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Abstract: Mastitis is a common clinical disease which threatens the welfare and health of dairy cows
and causes huge economic losses. Sanguinarine (SG) is a plant-derived alkaloid which has many
biological functions, including antibacterial and antioxidant properties. The present study attempted
to evaluate the effect of SG on lipopolysaccharide (LPS)-induced oxidative stress reactions and explore
its potential mechanisms. The expression profile of SG was analyzed by network pharmacology, and
it was found that differentially expressed genes were mainly involved in the Wnt signaling pathway
and oxidative stress through GO and KEGG enrichment. In in vitro experiments, the dosage of SG
was non-toxic to mouse mammary epithelial cells (mMECs) (p > 0.05). SG not only inhibited the
increase in ROS induced by LPS, but also enhanced the activity of antioxidant enzymes (p < 0.05).
Moreover, the results of the in vivo experiments showed that SG alleviated LPS-induced inflammatory
damage of mouse mammary glands and enhanced the integrity of the blood–milk barrier (p < 0.05).
Further studies suggested that SG promoted Nrf2 expression and suppressed the activation of the
Wnt signaling pathway (p < 0.05). Conclusively, this study clarified the protective effect of SG on
mastitis and provided evidence for new potential mechanisms. SG exerted its antioxidant function
through activating Nrf2 and inhibiting the Wnt/β-catenin pathway, repairing the blood–milk barrier.

Keywords: sanguinarine; mastitis; blood–milk barrier; oxidative stress; Nrf2; Wnt/β-catenin

1. Introduction

Mastitis is an epidemic in the global dairy industry, mainly caused by pathogenic mi-
croorganism infection, which can lead to the decline of milk production and quality [1,2]. In
addition, mastitis can also lead to prolonged estrus and even the death of cows postpartum,
which seriously threatens the welfare and health of cows and causes huge economic losses
to humans [3,4]. Mammals during the peripartum period, which lasts from 3 weeks before
to 3 weeks after parturition, are physiologically unstable and susceptible to a number of
metabolic diseases compromising productivity [5,6].

It has been proved that many microorganisms can cause cow mastitis, among which
Escherichia coli is one of the significant pathogenic microorganisms causing clinical masti-
tis [7]. Lipopolysaccharides (LSPs) in the cell wall of E. coli can cause inflammation and
trigger innate immune responses, leading to a series of inflammatory reactions [8]. More
and more evidence has shown that the Wnt/β-catenin signaling pathway is related to
LPS-induced diseases, which cause the upregulation of inflammatory factors and lead
to breast injury [9,10]. In addition, some studies have shown that LPS can also increase
the production of reactive oxygen species (ROS) and change mitochondrial membrane
potentials [11]. The blood–milk barrier, composed of mammary epithelial cells, is the most
important line of defense in the protection of mammary glands [12]. The main structure
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of the blood–milk barrier is the tight junction (TJ), which forms a tight barrier that only
allows the passage of small molecules and prevents the penetration of adjacent cell mem-
branes [13,14]. LPS can destroy tight junction proteins after causing mastitis, leading to
the degradation of the barrier, invasion of harmful substances and microorganisms, and
aggravation of oxidative stress [15]. Oxidative stress in early-lactation cows exerts an
important role in dysfunctional inflammatory response [16]. Therefore, it is particularly
important to protect the integrity of the blood–milk barrier and suppress the pathogenic
bacteria leading to excessive inflammatory response.

For many years, most dairy farms have mainly used antibiotics to treat mastitis, but
over time the pathogens have developed drug resistance, and antibiotic residues in dairy
products have become more and more serious, endangering human health [17]. In addition,
vaccines for the treatment of bovine mastitis have not produced good results [18]. Therefore,
there is an urgent need to find and develop new therapies for bovine mastitis.

Sanguinarine (SG), a plant-derived alkaloid, has many pharmacological functions,
such as anti-oxidation, anti-inflammatory, and anti-tumor properties [19,20]. The results
of animal experiments have suggested that SG relieved the symptoms of Dextran Sulfate
Sodium (DSS)-induced colitis in rats [21]. However, it is not clear whether SG has a
protective effect on LPS-induced mastitis. Therefore, we explored the role of SG in an
LPS-stimulated mouse mastitis model and explored the possible mechanisms.

