems (Minneapolis, 

MN) Enzyme-linked immunosorbent assay kits. Samples were run in duplicate and lab 

personnel were blinded to the injury status of each patient. Each ELISA kit underwent an 

additional in-lab validation for measurement in human urine. In brief, recombinant protein 

standards supplied by the ELISA manufacturer, at various concentrations were spiked into 

normal, control urine. After subtracting the concentration of the analyte of the unspiked 

control from the recovered values in the spiked samples, we determined that there was good 

correlation between the spiked and recovery concentrations within the standard curve for 

each analyte. The mean intra-assay coefficient of variations in our laboratory for uNGAL, 

uL-FABP, and uCysC were 3.1%, 5.6%, and 2.9%, respectively. Urine creatinine was 

measured at the RenaLab Clinical Core lab performed using the Jaffe enzymatic method 

(Roche Diagnostics, Inc.)
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Statistical Analysis

Patient characteristics were described as medians with interquartile range [IQR] for 

continuous variables and compared using the Wilcoxon rank sum test. Categorical variables 

were expressed as proportions and compared using the Pearson χ2. Biomarker values were 

adjusted for volume status by dividing by the urine creatinine value. The ability of 

biomarkers to discriminate between AKI and non-AKI using creatinine criteria over the 

ensuing 48 hours was determined using Receiver Operating Characteristic (ROC) curves 

providing sensitivity and specificity at different cutoff values to detect AKI and the area 

under the curve (AUC). To assess the independent predictive ability of uNGAL and uL-

FABP relative to a priori specified predictors of AKI such as age, modified APACHE II 

score, the presence of sepsis, serum creatinine at the time of biomarker measurement, and 

ICU location, multivariable logistic regression modeling was used. A modified APACHE II 

score was calculated based on the total APACHE II score minus the points derived from the 

serum creatinine value to allow for adjustment of creatinine as a separate covariate when 

these variables were simultaneously included in a multivariable regression. Adjusted effects 

of biomarkers were presented as odds ratios with 95% confidence intervals showing their 

contribution to the existing clinical predictors.

The value of each biomarker for predicting clinical outcomes beyond AKI was evaluated 

using a Cox Proportional Hazards model for 3 different outcomes: (1) the need for inpatient 

acute dialysis within 28 days of measurement (2) death within 28 days (3) and the composite 

end point of death or needing dialysis within 28 days. The biomarker value used was the 

single measurement at the beginning of the 48-hour window each AKI or non-AKI patient 

was selected from. Patients who were discharged alive without dialysis were considered as 

not having dialysis and being alive at 28 days because of the low likelihood of outpatient 

dialysis initiation within 28 days. To minimize overfitting,36 the dialysis models were 

adjusted for APACHE score only, the 28-day mortality model was adjusted for APACHE 

and sepsis status, and the composite outcome model was adjusted for APACHE, sepsis 

status and serum creatinine. The category-free net reclassification improvement (NRI) was 

calculated as a measure to estimate any overall improvement in reclassification of patients 

when biomarker data is added to clinical prediction variables. For combined biomarkers, we 

included a cross-product term between two biomarkers along with their main effect 

variables to reflect any interaction effect and overcome multicolinearity.37 Both biomarkers 

were mean-centered. For analysis related to biomarkers, the critical P value for considering 

association significant was determined using the false discovery rate,38, 39 a multiple test 

correction procedure that better accounts for correlated tests and balances type I and II error 

better than Bonferroni or other family-wise error rate corrections. The statistical software 

package R version 2.15.0 (www.r-project.org) and SAS version 9 were used for analyses.
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Figure 1. Study Scheme
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Figure 2. Box-plot of Changes in Serum Creatinine Between AKI Cases and non-AKI Controls
The first, second, and third panels represent the baseline serum creatinine, the highest serum 

creatinine within 24 hours after biomarker measurement, and the highest serum creatinine 

within 24-48 hours of biomarker measurement, respectively. Creatinine measurements were 

ordered by point of care personnel. P values <0.05 denote statistical significance.
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Figure 3. Box-plot of Levels of Urine NGAL and L-FABP Grouped by AKI versus Non-AKI 
Status
Levels are adjusted for urine creatinine values. P values <0.0273 denote statistical 

significance
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Figure 4. 
a. Area Under the Receiver Operating Curves for Urine NGAL, L-FABP, and Both 

