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Background. The emergence and spread of Plasmodium falciparum parasites that lack HRP2/3 proteins and the resulting de-
creased utility of HRP2-based malaria rapid diagnostic tests (RDTs) prompted the World Health Organization and other global
health stakeholders to prioritize the discovery of novel diagnostic biomarkers for malaria.

Methods.

To address this pressing need, we adopted a dual, systematic approach by conducting a systematic review of the liter-

ature for publications on diagnostic biomarkers for uncomplicated malaria and a systematic in silico analysis of P. falciparum prote-
omics data for Plasmodium proteins with favorable diagnostic features.

Results.

Our complementary analyses led us to 2 novel malaria diagnostic biomarkers compatible for use in an RDT format:

glyceraldehyde 3-phosphate dehydrogenase and dihydrofolate reductase-thymidylate synthase.

Conclusions.

Opverall, our results pave the way for the development of next-generation malaria RDTs based on new antigens by

identifying 2 lead candidates with favorable diagnostic features and partially de-risked product development prospects.
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For most of the 20th century, microscopy, at best, but often
clinical diagnosis alone without parasitological confirmation
remained the sole methods for diagnosing malaria. This inertia
in the development of novel malaria diagnostics finally ended
in 1991 with the characterization of histidine-rich protein 2
(HRP2) as a diagnostic biomarker for malaria [1]. The global
diagnostics market has since become flooded with a variety of
biomarker-based rapid diagnostic tests (RDTs).

The World Health Organization (WHO) Prequalification
of In Vitro Diagnostics (IVDs) Program assesses the safety
and performance of malaria diagnostics to determine their
suitability for use in resource-limited settings. Malaria RDTs
currently on the WHO list of prequalified IVDs rely on the de-
tection of HRP2 and lactate dehydrogenase (LDH) [2]. The only
US Food and Drug Administration-approved RDT for malaria
(BinaxNOW Malaria) detects a pan-malarial antigen, aldolase,
in addition to HRP2 [3]. HRP2 is a heat-stable, Plasmodium
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falciparum-specific malarial protein excreted in high abun-
dance by the parasite throughout different stages of its life cycle
in human blood [4]. Plasmodium LDH (pLDH) is an essential
enzyme highly conserved among human-infecting Plasmodium
species [4]. While species-specific detection of P. falciparum can
be achieved using either pPLDH- or HRP2-based RDTs, the latter
are preferred for their lower limit of detection (LoD) and greater
heat stability [5, 6]. The only quality-assured RDTs available for
the detection of non-falciparum species target pLDH, either in a
pan or species-specific manner. However, the limited analytical
sensitivity of pLDH-based products restrains their efficient de-
tection [4, 6-9]. Similarly, RDTs based on aldolase show highly
variable clinical performance in detecting Plasmodium para-
sites in malaria-endemic settings [10, 11].

The widespread use of HRP2-based tests has also re-
vealed their shortcomings [4, 12]. HRP2 contains mul-
tiple tandemly repeating short amino acid sequences
that are recognized by monoclonal antibodies used in
HRP2-based RDTs. The presence of such repeats helps
improve the clinical sensitivity of the tests but possibly
contributes to global variability in performance due to
the high variation in these sequences [12-15]. Most im-
portantly, HRP2 is not essential for P. falciparum growth,
as shown by laboratory-based culture experiments [12,
16-20]. The first report of P. falciparum clinical isolates
with hrp2 deletions from the Amazon region in 2010
was, therefore, not surprising but rather troubling due
to its potential impact on the utility of HRP2-based tests
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for case management [21]. The gradual spread of hrp2-
deleted mutants in South America, Asia, and Africa has
called into question our almost exclusive reliance on
HRP2-based tests for P. falciparum detection [22-27].
These tests could potentially be substituted by pLDH-
based tests but at the cost of lower sensitivity because
efforts to match the LoD of pLDH-based tests with that
of HRP2-based RDTs have fallen short to date.

Therefore, innovative malaria RDTs that can provide similar
or improved levels of performance to those currently used are
now a key focus of any road maps to malaria control and elimi-
nation [5, 28, 29]. Identification of novel diagnostic biomarkers
for malaria is a sensible approach to lend impetus to the on-
going innovation efforts.