2. Materials and Methods
2.1. Reagents

LPS was purchased from Sigma-Aldrich (055:B5, San Diego, CA, USA). The antibodies
used in the experiments were purchased from Cell Signaling Technology (CST, Danvers,
MA, USA). Sangui-narine (SG, purity ≥98%; Figure 1A) was obtained from Yuanye Biotech
Co., Ltd. (Shanghai, China). The purity of the SG was detected by high-performance
liquid chromatography (HPLC). The experiment was conducted on the EChrom2000
DAD Data System. Chromatography was performed with a SinoChrom 0DS-BP column
(4.6 × 250 mm, 5 µm). An elute with 0.1% phosphoric acid water/acetonitrile at a flow rate
of 1.0 mL/min was used, and detection with DAD at 325 nm was performed (Figure 1B).
The ELISA kits used (for TNF-α and IL-1β) were purchased from Wuhan Boster Biological
Technology, Ltd. (Wuhan, China).

Cells 2022, 11, x FOR PEER REVIEW 2 of 12 
 

injury [9,10]. In addition, some studies have shown that LPS can also increase the produc-

tion of reactive oxygen species (ROS) and change mitochondrial membrane potentials 

[11]. The blood–milk barrier, composed of mammary epithelial cells, is the most important 

line of defense in the protection of mammary glands [12]. The main structure of the blood–

milk barrier is the tight junction (TJ), which forms a tight barrier that only allows the pas-

sage of small molecules and prevents the penetration of adjacent cell membranes [13,14]. 

LPS can destroy tight junction proteins after causing mastitis, leading to the degradation 

of the barrier, invasion of harmful substances and microorganisms, and aggravation of 

oxidative stress [15]. Oxidative stress in early-lactation cows exerts an important role in 

dysfunctional inflammatory response [16]. Therefore, it is particularly important to pro-

tect the integrity of the blood–milk barrier and suppress the pathogenic bacteria leading 

to excessive inflammatory response. 

For many years, most dairy farms have mainly used antibiotics to treat mastitis, but 

over time the pathogens have developed drug resistance, and antibiotic residues in dairy 

products have become more and more serious, endangering human health [17]. In addi-

tion, vaccines for the treatment of bovine mastitis have not produced good results [18]. 

Therefore, there is an urgent need to find and develop new therapies for bovine mastitis. 

Sanguinarine (SG), a plant-derived alkaloid, has many pharmacological functions, 

such as anti-oxidation, anti-inflammatory, and anti-tumor properties [19,20]. The results 

of animal experiments have suggested that SG relieved the symptoms of Dextran Sulfate 

Sodium (DSS)-induced colitis in rats [21]. However, it is not clear whether SG has a pro-

tective effect on LPS-induced mastitis. Therefore, we explored the role of SG in an LPS-

stimulated mouse mastitis model and explored the possible mechanisms. 

2. Materials and Methods 

2.1. Reagents 

LPS was purchased from Sigma-Aldrich (055:B5, San Diego, CA, USA). The antibod-

ies used in the experiments were purchased from Cell Signaling Technology (CST, Dan-

vers, MA, USA). Sangui-narine (SG, purity ≥98%; Figure 1A) was obtained from Yuanye 

Biotech Co., Ltd. (Shanghai, China). The purity of the SG was detected by high-perfor-

mance liquid chromatography (HPLC). The experiment was conducted on the 

EChrom2000 DAD Data System. Chromatography was performed with a SinoChrom 

0DS-BP column (4.6 × 250 mm, 5 μm). An elute with 0.1% phosphoric acid water/acetoni-

trile at a flow rate of 1.0 mL/min was used, and detection with DAD at 325 nm was per-

formed (Figure 1B). The ELISA kits used (for TNF-α and IL-1β) were purchased from Wu-

han Boster Biological Technology, Ltd. (Wuhan, China). 

 

Figure 1. (A) The chemical structure of SG. (B) HPLC chromatogram of SG. Figure 1. (A) The chemical structure of SG. (B) HPLC chromatogram of SG.



Cells 2022, 11, 3658 3 of 13

2.2. Animal Treatment and Experimental Design

Sixty female BALB/c mice (8 weeks old, weighing 20–25 g) were purchased from the
Animal Center of Zhejiang University. Before the experiment, all mice were given sufficient
water and feed and stored in a 12/12 h dark/light-cycle environment. The whole feeding
process was maintained at room temperature and 65% humidity. The animals were cared
for humanely; all experiments involving the mice were conducted according to the Guide
for the Care and Use of Laboratory Animals of the National Research Council, and all
experimental protocols were followed by the Institutional Animal Care and Use Committee
of Zhejiang University (approval number: GBT 35892-2018).