Biomarkers Combined for Discriminating Any Future AKI from non-AKI Status.

b. Area Under the Receiver Operating Curves for Urine NGAL, L-FABP, and Both 

Biomarkers Combined for Discriminating Future AKIN Stage II and III from non-AKI 

Status.
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Figure 5. Box-plot of Levels of Urine NGAL and L-FABP Grouped According to Patients 
whether Patients Experienced the Composite Outcome of Dialysis or Mortality
P values <0.0273 denote statistical significance.
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Table 1

Variable AKI N=(127) No AKI (N=245) P Value

Age 49(40-63) 51(36-61) 0.57

Gender (%F) 39(31%) 88(36%) 0.32

Ethnicity (%non-white) 20(16%) 32(13%) 0.54

Diabetes Mellitus 31 (24%) 49(20%) 0.33

Modified APACHE II 24(19-27) 22(18-27) 0.25

SAPS II 49(37-58) 49(37-58) 0.69

Sepsis* 53(42%) 81(33%) 0.10

Patient Location 0.001

 Surgical ICU 36(28%) 45(18%)

 Medical ICU 52(41%) 79(32%)

 Trauma ICU 35(28%) 118(48%)

 Cardiac ICU 4(3%) 3(1%)

Creatinine at Study Enrollment (mg/dl) 0.90 (0.74-1.15) 0.91 (0.70-1.08) 0.89

Estimated GFR at Study Enrollment (ml/min/1.73m2) 87(73-109) 87(74-109) 0.99

uNGAL* (ng/mg urine creatinine) 63(24-232) 41(16-118) 0.004

uL-FABP* (ng/mg urine creatinine) 177.2 (61.2-545.5) 94.7(41.5-271.2) 0.003

uCysC* (ng/mg urine creatinine) 100.0(49.1-310.8) 102.5(46.2-367.0) 0.87

Urine Creatinine* 98.6(53.6-160.1) 101.4(58.8-151.0) 0.87

Peak Serum Creatinine During Hospitalization 1.54(1.20-2.24) 1.10(0.90-1.39) <0.001

Died 39(31%) 28(11%) <0.0013

*
Variables recorded at the time of biomarker measurement. All other variables are recorded at enrollment unless otherwise indicated.
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Table 2

Category-Free Net Reclassification Index and Integrated Discrimination Index for Individual and Combined 

Biomarker Levels Added to the Clinical Model for AKI*

uNGAL uL-FABP Combined

NRI AKI reclassified to 
higher risk

50.80% 52.40% 47.60%

AKI reclassified to 
lower risk

49.20% 47.60% 52.40%

Non-AKI 
reclassified to lower 
risk

58.40% 60.00% 62.00%

Non-AKI 
reclassified to 
higher risk

41.60% 40.00% 38.00%

Total Category-Free 
Net Reclassification 
Improvement

18.30% (95%CI: -3.3-39.9) 
p=0.096

24.80% (95%CI: 3.2-46.4) p=0.024 19.20% (95%CI: -2.4-40.8) 
p=0.081

IDI IDI Events 0.0105 (95%CI: 0.0004-0.0337) 0.01262 (95%CI: 0.0012-0.0385) 0.0150 (95%CI: 0.0036-0.0448)

IDI Nonevents 0.0053 (95%CI: 0.0002-0.0165) 0.0064 (95%CI:0.0006-0.0186) 0.0076 (95%CI:0.0020-0.0217)

IDI Total 0.0158 (95%CI: 0.0030-0.0290) 
p=0.018

0.0190 (95%CI: 0.003-0.0350) 
p=0.017

0.0230 (95%CI: 0.005-0.040) 
p=0.010

*
P values <0.0273 denote statistical significance. All the 95% confidence interval for events IDI and non-events IDI were calculated using 

bootstrapped method
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