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Affective studies provide essential insights to address emotion recognition and tracking.

In traditional open-loop structures, a lack of knowledge about the internal emotional

state makes the system incapable of adjusting stimuli parameters and automatically

responding to changes in the brain. To address this issue, we propose to use facial

electromyogram measurements as biomarkers to infer the internal hidden brain state

as feedback to close the loop. In this research, we develop a systematic way to track

and control emotional valence, which codes emotions as being pleasant or obstructive.

Hence, we conduct a simulation study by modeling and tracking the subject’s emotional

valence dynamics using state-space approaches. We employ Bayesian filtering to

estimate the person-specific model parameters along with the hidden valence state,

using continuous and binary features extracted from experimental electromyogram

measurements. Moreover, we utilize a mixed-filter estimator to infer the secluded brain

state in a real-time simulation environment. We close the loop with a fuzzy logic controller

in two categories of regulation: inhibition and excitation. By designing a control action,

we aim to automatically reflect any required adjustments within the simulation and

reach the desired emotional state levels. Final results demonstrate that, by making use

of physiological data, the proposed controller could effectively regulate the estimated

valence state. Ultimately, we envision future outcomes of this research to support

alternative forms of self-therapy by using wearable machine interface architectures

capable of mitigating periods of pervasive emotions and maintaining daily well-being

and welfare.

Keywords: closed-loop, control, brain, emotion, valence, electromyogram (EMG), wearable, state-space

1. INTRODUCTION

Emotions directly influence the way we think and interact with others in different situations,
especially when it interferes with rationality in our decision-making or perception (Dolan, 2002).
Thus, having a solid grasp of the dynamics of emotions is critical to provide any therapeutic
solutions to maintain welfare (Couette et al., 2020). Moreover, deciphering emotions has been
an ongoing task among researchers, dictating joint efforts from behavioral, physiological, and
computational angles (Scherer, 2005). According to the James A. Russell’s circumplex model of
affect, emotion can be divided into two perpendicular axes, viz. valence—reflecting the spectrum
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of negative to positive emotions—and arousal, accounting for the
intensity characteristics (Russell, 1980). In this study, we focus
on improving comprehension of emotional valence regulation
by proposing an architecture to track and regulate the internal
hidden valence state using physiological signals collected via
wearable devices. The use of wearable devices to gain insight to
the internal brain state provides a good alternative to study the
brain dynamics, as usually the procedures either rely on invasive
techniques, e.g., extracting bloodstream samples, performing
surgery, or require large and expensive equipment for imaging
purposes (Villanueva-Meyer et al., 2017; Wickramasuriya et al.,
2019a,b).

Affective computing is defined by an interdisciplinary field of
research that incorporates both sentiment analysis and emotion
recognition (Poria et al., 2017). Scholars have posited the
importance of affective computing to endow machines with the
means to recognize, interpret or convey emotions and sentiments
(Poria et al., 2017; Burzagli and Naldini, 2020). These capabilities
allow the development and enhancement of personal care
systems that interact better with humans, potentially improving a
personal health and daily well-being (Burzagli andNaldini, 2020).
Previous attempts in the development of affective computing
have focused on emotion feature extraction and classification
through human-robot interactions (Azuar et al., 2019; Rudovic
et al., 2019; Yu and Tapus, 2019; Filippini et al., 2020; Rosula
Reyes et al., 2020; Val-Calvo et al., 2020), facial expressions
(Chronaki et al., 2015; rong Mao et al., 2015; Yang et al., 2018a;
Zeng et al., 2018), and vocal responses (Wang et al., 2015; Fayek
et al., 2017; Noroozi et al., 2017; Anuja and Sanjeev, 2020).
The objective of this research is to take this one step further
and introduce a tracking and closed-loop control framework to
regulate specific emotions.

Within a closed-loop approach, biomarkers are collected
in real-time as feedback, which grants the possibility of
automatically adjusting brain stimulation levels according to
the current emotional state (Wickramasuriya et al., 2019a,b;
Thenaisie et al., 2021). Previous studies have shown that this
strategy can increase treatment efficacy and decrease the extent
of stimulation side-effects, compared to just employing an open-
loop stimulation (Price et al., 2020). The benefits of closed-
loop neurostimulation have been well reported in addressing
conventional-therapy-resistant patients with Parkinson’s disease
(Little et al., 2016; Weiss and Massano, 2018). However, fewer
studies have explored closed-loop therapies for non-motor
neuropathologies such as post-traumatic stress disorder or
depression (Tegeler et al., 2017; Mertens et al., 2018), even
though there is already relevant evidence of improvements with
open-loop therapies (Conway et al., 2018; Starnes et al., 2019;
Freire et al., 2020). Conversely with the conventional open-loop
approach, brain stimulation is manually tuned during in-clinic
visits, delivering pre-determined quantities and incurring over or
under stimulation of the brain (Wickramasuriya et al., 2019a,b;
Price et al., 2020).