To identify novel biomarkers for malaria diagnosis, we
adopted a 2-pronged, complementary approach: a system-
atic review of published evidence on nontraditional ma-
laria biomarkers as well as an interrogation of Plasmodium
proteomic databases to identify potential P. falciparum
antigens that may constitute suitable diagnostic targets.
Here, we present the findings of this comprehensive dual
approach and suggest research and development starting
points that could rapidly lead to innovation in the field of
malaria RDTs.

METHODS

Systematic Review of Malaria Diagnostic Biomarkers

Systematic Review Protocol

A systematic review protocol was developed prior to searching
databases and is registered in PROSPERO (PROSPERO 2019
CRD42019126038).

Searched Databases

A systematic approach, based on the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses guide-
lines, was used to search the following databases: Medline
(PubMed), Web of Science, EMBASE, the Cochrane Central
Register of Controlled Trials, and Latin America and
Caribbean Health Sciences Literature. The search terms used
are shown in Supplementary Table 1. These search terms
were adapted as necessary for the other databases. Searches
were carried out during February 2019. See Supplementary
Methods for further details.

In Silico Analysis of P. falciparum Proteomics Data

PlasmoDB Data Access and Data Reduction

Proteomics databases were reviewed to identify potential an-
tigen candidates for malaria diagnosis. Data for P. falciparum
were downloaded from PlasmoDB [30] using an “Organism”
search for P. falciparum. Records lacking a gene name were
omitted. Data were also obtained for 4 additional spe-
cies (Plasmodium vivax, Plasmodium knowlesi, Plasmodium

malariae, and Plasmodium ovale), and comparisons were made
to identify common gene names. See Supplementary Methods
for further details.

RESULTS

Malaria Biomarkers Systematic Review

The initial search identified 3914 publications (Figure 1).
Following the sequential screening of titles, abstracts, and full
texts by 2 independent reviewers, 88 publications reporting on
98 unique biomarkers or biomarker signatures were included
in the review.

The 98 biomarker candidates were classified into 4 major
biomarker categories: host origin (N =55), parasite origin
(N =39), mechanical (N =3), or proxy (N =1; Figure 2).
Cytokines, chemokines, and other proteins comprised most
biomarkers of host origin. All but 5 biomarkers of parasite or-
igin were proteins.

To comprehensively examine the status of the malaria bio-
marker pipeline, we adopted an existing framework to validate
biomarkers under development targeted for specific use cases
[31]. The framework allows an assessment of the level of ev-
idence regarding the diagnostic value of a given candidate vs
its deployability at different levels of a health system, given
the method used to detect the candidate of interest in its cur-
rent state. This revealed that most diagnostic biomarker candi-
dates for malaria are at an early stage of development (Figure
2). Few candidates were found to be usable at the lower levels
of a health system at their current stage of development. For
instance, topoisomerase 1 activity was a valuable measure of
malaria infection in saliva samples when tested in a lateral
flow assay (LFA); however, it is still at an early stage of de-
velopment, requiring validation of its diagnostic value [32].
Similarly, TPx-1, a well-conserved enzyme from the antioxi-
dant family, was identified as a potential diagnostic biomarker
for malaria when measured in culture isolates using a proof-
of-concept LFA [33].

Ninety-three of the 98 candidates identified in the review
were reported in just 1 publication (Supplementary Figure 1).
C-reactive protein was the most studied biomarker, with 10
publications. Additionally, most biomarkers targeted P. fal-
ciparum single infection or coinfection with other species
(Supplementary Figure 2).

According to the summarized results for study quality and
risk of bias based on a revised version of QUADAS (Quality
Assessment of Diagnostic Accuracy Studies)-2, the majority of
26 validation studies showed a high risk of bias in terms of study
design, reference standard chosen, and recruitment timing
(Supplementary Figure 3).

We focused on parasite proteins for further analysis,
as they are the easiest to detect in terms of reagent devel-
opment, assay format, infrastructure requirement, and
level of training entailed [34]. Thirty publications reported

A Dual Approach to Biomarker Discovery « CID 2022:74 (1 January) e 41


http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab251#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab251#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab251#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab251#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab251#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab251#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab251#supplementary-data

Studies identified (n=3914)
PubMed/MEDLINE, Web of Science,
EMBASE, CENTRAL, Lilacs

_—

Titles and abstracts screened (n=3345)

Assessment of full text (n=494)

Included in review (n=88)

98 unique biomarkers or biomarker signatures
137 'biomarker entries'

Excluded duplicates (n=569 )

Excluded (n=2851)

Commentaries, letters, editorials, guidelines, perspectives, reviews, case reports
Vaccine/drug development studies
Disease pathogenesis/basic science studies

Serology studies

Studies that measure just exposure
Animal studies of biomarkers that are non-homologous in humans
Studies of biomarkers for prognosis
Biomarker studies on severe malaria, cerebral malaria or asymptomatic malaria

Epidemiological studies

Studies on HRP2, pLDH, aldolase, genomic biomarkers, non-malarial biomarkers

Excluded (n=406)

Commentaries, letters, editorials, guidelines, perspectives, reviews, case reports
Vaccine/drug development studies
Disease pathogenesis/basic science studies

Serology studies

Studies that measure just exposure
Animal studies of biomarkers that are non-homologous in humans
Studies of biomarkers for prognosis
Biomarker studies on severe malaria, cerebral malaria or asymptomatic malaria

Epidemiological studies

Studies on HRP2, pLDH, aldolase, genomic biomarkers, non-malarial, unidentified biomarkers

Inaccessible full-text

Figure 1.  Preferred Reporting Items for Systematic Reviews and Meta-Analyses flow diagram. Abbreviations: CENTRAL, Cochrane Central Register of Controlled Trials;
LILAC, Latin America and Caribbean Health Sciences Literature; pLDH, Plasmodium lactate dehydrogenase.

on 30 individual parasite proteins and 3 biomarker signa-
tures comprising multiple parasite proteins [28, 29, 32, 33,
35-40, 41-60]. Detecting multiple targets in an RDT format
is complex; therefore, we excluded biomarker signatures
from further analysis and focused on individual proteins,
evaluating their potential as diagnostic biomarkers for ma-
laria (Table 1). Eleven candidates targeted P. falciparum, 10
P vivax, 2 P. knowlesi, and 2 pan. Phosphoethanolamine
N-methyltransferase (PMT) was evaluated for its ability to
indicate P. falciparum, P. vivax, and P. knowlesi [37]. Aldolase
(FBPA) made it onto the list of parasite proteins since the ar-
ticle we included in our review identified a P. vivax-specific
version of this biomarker [47]. Nonetheless, most of these
reports are early-stage discovery studies; clinical diagnostic
performance data are limited (Supplementary Figure 4).
Overall, the reported diagnostic performance of 5 candidates
(CelTOS, FBPA, HSPATR, MSP-1, and MSP-3) showed high
specificity but varying sensitivity [35, 41, 43, 44, 47, 48, 59].

Our review of malaria biomarkers summarized available evi-
dence on novel biomarker candidates for malaria diagnosis but
also revealed that few parasite proteins reported were selected as
a result of an unbiased approach. Exceptions were mature eryth-
rocyte surface antigen, glutamate-rich protein, and the P. vivax-
specific proteins PVX_ 110940, PVX_083555, PVX_090265,
PVX_003545,and PVX_094303, identified using high-throughput
analysis techniques, for example, mass spectrometry [36, 39,
42, 61]. These studies failed to describe the intrinsic diagnostic
features of the identified candidates. Therefore, we performed an
in silico analysis of available P, falciparum proteomics data to eval-
uate the diagnostic value of candidates identified in the review and
to identify additional candidates of interest.