To properly regulate the emotional brain state in a closed-
loop manner, a suitable biomarker that relates to the internal
emotional valence needs to be identified. Prior research has based
emotion classification on facial or voice expressions, which not

only requires heavy data acquisition, but also runs into ambiguity
issues (Tan et al., 2012). Facial and vocal expressions can
vary significantly between person to person, making it difficult
to draw any accurate inference about the person’s emotional
state. Moreover, facial and vocal expressions (e.g., smiling) can
be seen as externalized emotions and can be altered at will,
confounding the accuracy of such classification approaches, and
thus hindering any tracking and control efforts as the true
emotional state would not be clear (Cai et al., 2018). In response,
our proposed strategy aims to remove this ambiguity by using a
more reliable metric: physiological signals (Cacioppo et al., 2000).
Physiological signals or biomarkers are involuntary responses
initiated by the human’s central and autonomic nervous systems,
whereas facial and vocal lineaments can voluntarily be hidden to
reject certain emotional displays (Cannon, 1927; Cacioppo et al.,
2000; Lin et al., 2018; Amin and Faghih, 2020; Wilson et al.,
2020). Although overall facial expression can be made to mask
certain emotions, several studies have linked electromyogram
activity of specific facial muscles to states of affection in varying
valence levels, such as happiness, stress and anger (Nakasone
et al., 2005; Kulic and Croft, 2007; Gruebler and Suzuki, 2010;
Tan et al., 2012; Amin et al., 2016; Cai et al., 2018). Cacioppo
et al. described that the somatic effectors of the face are tied
to changes in connective tissue rather than skeletal complexes
(Cacioppo et al., 1986). Researchers in Cacioppo et al. (1986)
posited facial electromyogram could provide insight into valence
state recognition even when there is no apparent change in facial
expressions. Moreso, the work of Ekman et al. (1980) and Brown
and Schwartz (Brown and Schwartz, 1980) are two of the few
who showed that using facial electromyogram measurements of
the zygomaticus muscle (zEMG) gave the most distinct indicator
of valence compared to other facial muscles involved in the act
of smiling. Multiple studies have suggested the relation between
emotional states and facial electromyogram activity (Van Boxtel,
2010; Tan et al., 2011; Koelstra et al., 2012; Künecke et al., 2014;
Kordsachia et al., 2018; Kayser et al., 2021; Shiva et al., 2021).
Golland et al. (2018) also showcased a consistent relationship
between the emotional media viewed and the changes seen in
the components of the facial electromyogram signal. We focus
on zEMG to build our model and track the hidden valence state.
Then, we design a control strategy to automatically regulate the
internal emotional valence state in real-time.

It should be noted that electromyogram is not the only
physiological metric that has shown promise for valence
recognition. Emotional valence can also be represented by many
different physiological signals or a combination of them (Egger
et al., 2019), such as using electroencephalography (Bozhkov
et al., 2017; Wu et al., 2017; Soroush et al., 2019; Feradov
et al., 2020), respiration (Zhang et al., 2017; Wickramasuriya
et al., 2019a,b), electrocardiography (ECG) (Das et al., 2016;
Goshvarpour et al., 2017; Harper and Southern, 2020), blood
volume pulse (Das et al., 2016) or heart rate variability
(Ravindran et al., 2019). Egger et al. investigated the accuracy of
different physiological signals in classifying emotive states such
as stress periods, calmness, despair, discontent, erotica, interest,
boredom, or elation (Egger et al., 2019). Naji and collaborators
displayed the disparity betweenmultimodal and individual signal
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measurements regarding emotion classification via ECG and
forehead biosignals (Naji et al., 2014).

Previous studies have also investigated different ways of
estimating and tracking internal brain states (Sakkalis, 2011).
Brain dynamics during resting states have been studied with
measurements from functional magnetic resonance imaging
(fMRI), using linear and non-linear models, and more recently,
employing a tensor based approach (Honey et al., 2009;
Abdelnour et al., 2014; Al-Sharoa et al., 2018). The transition
of brain states has been examined with machine learning
methods and eigenvalue decomposition, by using data from
fMRI, electroencephalogram (EEG) or magnetoencephalography
(Pfurtscheller et al., 1998; Guimaraes et al., 2007; LaConte et al.,
2007; Maheshwari et al., 2020). Moreover, EEG measurements
were also employed withmachine learning techniques to estimate
stress levels (Al-Shargie et al., 2015), and affection (Nie et al.,
2011). The method introduced by Yadav et al. uses a state-space
formulation to track and classify emotional valence based on two
simultaneous assessments of brain activity (Yadav et al., 2019).
In the present work, we use a similar approach to estimate and
track the hidden valence state, with the help of Bayesian filtering
as a powerful statistical tool to improve state estimation under
measurement uncertainties (Prerau et al., 2009; Ahmadi et al.,
2019; Wickramasuriya and Faghih, 2020). Another contribution
of the present work is the use of real measurements from
wearable devices to develop a virtual subject environment as a
simulation framework for concealed emotional levels. This is the
first step to empower the implementation and testing of closed-
loop controllers that could track and regulate the internal valence
state. In a similar fashion to other control studies, providing
a reliable closed-loop simulation framework can pave the way
for safe experimentation of brain-related control algorithms here
and in future studies (Santaniello et al., 2010; Dunn and Lowery,
2013; Yang et al., 2018b; Wei et al., 2020; Ionescu et al., 2021).