IN SILICO ANALYSIS OF P FALCIPARUM
PROTEOMICS DATA

An “Organism” search of PlasmoDB for P. falciparum yielded
89 841 genes across 16 strains; 64 457 genes with no protein
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Figure 2. Malaria biomarker development pipeline. Level 0, community (prerequisite: noninvasive tests, no blood draw, eg, urine rapid diagnostic tests [RDTs], saliva RDTs); level
1, health clinic/post (prerequisite: blood draw but with easy-to-use/basic tests that can be done in health centers, eg, finger-prick blood—based RDT, microscopy); level 2, peripheral
laboratory (prerequisite: blood draw with/without the use of plasma and advanced equipment/complex tests, eg, enzyme-linked immunosorbent assay, Western blot); level 3, cen-
tralized reference laboratory/hospital (prerequisite: highly advanced equipment/complex tests, eg, mass spectrometry, cytometry, suspension array). Abbreviations: CRP, C-reactive
protein; CSP, circumsporozoite protein; FBPA, aldolase; Topl, topoisomerase I; Tpx-1, thioredoxin peroxidase 1; VOC, volatile organic compounds.

sequence or no gene name but a protein sequence were ex-
cluded from further analysis as they were likely inferred from
hypothetical genes. This dataset was further reduced by lim-
iting the search to P. falciparum 3D7 (Pf 3D7), yielding 2380
genes. A filtering cascade was established to identify P. fal-
ciparum proteins associated with favorable diagnostic fea-
tures (Figure 3). In the absence of data on the subcellular
localization of the protein products of these genes in the
parasite, the data were further filtered to select those whose
human orthologue, when available, has a nonnuclear local-
ization in the cell; this resulted in a list of 30 proteins, 29
excluding pLDH.

We identified a human orthologue for 24 candidates,
with percent identity between P falciparum and human
orthologues ranging from 24% to 72%. Sixteen proteins were
expressed during both the asexual stage and the sexual stage
of the P. falciparum life cycle; 13 were specific to the asexual
stage, opening the possibility for stage-specific markers.
Single-nucleotide polymorphisms (SNPs), which are indic-
ative of genetic diversity, in the 29 candidates ranged from
1 to 140, with most genes (21 of 29) showing less than 22.5
(the median number of SNPs across 2380 Pf 3D7 genes).
We also identified potential immunogenic epitopes in 8
of the proteins. Through reference to the iSP-RAAC web

server, 4 of the proteins were characterized as secretory
(PF3D7_1029600, PF3D7_1110700, PF3D7_1401800, and
PF3D7_1211700) [62].

We evaluated the diagnostic utility of the 26 bio-
markers identified in the systematic review with respect
to the filtering cascade (Figure 3; Supplementary File
2). Only 2 candidates, glyceraldehyde 3-phosphate de-
hydrogenase (GAPDH) and dihydrofolate reductase-
thymidylate synthase (DHFR-TS), were found to meet all
of the criteria established. In addition, PMT met all but
1: expression by all human-infecting Plasmodium spe-
cies. A P. malariae orthologue appears to be lacking in
PlasmoDB, even though a putative orthologue is predicted
to exist [37]. The studies describing these 3 candidates
were classified as early (nonhuman) discovery studies with
a level 2 deployability based on the enzyme-linked immu-
nosorbent assay (ELISA) used for detection [28, 37, 51].
Conversely, merozoite surface protein 1 and rhoptry pro-
tein 3 possessed all of the favorable diagnostic features but
did not reach the ring-stage abundance threshold estab-
lished. Thioredoxin peroxidase 1 (Tpx-1 or Trx-Px1) failed
to meet the established criteria, but other enzymes of the
redox network, thioredoxin 1 and glutaredoxin 1, ranked
among the candidates identified via our in silico analysis
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Figure 3. Filtering cascade adopted to identify Plasmodium falciparum proteins with favorable diagnostic features. Abbreviations: BM, biomarker; pLDH, Plasmodium

lactate dehydrogenase.

(Table 2), suggesting that proteins involved in oxidative
stress responses could be propitious targets for malaria di-
agnostic biomarker development [63].

We also investigated whether the conventional malaria diag-
nostic biomarkers, HRP2, pLDH, and aldolase, harbor favor-
able diagnostic features and found that only pLDH possessed
all selected features (Figure 3; Supplementary File 2). HRP2
was filtered out because of its nonessential and P. falciparum-
specific nature. Aldolase, on the other hand, showed lower ex-
pression levels than pLDH in ring-stage parasites.

MALARIA DIAGNOSTIC BIOMARKER LEADS: GAPDH
AND DHFR-TS

Our dual, systematic approach singled out GAPDH and DHFR-TS
as the 2 biomarker candidates for malaria diagnosis with not only
favorable diagnostic features but also actual evidence of their diag-
nostic value (Table 3). Table 3 compares GAPDH and DHFR-TS
with the commonly used malarial antigens pLDH and HRP-2.

GAPDH is a highly conserved, essential glycolytic enzyme
responsible for oxidative phosphorylation of glyceraldehyde-3-
phosphate in cells (Supplementary Figure 5A) [64]. Antibody-
based evidence confirmed that P. falciparum-specific and pan
epitopes in GAPDH are detectable, albeit only in culture isolates
[28]. Our in silico analysis of the GAPDH protein sequence to
identify immunogenic B-cell epitopes pointed to 1 probable
C-terminal epitope, with low prediction scores (Figure 4A). The
number of nonsynonymous SNPs identified in GAPDH by the
in silico analysis was found to be low, in line with its essential
cellular function (Table 3). The low genetic diversity of GAPDH
is likely to obviate the risk of variable test performances due to
sequence variability of the target marker.

DHFR-TS is a bifunctional enzyme with roles in the folate
pathway and pyrimidine and DNA synthesis that is expressed
in all human-infecting Plasmodium species (Supplementary
Figure 5B [65]. Pan-specific monoclonal antibodies devel-
oped against DHFR-TS were shown to detect P. falciparum and
P. vivax isolates in an ELISA [51]. Two immunogenic B-cell

epitopes with low prediction scores but surface exposure were
identified by our in silico analysis (Figure 4B; 4C). The number
of nonsynonymous SNPs in DHFR-TS was low, in accordance
with published results (Table 3; [66, 67]). Additionally, we in-
vestigated the number of repeats in GAPDH and DHFR-TS and
found that amino acid repeats are not common in either protein
(Figure 4D).

DISCUSSION

We sought novel malaria biomarkers for use in malaria RDTs
that can be deployed in malaria-endemic areas with widespread
hrp2/hrp3 deletions. We adopted a dual, systematic approach
and identified 2 candidates, GAPDH and DHFR-TS, that fea-
tured in both approaches, indicating that not only do they
have favorable diagnostic properties in silico but also experi-
mental evidence warranting their anticipated diagnostic value.
Intriguingly, GAPDH has been proposed as a biomarker for
various conditions, from infections to cancer, for diagnostic and
prognostic purposes [70-75]; however, to date, it has not been
used for clinical decision-making. To the best of our knowledge,
the only follow-up study on the diagnostic potential of DHFR-TS
for malaria failed to confirm the findings in the study included
in this review when the reagents to recognize DHFR-TS were
tested using clinical isolates, likely due to the low affinity of the
antibodies obtained through classic animal immunization pro-
cedures (Foundation for Innovative New Diagnostics, unpub-
lished data). Therefore, an immediate next step would be the
development of high-affinity and highly specific reagents that
target these selected biomarkers and the subsequent evaluation
of these reagents using geographically diverse clinical isolates
of different Plasmodium species to assess the use-case-relevant
utility of these candidates. Moreover, antimalarial antifolates
that, in the past, have been commonly used have led to resist-
ance mutations in the DHFR domain of DHFR-TS [76]. It is,
therefore, critical to enable an impact assessment on the detec-
tion of malarial parasites using DHFR-TS-based RDTs by the
circulation of the dhfr-ts mutations.
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(A) > GAPDH