To investigate the validity of regulating emotions through a
closed-loop control architecture, we design a simulation system
using experimental data. Specifically, in this in silico study, we
employ features extracted from zEMG data and design a fuzzy
logic controller to regulate the emotional valence state in a
closed-loopmanner.We propose to implement fuzzy logic as this
knowledge-based controller works with a set of predetermined
fuzzy rules and weights responsible to gauge the degree in
which the input variables are classified into output membership
functions (Klir and Yuan, 1995; Qi et al., 2019). This process
is particularly useful for controlling complex biological systems,
as it provides a simple yet effective way of interacting with
the uncertainties and impreciseness of these challenging systems
(Lilly, 2011). In the literature, previous research have explored
the use of a fuzzy logic controller in a simulation environment to
control cognitive stress or regulate energy levels of patients with
clinical hypercortisolism (Azgomi and Faghih, 2019; Azgomi
et al., 2019). A fuzzy controller was also combined with a
classical Proportional Integral Derivative (PID) controller to aid
the movement of a knee prosthesis leg (Wiem et al., 2018), and to
regulate movement of the elbow joint of an exoskeleton during
post-stroke rehabilitation (Tageldeen et al., 2016). Scholars have
shown fuzzy logic controllers to outperform PID controllers in

the regulation of mean arterial pressure (Sharma et al., 2020), and
to improve the anesthetic levels of patients undergoing general
anesthesia (Mendez et al., 2018). In light of what is presented, in
this in silico study, we develop a virtual subject environment to
evaluate the efficiency of our proposed architecture.

The remainder of this research is organized as follows.
In Section 2 we describe the methods used in this research.
Specifically, in Section 2.1 we describe the virtual subject
environment and the steps taken toward its development (i.e., the
models used, the features extracted, the valence state estimation
and the modeling of the environmental stimuli). Next, in Section
2.2 we explain the controller design and the steps taken during
implementation. Then, we present our results in Section 3,
followed by a discussion of those in Section 4.

2. METHODS

2.1. Virtual Subject Environment
An overview of the proposed system is presented in Figure 1. As
depicted in Figure 1, to construct the virtual subject environment
we first take the zEMG measurements and preprocess the
collected data for our further analysis. From the zEMG data we
extract binary and continuous features that will be used both to
build the state-space model and to estimate hidden emotional
levels. This is possible after the establishment of the continuous
and binary observation models associated with the state-space
representation of emotional valence. Since the emotional valence
progression of the subject is not measurable directly, we use
the two simultaneous features and an expectation maximization
(EM) algorithm, to model and drive the environmental stimuli
within the virtual subject environment. The environmental
stimuli are used to recreate, in real-time, different subject-specific
emotional valence state-related responses into the simulated
brain model. Similarly to the non-real-time case, output from
the brain model will then have binary and continuous features
extracted before reaching the mixed-filter. The mixed-filter
estimates the hidden valence state to supply it to the control
method selected of either excitatory or inhibitory control. With
these two classes of closed-loop regulation we can analyze the
performance of the proposed approach. Finally, the control
algorithm determines the control effort necessary and provides
it to the brain model, closing the loop. All the simulations of this
research were performed using SIMULINK fromMATLAB (The
Math Works, Inc., Natick, MA) version 2020b.

2.1.1. Dataset
In this research, we develop human brain models using
the publicly available Database for Emotion Analysis using
Physiological Signals (DEAP) (Koelstra et al., 2012), in which
the authors investigated the connection between physiological
signals and an associated emotional tag, based on a valence
scale. In the DEAP dataset, 32 subjects (16-females and 16-
males, mean age 26.9) were asked to watch 1 min segments of
40 different music videos. These videos were selected so that they
would capture every aspect of both arousal and valence levels.
At the end of each video trial, the researchers gathered each
subject’s self-assessment regarding emotional valence, on a 1–9
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FIGURE 1 | Overview of proposed closed-loop solution. Within data from a publicly available dataset, the subject is wearing wearable electromyogram sensors that

collect facial muscle activity. From the electromyogram measurements, binary and continuous features are extracted and used to infer the hidden emotional valence

state of the subject, which cannot be measured directly. This is performed using state-space modeling and via an expectation maximization algorithm. The estimated

valence state is then used to model an environmental stimuli, recreating the subject’s surrounding input inside the virtual subject environment. Within this virtual

environment, different emotional conditions are recreated into the brain model. By extracting binary and continuous features and using a mixed filter, the subject’s

hidden emotional valence state is estimated and further regulated as desired (excitation or inhibition modes) by means of a fuzzy logic controller.

scale. During the experiment, various physiological signals were
collected, such as the facial zEMG response at 512 Hz. For our
study, the self-assessed emotional valence information is taken as
ground truth.

2.1.2. State-Space Model
We model the valence state progression by forming stochastic
state-space models.

2.1.2.1. State Equation
Similar to Prerau et al. (2009), we use a first order autoregressive
state-space model,

xk+1 = xk + ǫk + sk + uk , (1)

where xk is the hidden valence state at time step k for k = 1, ...,K
and K is the entire experiment duration. The model also includes
the process noise as a Gaussian zero-mean random variable ǫk ∼

N (0, σ 2
ǫ ), sk as a surrogate for any environmental stimuli that

influenced the brain at the time of data collection, and uk as the
input from the controller.

2.1.2.2. Observation Models
We include two observation models that capture the evolution
of the zEMG signals binary and continuous features so that we
can observe the valence state progression in Equation (1). By
using two features simultaneously in the model, we achieve a
more accurate (i.e., narrower confidence intervals) and more
precise emotional state estimation (Prerau et al., 2008). The
binary observations nk = {0, 1}, are modeled as a Bernoulli
distribution (McCullagh andNelder, 1989;Wickramasuriya et al.,
2019a,b),

P(nk|xk) = p
nk
k
(1− pk)

1−nk , (2)

pk =
eγ+xk

1+ eγ+xk
, (3)

where pk is the probability of observing a spike given the current
valence state amplitude via sigmoidal link function (Equation 3),
which has shown to depict frequency or counting datasets well
(Wickramasuriya et al., 2019a,b). The continuous observations
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zk ∈ R are modeled as,

zk = α + βxk + ωk , (4)

where α is a coefficient representing the baseline power of the
continuous feature, β is the rate of change in the continuous
feature’s power, and ωk is a normally distributed zero mean
Gaussian random variable ωk ∼ N (0, σ 2

ω). Both the continuous
and binary observations are stated as functions of the valence
state xk.

2.1.3. zEMG Feature Extraction
To perform the estimation process and obtain the hidden valence
state, we utilize the zEMG data and extract the binary and
continuous features presented in the observation models.

2.1.3.1. Data Preprocessing
We use a third order butterworth bandpass filter between 10
and 250 Hz to remove motion artifacts and other unwanted high
frequency noise. Additionally, we use notch filters at 50 Hz and
next four harmonics to remove any electrical line interference.
Finally, the filtered zEMG signal, yk, is segmented into 0.5 second
bins with no overlapping.

2.1.3.2. Binary Feature Extraction of Filtered zEMG
As suggested by previous scholars the binary features extracted
from the zEMG signal may be associated with the underlying
neural spiking activity (Prerau et al., 2008; Amin and Faghih,
2020; Azgomi et al., 2021a). Thus, we estimate the neural spiking
pertinent to emotional valence by extracting binary features from
the zEMG data. Firstly, the bins of the filtered zEMG signal yk
are rectified by taking their absolute values and then smoothed
with a Gaussian kernel. Similarly to Azgomi et al. (2019) and
Yadav et al. (2019), the binary features nk are obtained with the
Bernoulli distribution,

P(nk|yk) = q
nk
k
(1− qk)

1−nk , (5)

qk = a yk , (6)

where a is a scaling coefficient, chosen heuristically to be 0.5,
and qk is a zEMG amplitude dependent probability function of
observing a spike in bin k, given yk.

2.1.4. Continuous Feature Extraction of Filtered EMG
Using the filtered zEMG signal yk, we also extract the continuous
features employing the Welch power spectral density (PSD) of
each 0.5 s bin, with a 75% window overlap. Afterwards, for each
bin, we compute the bandpower of the PSD result from 10 to
250 Hz, before taking the logarithm. Finally, we normalize the
entire signal on a 0–1 scale, to provide insight of the relative
band power of the zygomaticus major muscle activity, across all
40 1-min trials.

2.1.5. Hidden Valence State Estimation
To estimate the emotional valence fluctuations within the
experimental data, we employ the state-space representation
shown in Equation (1) without the control effort and

environmental stimuli, since at this time, there is no control
signal and the stimuli is inherent in the data. The hidden valence
state process is defined by

xk+1 = xk + ǫk . (7)

Given the complete values for both extracted binary N1 :K =

{n1, ..., nK} and continuous Z1 :K = {z1, ..., zK} features, we
use the EM algorithm to estimate the model parameters θ =

[α,β , σǫ , σω] and the hidden valence state xk. The EM algorithm
provides a way to jointly estimate the latent state and parameters
of the state-space models. Composed of two steps, namely,
Expectation step (E-step) and Maximization step (M-step), the
EM algorithm: (1) finds the expected value of the complete data
log-likelihood, and (2) maximizes the parameters corresponding
to this data log-likelihood. The algorithm iterates between these
two steps until convergence (Wickramasuriya et al., 2019a,b;
Yadav et al., 2019). The following equations show how at iteration
(i + 1) values are recursively predicted with estimates and

parameters from iteration i (e.g., x(i)0 , σ 2(i)
ǫ ).

2.1.5.1. E-Step
2.1.5.1.1. Kalman-Based Mixed-Filter (Forward-Filter).

xk|k−1 = xk−1|k−1 (8)

σ 2
k|k−1 = σ 2

k−1|k−1 + σ 2(i)
ǫ (9)

Ck =
(

β(i)2σ 2
k|k−1 + σ 2(i)

ω

)−1
σ 2
k|k−1 (10)

x̂k = xk|k = xk|k−1 + Ck

[

β(i)(zk − α(i)

− β(i)xk|k−1
)

+ σ 2(i)
ω

(

nk − pk|k
)

] (11)

σ̂ 2
k = σ 2

k|k =
[

(σ 2
k|k−1)

−1 + pk|k(1− pk|k)

+ (σ 2(i)
ω )−1β(i)2

]−1 (12)

where k = 1, ...,K; x̂k is the estimated valence state; and σ̂ 2
k

constitute the corresponding standard deviation.

2.1.5.1.2. Fixed-Interval Smoothing Algorithm (Backward-Filter).

Ak = σ 2
k|k

(

σ 2
k+1|k

)−1 (13)

xk|K = xk|k + Ak

(

xk+1|K − xk+1|k
)

(14)

σ 2
k|K = σ 2

k|k + A2
k

(

σ 2
k+1|k − σ 2

k+1|K

)

(15)
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2.1.5.1.3. State-Space Covariance Algorithm.

σk,u|k = Akσk+1,u|k (16)

Wk|K = σ 2
k|K + x2k|K (17)

Wk−1,k|K = σk−1|K + xk−1|Kxk|K (18)

for 1 ≤ k ≤ u ≤ K.