Pf-3D7

1 MAVTKLG INGFGRIGRLVFRAAFGRKDIEVVAINDPFMDLNHLCYLLKYDSVHGQFPCEVTHADGFLL IGEKKVSVFAAEKDPSQIPWGKCQVDVVCESTG 100

Pf-3D7 101 VFLTKELASSHLKGGAKKV IMSAPPKDDTPIYVMG INHHQYDTKQLIVSNASCTTNCLAPLAKVINDRFGIVEGLMTTVHASTANQLVVDGPSKGGKDWR 200

Pf-3D7 201 AGRCALSNIIPASTGAAKAVGKVLPELNGKLTGVAFRVPIGTVSVVDLVCRLQKPAKYEEVALEIKKAAEGPLKGILGYTEDEVVSQDFVHDINRSSIFDM 300

Pf-3D7 301 KAGLALNDNFFKLVSWYDNEWGYSNRVLDLAVHITNN

* BepiPRED:0.54, IUPRED:0.25, ANCHOR:0.29

\

DHFR-TS

Pf-3D7

*
337

1MMEQVCDVFDIYAICACCKVESKNEGKKNEVFNNYTFRGLGNKGVLPWKCNSLDMKYFCAVTTYVNESKYEKLKYKRCKYLNKETVDNVNDMPNSKKLQN 100

*%

Pf-3D7 101 VVVMGRTSWES IPKKFKPLSNRINVILSRTLKKEDFDEDVY IINKVEDL IVLLGKLNYYKCFIIGGSVVYQEFLEKKLIKKIYFTRINSTYECDVFFPETI 200

Pf-3D7 201 NENEYQIISVSDVYTSNNTTLDFIIYKKTNNKMLNEQNC IKGEEKNNDMPLKNDDKDTCHMKKLTEFYKNVDKYKINYENDDDDEEEDDFVYFNFNKE 300

Pf-3D7 301 EKNKNSIHPNDFQ IYNSLKYKYHlPEYQ‘(LNI IYDIMMNGNKQSDRTGVGVLSKFGY IMKFDLSQYFPLLTTKKLFLRGITIEELLWF IRGETNGNTLLNKN 400

Pf-3D7 401 VRIWEANGTREFLDNRKLFHREVNDLGP IYGFQWRHFGAEYTNMYDNYENKGVDQLKNIINLIKNDPTSRRILLCAWNVKDLDQMALPPCHILCQFYVFD 500

PF-3D7 501 GKLSCIMYQRSCDLGLGVPFNIASYSIFTHMIAQVCNLQPAQF IHVLGNAHVYNNHIDSLKIQLNRIPYPFPTLKLNPDIKNIEDFTISDFTIQNYVHHE 600

Pf-3D7 601 KISMDMAA

** BepiPRED:0.61, IUPRED:0.19, ANCHOR:0.28
*** BepiPRED:0.65, IUPRED:0.31, ANCHOR:0.36

608

(B) ©
( D) Longest Longest Longest Longest Longest Most Most Most Most Most
1-mer 2-mer 3-mer 4-mer 5-mer Frequent Frequent Frequent Frequent Frequent
Repeat Repeat Repeat Repeat Repeat 1-mer 2-mer 3-mer 4-mer 5-mer
PfGAPDH LAA 0:[NA] 0:[NA] 0:[NA] 0:[NA] 35:V 5:LA 2:FGR 1:DPSQ 1:DTKQL
PvGAPDH 1:AA 0:[NA] 0:[NA] 0:[NA] 0:[NA] 34:V 5:VV 2:KYD 1:YDNE 1:KVLPE
PfDHFR-TS 3:DD 1:GVGV 0:[NA] 0:[NA] 0:[NA] 63:N 11:KN 4:KKL 2:LKYK 1:MYDNY
PvDHFR-TS 4:LL 2LLL 0:[NA] 0:[NA] 0:[NA] 51:L 9:GG 3:GGD 3:GGDN 2:GGDNT
PfLDH 2:AA 0:[NA] 0:[NA] 0:[NA] 0:[NA] 32:V 7.V 2:NNK 2:LDTS 1:LKRYI
PvLDH 2:AA 1:PKPK 0:[NA] 0:[NA] 0:[NA] 35:V 6:GG 3IGG 2:LDTS 1:LKRYT
PfHRP2 2:AA 1:LNLN 2:HHAHHA  0:[NA] 0:[NA] 110:A 51:AH 50:AHH 46:AHHA 27:DAHHA

Figure 4. A, GAPDH and DHFR-TS amino acid sequences with peptide epitopes. BepiPred, IUPRED, and ANCHOR scores for the immunogenic epitopes predicted in this
study are shown below the sequences. The scores are not available for the epitopes identified in a previous study [28]. B, Location of the epitopes in the GAPDH tetramer [68]
and (C)in DHFR-TS [69]. D, Contiguous repeated subsequences within protein sequences. Abbreviations: DHFR-TS, dihydrofolate reductase-thymidylate synthase; GADPH,

glyceraldehyde 3-phosphate dehydrogenase.