2.1.5.2. M-Step

x
(i+1)
0 = x1|k (19)

σ 2(i+1)
ω = K−1

K
∑

k=1

z2k + Kα2(i+1)

+ β2(i+1)
K

∑

k=1

Wk|K − 2α(i+1)
K

∑

k=1

zk

− 2β(i+1)
K

∑

k=1

xk|Kzk

+ 2α(i+1)β(i+1)
K

∑

k=1

xk|K

(20)

[

α(i+1)

β(i+1)

]

=

[

K
∑K

k=1 xk|K
∑K

k=1 xk|K
∑K

k=1Wk|K

]−1

×

[ ∑K
k=1 zk

∑K
k=1 xk|Kzk

]

(21)

σ 2(i+1)
ǫ = K−1

K
∑

k=1

[

Wk|K − 2Wk−1,k|K +Wk−1|K
]

(22)

2.1.6. Environmental Stimuli Model
Wemodel the environmental stimuli referred to in Eqouation (1)
as a way to capture and recreate the subject’s response to high
or low valence trials. This allows for the simulation of subject-
specific HV and LV conditions. The environmental stimuli are
calculated by finding the difference between adjacent elements of
the estimated valence state x̂k, as in

s
k
= x̂k+1 − x̂k (23)

for k = 1, ...,K − 1. Then, we assume a sinusoidal harmonic
formulation to model the environmental stimuli in either HV or
LV trials,

s
k
=

100
∑

j=1

ρjsin(ζjk+ φj) (24)

Through inspection across all subjects, we notice that HV trials
tend to have a higher mean and standard deviation compared

to LV ones. Thus, to avoid fitting outliers to the harmonic
model depicted in Equation (24), we select the six trials with
highest mean and standard deviation of estimated valence levels
for fitting sk to HV, and the six trials with the lowest mean
and standard deviation to model LV periods. Additionally, we
consider a transition period between each different valence state,
as approximated by a linear relationship of 0.5 s in duration.
This is done separately for each subject to ensure personalized
models. Data from an exemplary subject is depicted in Figure 2,
in which every step of the process is illustrated separately, i.e.,
raw zEMG to extracted features and valence state and finally
obtaining a corresponding environmental stimuli. In addition,
in Figure 3, the estimated emotional valence state for the same
exemplary subject is presented with 95% confidence intervals.
Of the 23 subjects available in the dataset, we excluded five
participants due to a lack of emotional response found when
comparing between LV and HV periods, that is, both emotional
periods have shown equivalent outcomes regarding both features
and estimated valence state.

2.2. Closed-Loop Control Design
With the virtual subject environment in place, we explore the
regulation of emotional valence. Similar to the feature extraction
process, we simulate the binary and continuous responses
simultaneously from the internal brain state. In other words,
we use Equations (2)–(4) to recreate within the virtual subject
environment what would be inherent to the zEMG data in the
real world. Then, these two features are fed to a Kalman-based
mixed-filter to estimate the hidden valence state in an online
fashion. The estimated state is averaged out in a 10-s window to
smooth any abrupt changes before reaching the fuzzy controller,
which then derives the control effort uk in real-time. A diagram
of the closed-loop is depicted in Figure 4. As the hidden valence
state cannot be measured directly, we use the recursive, Kalman-
based mixed-filter to estimate the latent valence state inherent
to the brain model as detailed in Equations (8)–(12). As shown
in Figure 4, this filter takes in both binary and continuous
observations to compute the prior distribution using a Chapman-
Kolmogrov equation, then finds the measurement likelihood via
Bayes theorem, which can be summarized with, respectively,

p(xk|nk−1, zk−1) , (25)

and

p(xk|nk, zk) . (26)

2.2.1. Fuzzy Control
We use a Mamdani-type fuzzy logic controller with the fuzzy
rules shown in Table 1 to regulate the subject’s emotional valence
to a more desired level, i.e., during inhibitory mode of control
action, the goal is to achieve and remain in the same valence
level characterized by the LV period—and vice-versa for the
excitatory controller. As it can be observed in Figures 1, 4 and
Table 1, the input signal for the controller is the estimated
valence state and not a prediction error as it is more common
in control studies. After analyzing the open-loop response of
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FIGURE 2 | zEMG data, corresponding features, estimated valence state, and environmental stimuli of subject 18. Trials characterized as high valence (HV) are

shaded in gray, whilst unshaded ones as representative of low valence (LV). The raw zEMG collected is presented in (A) in orange, while (B,C) show the extracted

features, binary (red) and continuous (pink), respectively. (D) illustrates the hidden valence state (green) attained with the EM algorithm by employing both features

shown in (B,C). The last (E) shows the environmental stimuli (black) obtained from the valence state progression in (D).

FIGURE 3 | Detail of estimated emotional valence state for subject 18 with 95% confidence intervals. The white background depicts LV periods while the gray-shaded

areas show HV results. The solid green line shows the estimated valence state while the green region around it is a 95% confidence interval.

all subjects we designed a set of membership functions capable
of directly regulating the emotional valence without subtracting
it from a target reference. With this, we could employ more
intuitive membership functions as depicted in Figure 5. Similarly
to previous authors (Azgomi et al., 2021b), the fuzzy output can

be obtained with,

µmamdani(k) = µm(k) = max
j

(

min(µvalence(v))
)

(27)
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FIGURE 4 | Overview of the closed-loop solution. The environmental stimuli sk
is added to the control signal uk to form an input of the state-space brain

model. The internal emotional valence state xk is governed by the state

equation and by employing the observation equations, binary and continuous

features are extracted and taken in by the recursive mixed-filter. The filter

estimates and tracks the hidden brain state x̂k , supplying this signal for the

controller. Finally, the controller takes the current estimated valence state and

generates a control signal uk back to the brain model, thus closing the loop.

This control signal is responsible for changing the valence state in the desired

direction, i.e., increasing if excitatory or decreasing if inhibitory action.

TABLE 1 | Fuzzy controller rule base.

Input (IF):

valence levels

Inhibitory

Output (THEN):

control action

Excitatory

Output (THEN):

control action

Low valence Neutral Excitation

High valence Inhibition Neutral

FIGURE 5 | Excitatory and inhibitory fuzzy membership functions. The left side

shows membership functions of the controller’s input, whilst the right side

display the ones for the output. The top and bottom row depict, respectively,

membership functions of the inhibitory and excitatory controllers. In all four

graphs the y axis depicts the degree of membership for every case, in which

the lowest value is zero association with that function and the highest value is

total association.

where j designate the active rule at each time step k and µvalence

is the fuzzified valence input v. The crisp output of the fuzzy
controller, i.e., the control signal uk, is attained using the centroid
method as follows,

uk =

∫

µm(k).k dk
∫

µm(k) dk
. (28)

With a fuzzy logic controller, crisp input values are transformed
to degrees of membership of certain functions calledmembership

functions in the fuzzification process. Then, using the pre-
determined fuzzy rules the fuzzy inference process takes place,
in which a connection between all fuzzified inputs is made.
This results in degrees of membership of a set of output
membership functions, which are then defuzzified to produce a
final representative crisp value (Qi et al., 2019). This fuzzy logic
process is convenient when dealing with complex systems, such
as those biological in nature, since it allows for the emergence of
complex control behaviors using relatively simple constructions
(Lilly, 2011).

3. RESULTS

In this section, we present the results obtained for subject 7 in
three different simulation scenaria: open-loop, inhibitory closed-
loop, and excitatory closed-loop. The results associated with
other subjects are also available in the Supplementary Material.
We simulate with an environmental stimulus that is either half LV
then half HV or vice versa. During the first minute, the controller
is suspended to let the mixed-filter converge. The results are
presented in Figure 6. As depicted in sub-panel (a) of I and II
in Figure 6, all three scenarios for one particular subject have the
same environmental stimuli in common, either starting with LV
or with HV.

Scenario 1 - Open-Loop: Since in the open-loop scenario
there is no control effort (uk = 0), it can be omitted and the
results are shown within the spike activity, depicted in sub-panel
(b), and the corresponding estimated internal state depicted in
sub-panel (c) and in dashed lines in both (f) and (i) sub-panels. It
is observed, in sub-figure I of Figure 6, that the estimated valence
state increases from the period of LV in the first half to HV in the
second half, and so does the frequency of spikes. In contrast, sub-
figure II of Figure 6 shows valence levels and number of spikes
declining from the first half (HV) to the second half (LV).

Scenario 2 - Inhibitory Closed-Loop: The inhibitory results
are observed in sub-panels (d, e, f) of both I and II in
Figure 6. The control signal is zero during the LV periods of
the simulations (i.e., during the first half in I and for the second
half in II). It is not until the controller detects a HV period that
the control effort takes a negative value (uk < 0) to inhibit
the emotional valence, effectively lowering the number of spikes
shown in sub-panel (e) and the estimated valence state depicted
in sub-panel (f), as compared to the open-loop case.

Scenario 3 - Excitatory Closed-Loop: The last 3 sub-panels
(g, h, i) from both I and II of Figure 6 depict the results of the
excitatory controller. From sub-panel (g), we can see there is no
control effort in periods of HV; both in the second half of I and
first half of II. Once the controller detects a low valence state, it
outputs a positive control effort (uk > 0), which increases the
number of spikes and estimated valence level in sub-panels (h)
and (i), as compared to the open-loop.

4. DISCUSSION AND CONCLUSIONS

In this study, we use experimental data to build a virtual subject
environment, allowing us to simulate and regulate emotional
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FIGURE 6 | Simulation results of open-loop, inhibitory closed-loop and excitatory closed-loop scenarios for subject 7. In sub-figure I the external stimulus is comprised

of half LV, then half HV, with sub-figure II being the opposite. In both (I,II), LV, and HV periods are represented with unshaded and gray-shaded areas, respectively. (a)

depicts environmental stimulus (black) used in all three simulation scenarios. The (b,c) show spike activity (red) and estimated valence state (green, dashed) during the

open-loop, respectively. (d–f) display inhibitory closed-loop results, with (d) showing control effort (blue), (e) the corresponding binary signal (red) and (f) the comparison

between open-loop (green, dashed) and closed-loop (green, solid) valence state. In a similar fashion, (g–i) exhibit the excitatory closed-loop outcome.
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valence levels using a state-space brain model and a fuzzy
logic feedback controller. To the best of our knowledge, in
this in silico feasibility study, we present the first closed-
loop control framework for emotional valence state using
biofeedback from facial muscles. We use two simultaneous
observation models, one binary and one continuous, to relate
zEMG measurements to the hidden emotional valence state.
The valence state is assumed to be governed by a state-space
formulation and is converted from a 1 to 9 valence scale
obtained from the self-assessment of subjects from the dataset,
to the high (above 5) or low valence level used in this study.
These valence labels were previously used by scholars as ground
truth and were also employed here to determine subject-specific
simulation parameters (Yadav et al., 2019). This was done by
selecting specific LV and HV trials for modeling based on a
trend in the mean and standard deviation of the estimated
valence state between the two categories. To capture the
surrounding stimuli influencing the affective levels of the subject
and incorporate them into simulation, we use the estimated
emotional valence progression and a high-order harmonic
formulation. This modeling and simulation of the environmental
stimuli is currently necessary to evoke representative subject-
specific emotional valence responses within the simulated brain
model. Thus, modern control techniques can be systematically
investigated in silico, allowing for the development of this
research field without risking harm to any patients.