A third potential biomarker of value is PMT, an essential protein
involved in Plasmodium lipid biosynthesis [77, 78]. Both GAPDH
and PMT were identified as biomarker candidates for malaria in a
prior in silico analysis [28, 37]. In our analysis, we applied essenti-
ality, conservation across Plasmodium strains and species, and high
expression during the ring stage of the parasite life cycle as addi-
tional filtering criteria to minimize the risk of selecting a target that
cannot be readily detected in parasitized human blood samples be-
cause of its deletion, high diversity, and/or low abundance. Another

in silico analysis of malaria biomarkers identified 8 candidates that
are highly expressed by asexual stage parasites, essential and con-
served across different parasite strains [38]. However, none of these
8 candidates were present in our final list of 30 proteins. Four of
them (PF3D7_1250100, PF3D7_0500800, PF3D7_1016300, and
PF3D7_0220000) were found to be dispensable for parasite growth
in our dataset. To assess the dispensability of Plasmodium genes,
we sourced data from a study in which the mutability of the para-
site genes was assessed by saturation mutagenesis [79], whereas the
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previous study used data from an earlier large-scale gene-knockout
study with a focus on proteins exported into red blood cells [80].
Three of the candidates, PF3D7 1118300, PF3D7 1110400,
and PF3D7_1120000, had no gene name and were excluded.
Nonetheless, we found that even though 2 of those, PF3D7_1110400
and PF3D7_1120000, met our essentiality and expression during
asexual cycle criteria, they had lower abundance in the ring stage
than pLDH (data not shown). Finally, PF3D7_0401800 was also
found to be less abundant than pLDH at the ring stage.

Efforts to improve the performance of currently available
pLDH-based RDTs to match that of HRP2-based tests have
recently intensified; however, they have yet to yield a product
for use in malaria-endemic settings where hrp2/hrp3 dele-
tions exist. The question remains, therefore, whether improved
pLDH-based tests will be sufficient to close the diagnostic gap
created by the decreased utility of HRP2-based tests. Regardless,
relying solely on pLDH for the diagnosis of hundreds of mil-
lions of suspected malaria cases annually may increase the risk
of driving mutations, abolishing the epitopes targeted in pLDH-
based RDTs due to strong selective pressure, as is predicted to
be the case for HRP2 [81, 82]. Functional diagnostic-resistant
pLDH variants may emerge, in a similar manner to what has
been occurring for highly conserved essential enzymes in re-
sponse to drug pressure [83, 84].

There were some limitations to this study. First, it was not pos-
sible to perform a meta-analysis of the studies identified in our
review due to heterogeneity between the studies and the small
number of studies per biomarker; this made direct comparisons
difficult. Second, the review excluded biomarkers for severe ma-
laria. However, this is a less important limitation since early and
accurate detection of uncomplicated malaria is likely to reduce se-
vere malaria cases. Finally, information stored in public databases
is subject to errors that may have occurred during data entry,
archiving processes, and changes as new information becomes
available. Errors may also occur during data processing and anal-
ysis. Manual steps were taken to verify data content with original,
noted sources (when available) to ensure data transformations
maintained the data integrity.

In this study, we champion the development of novel malaria
RDTs based on unconventional antigens by identifying prom-
ising candidates and highlighting 2 antigens for which not only
favorable in silico but also in vitro evidence exists and that could
represent ideal starting points for a rapid and partially de-risked
research and development effort toward effective malaria RDTs
based on new antigens.

Supplementary Data

Supplementary materials are available at Clinical Infectious Diseases on-
line. Consisting of data provided by the authors to benefit the reader,
the posted materials are not copyedited and are the sole responsibility
of the authors, so questions or comments should be addressed to the
corresponding author.
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