In the current stage of this research on closed-loop emotional
valence regulation, we focus our contributions on developing
the closed-loop simulated framework and opted for using a
fuzzy logic controller to regulate the estimated valence state
in simulated profiles. While the accuracy of the classification
method is paramount for the success of our method, we
employed the same methodology for classifying between low
valence and high valence states which reported a 89% accuracy
in previous works (Yadav et al., 2019). This value is on par with
other state-of-the-art methods however, relying on physiological
measurements and estimation of the brain state, instead of
externalized facial or vocal expressions.

Using the proposed knowledge-based controller we
successfully verify the in silico feasibility of the presented
methods. By employing a set of simple logic rules the fuzzy
system is capable of producing complex regulating behaviors
(Lilly, 2011). This is extremely valuable since insight about the
system can come in many ways, such as from doctors, other
researchers, or the individual itself. Moreover, the fuzzy structure
allows for an uncomplicated expandability feature which means
other physiological signals could be simply incorporated while
designing the control systems (Azgomi et al., 2021a,b). This
could further enhance the approach for valence regulation.

In previous research for closed-loop regulation of human-
related dynamics, scholars have developed simulators to
explore controller designs for Parkinson’s disease, cognitive
stress, depression and other neurological and neuropsychiatric
disorders, as well as for anesthetic delivery, hemodynamic
stability, and mechanical ventilation (Boayue et al., 2018; Yang
et al., 2018b; Azgomi et al., 2019; Parvinian et al., 2019; Fleming
et al., 2020; Ionescu et al., 2021). Here, the proposed architectures

set initial steps for a future wearable machine interface
(WMI) implementation, as we achieved simulation of emotional
valence controllers for both inhibitory and excitatory goals,
demonstrating great potential in helping individuals maintain
daily mental well-being (Azgomi and Faghih, 2019). While no
commercial wearable solution for facial EMG measurement is
available yet, the potential for this non-invasive procedure to
regulate mental states encourages future efforts.

During excitatory action, we observe an increase in number
of spikes and overall emotional valence state when needed
and, for inhibition, our approach obtained less spikes and a
lower valence level as the need arose. However, the amount
of response varied with each subject due to a few reasons.
One factor can be attributed to the use of a single mono-
objective fuzzy controller design, in which the controller can
act locally in the first half of the experiment, correctly adjusting
the mental state, without considering that the environmental
stimuli are going to further push the subject’s valence level in
the second half. This architecture also does not account for
each individual peculiarities, i.e., lack or abundance of emotional
engagement throughout the experiment. Further research needs
to explore the optimization of fuzzy membership functions, to
adapt for different persons and variations in time. Because the
performance of fuzzy logic controllers are highly dependent on
their parameters and structure, optimization algorithms could
also improve the overall results as the parameters would not rely
on pre-determined knowledge of the system (Qi et al., 2019).

In the exemplary subject depicted in Figure 6 we can
observe an inhibitory action taking place in the HV periods
of inhibition simulation and lowering of the number of
spikes and estimated valence level as compared to the open-
loop. Similarly, we can observe the excitatory controller
acting in LV periods and increasing the spike frequency
and valence levels, accordingly. Overall, subjects 3–5, 8,
11, and 17 (Supplementary Figures S4–S6, S9, S12, S18)
showed similar results to the exemplary subject depicted
in Figure 6, accomplishing reasonable regulation
across all scenarios. Of the remaining 10 subjects,
7 had good performance in all inhibitory scenarios
(Supplementary Figures S2, S3, S10, S11, S13, S16, S17)
while 4 out of 10 had good performance in at least one excitatory
scenario (Supplementary Figures S10, S14-S16). This could
suggest that HV regulation is more challenging possibly due to
the high variability nature of this mental state.

In addition to the subject exemplified in Figure 6, t-test
analysis between the open- and closed-loop simulations with
17 out of 23 subjects was performed, as detailed in Table 2.
Additionally, Figure 7 displays the distribution of data used
during the t-test for the case of LV then HV order of
environmental stimuli. The HV then LV order is also included
in the Supplementary Material and presents a similar analysis.
As seen both in Figure 7 and Table 2, the results show LV
periods to be significantly different during excitatory action and
HV trials to be significantly different throughout inhibition,
regarding both the average valence level and number of spikes.
This can be an indicative that the proposed controller was able
to perform as desired and alter the emotional state of various
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TABLE 2 | Statistical analysis-p-values.

LV then HV HV then LV

Number of

spikes

Average

valence

Number of

spikes

Average

valence

Inhib.
LV 0.1689 0.1947 2× 10−6 6× 10−6

HV 2× 10−5 5× 10−7 3× 10−4 1× 10−5

Excit.
LV 7× 10−6 8× 10−6 3× 10−5 3× 10−5

HV 4× 10−5 5× 10−6 0.0554 0.0398

Bold values are significant p-values.

subjects when required. In a similar manner, LV periods were not
significantly different during inhibitory regulation if the LV was
at the beginning of simulation (both in spike count, and mean
valence levels). Comparing HV periods throughout excitation,
the number of spikes was not significantly different when the
HV period happen before LV. These results are indicative that
the controller is able to detect when changes to the brain state
are not required. The reason the affective state is significantly
different in the second half of the experiment in cases it was not
necessary (LV inhibition andHV excitation) is due to the fact that
the proposed controller is not multi-objective and a regulation
goal is selected beforehand | either to excite or to inhibit. Thus,
after properly adjusting the brain state in the first half of the
simulation, the second half will be different in comparison to
the open-loop baseline and the mono-objective nature of this
approach is incapable of addressing the matter. Further research
is still required.

A few subjects (4, 11, 12, 20, 21, and 23) had poor emotional
valence state estimation and were discarded from the statistical
analysis which also show directions for improving the proposed
approach. These participants showed similar number of spikes
and valence levels, during both LV and HV periods, within the
open-loop scenario. Thus, when taken to a closed-loop solution,
the fuzzy controller is impaired from distinguishing high and low
valence levels and leads to unsatisfactory results. However, this
poor valence estimation could be due to many factors such as
the person not being emotionally engaged during the original
data collection or distracted during the experiment (Chaouachi
and Frasson, 2010). Similarly to previous scholars (Yadav
et al., 2019), we investigate the performance of the emotional
valence estimation with a 95% confidence intervals metric, as
depicted in Figure 3. As it can be observed in Figure 3, the
confidence intervals reside close to the actual recovered state and
further validate the proposed state-space estimation procedure.
Moreover, it is possible that these discarded subjects required
additional physiological measurements (e.g., electrocardiogram,
skin conductance, pupil size) to improve the estimation of the
internal brain state. As mentioned above, the flexibility of the
proposed state-space and fuzzy logic controller framework could
easily incorporate additional physiological signals.

The present study has a few limitations. The dataset used
had conflicting metadata on 9 of the 32 subjects, resulting in
an impossibility of recovering the position of all 40 trials and

FIGURE 7 | Statistical analysis with boxplot (N = 17) visualization of LV then

HV environmental stimuli order. The left column of sub-panels shows the

number of spikes in a given period, while the right column of sub-panels

depicts the average valence state. The top row of sub-panels show results

from the inhibitory controller and the bottom one for the excitatory one. Within

each sub-plot, the white background depicts LV periods while the

gray-shaded areas show HV results. Each pair of data (i.e., baseline and

closed-loop) was used during the t-tests analysis. Comparing the open-loop

baseline and closed-loop results of number of spikes and average valence

levels, HV periods are statistically significant both in inhibition and excitation (all

sub-panels, gray background). For LV periods, results are statistically

significant only for inhibition (bottom-row, white background).

thus, these subjects had to be discarded. Additionally, in real-
world scenarios as in the dataset used, emotional valence has a
spectrum of levels, but we assume only two possible states of
high and low valence. This decision also reflects in the controller
design in which we experiment with only two classes of closed-
loop regulation, i.e., excitation and inhibition. Even with this
limitation, it should be noted that both the mixed-filter and
designed control provide continuous estimation and control
objectives allowing for a finer regulation within this spectrum of
emotions. This can be addressed in future research. Moreover,
this simulation study does not incorporate the controller
dynamics and real-world actuators. To implement the proposed
architectures in real-world scenarios, it is paramount to consider
how valence needs to be modulated, not only in terms of which
actuators to use but also how frequent should interventions
take place. These are challenging to address, especially when
dealing with such a complex organ as the human brain, and
require further investigation. In that sense, future human subject
experiments shall be designed to explore the dynamics of possible
actuation methods to regulate valence states. Previous scholars
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have observed emotional brain responses from changes in
lighting or music (Schubert, 2007; Vandewalle et al., 2010; Droit-
Volet et al., 2013). These would be interesting to investigate since
they are also non-invasive procedures and could be incorporated
in a practical system. Future research into using adaptive and
predictive control strategies would also be beneficial to address
some of the biological intrinsic variations of an individual.
Similarly, the applicability of the proposed approach in the real
world depends on the real-time estimation of mental states.
At this time, we illustrate the feasibility of the approach by
incorporating a simulation of brain responses on a per individual
basis. Once implemented, this simulation is no longer required.
However, a “training" session might be necessary to calibrate
the system for each subject’s peculiarities. In addition, robust
state estimation or robust control design can be of tremendous
importance for a real-world application. Lastly, we extracted
features from LV and HV trials from EMG signal of the
Zygomaticus major facial muscle, which has been depicted as a
good indicator of valence (Brown and Schwartz, 1980; Ekman
et al., 1980; Tan et al., 2012). As a future direction of this research,
an investigation to quantify the performance in detecting fake
emotional expressions via the zEMG signal would be beneficial
to further enhance the proposed approach to be implemented in
real life.

Using the proposed architecture, we were able to regulate
one’s emotional state, specifically emotional valence levels, by
implementing a fuzzy controller that acted on a state-spacemodel
of the human brain. With a similar approach, a WMI could, in
the future, be used to recommend a specific music track for a
person feeling down, advise a change in lighting for someone
in a bad mental state, or even offer a cup of green tea if the
user wants to maintain a desired level of well-being (Athavale
and Krishnan, 2017; Cannard et al., 2020). While we used
experimental data to design a closed-loop system for regulating
an internal valence state in a simulation study, a future direction
of this research would be designing human subject experiments

to close the loop in real-world settings. In our future work, we
plan to validate the valence state estimator in real-time and close
the loop accordingly. For example, we plan to incorporate safe
actuators such as music or visual stimulation to close the loop.
More research is needed but this suggests an important new
step toward new clinical applications and the self-management
of mental health.
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