The mice were randomly divided into the following six groups: a control group, an
LPS group, sanguinarine groups (SG groups: 5, 25, and 50 µM), and a dexamethasone
group (5 mg/kg, DEX group). SG was dissolved and diluted in CMC Na (Sigma, San
Diego, CA, USA) to give final concentrations of 5, 25, and 50 µM. The mouse mastitis
model was prepared as described previously [22]. Briefly, one hour before the onset of
LPS-induced mastitis, SG (5, 25, and 50 µM) or dexamethasone (5 mg/kg) was injected
intraperitoneally twice every six hours. After pentobarbital anesthesia, LPS was injected
into the two abdominal mammary glands for 24 h (the fourth pair of mammary glands, R4
and L4). Finally, the mice were sacrificed by CO2 inhalation, and the mammary tissues
were collected for further study.

2.3. Histopathological Examination

The samples of mammary glands were fixed in 10% formalin. Paraffin sections were
prepared by dehydration with graded alcohol. Next, the tissues were sectioned and
stained with hematoxylin. Finally, the H&E-stained sections were observed under a light
microscope, and images were collected to evaluate pathological changes.

2.4. Myeloperoxidase (MPO) Analysis

The mouse mammary gland tissue samples, weighing 100 mg, were ground in 2 mL
PBS solution and centrifuged at 12,000 rpm for 15 min at 4 ◦C. Then, the supernatants were
collected and analyzed using the MPO kit (Nanjing Jiancheng Biotechnology Co., Ltd.,
Nanjing, China). Finally, according to the calculation formula, the MPO enzyme activity of
each sample was calculated.

2.5. Cell Culture and Treatment

As previously described, after collecting mammary gland tissues from the lactating
mice, the digested tissues were suspended and passed through a cell filter to remove
larger tissue debris. Epithelial cells were obtained by removing fibroblasts, endothelial
cells, and other single cells. The isolated mMECs were cultured at 37 ◦C in a 5% CO2
humidified incubator containing 10% fetal bovine serum (FBS, Gibco, New York, NY, USA)
supplemented with 100 U/mL penicillin and streptomycin and 10 µg/mL insulin. The
mMECs were pretreated with different concentrations of SG (5, 25, and 50 µM) for 1 h and
then stimulated with LPS (1 µg/mL) for 6 h.

2.6. Cell Biological Detection and Viability Assay

Cells were fixed with paraformaldehyde for 15 min at room temperature and washed
three times with PBS. Cells were then blocked with 10% normal goat serum for half an
hour at room temperature and incubated with primary antibody overnight at 4 ◦C. After
the completion of primary antibody adsorption, the cells were incubated with fluorescent-
labeled secondary antibodies (Bios, Beijing, China) for one hour at room temperature and
washed three times in PBS. Nuclei were stained with Hoechst dye and then visualized with
a laser scanning confocal microscope (Leica, Wetzlar, Germany).

Cell viability was determined using an MTT kit. Briefly, mMECs (1 × 105 cells/mL)
were passed in 96-well plates for 6 h and then treated with different concentrations of SG
for 24 h. Finally, MTT (20 µL, 5 mg/mL) was added for 4 h, the supernatant was removed,
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and 100 µL DMSO was added to each well. The optical density (OD) values were obtained
at 570 nm.

2.7. Cytokine and Enzyme Activity Analyses

The cytokine expression levels and enzyme activities (GSH-Px, SOD) were determined
using the respective kits, according to the commercial instructions. The samples were
handled according to the introductions for each kit, and the OD values were calculated
using a full-wavelength microplate reader.

2.8. Western Blot Analysis

Protein lysates were added to tissue homogenates and total protein for each sample
was extracted by centrifugation. Total protein concentrations were tested using a Bicin-
choninic Acid (BCA) kit, then denatured protein samples were used for subsequent studies.
Protein samples were separated on 10% SDS-PAGE, transferred to PVDF membranes (Mil-
lipore, Burlington, MA, USA), and blocked with 5% skim milk at room temperature for
2 h. The membranes were then incubated with specific primary antibodies (1:1000 di-
lution) overnight. Finally, the membranes were incubated with secondary antibodies
(1:3000 dilution) and determined using ECL chemiluminescence reagent.

2.9. qRT-PCR Assay

Total RNA in mMECs was extracted using Trizol reagent (Invitrogen, Carlsbad, CA,
USA) and then converted into cDNA using a reverse transcription kit (Takara, Otsu, Japan).
The primers (Nrf2 and GAPDH) were designed using primer 5.0 software (Premier company,
Canada) and are shown in Table 1. GAPDH was used as an internal standard. Relative fold
changes in gene expression levels were calculated using the 2−∆∆Ct comparative method.

Table 1. Primers used for qPCR.

Name Sequence (5′→3′):
Forward and Reverse

GenBank
Accession No.

Product Size
(bp)

Nrf2 GACCTAAAGCACAGCCAACACAT
CTTCAATCGGCTTGAATGTTTGTC NM_010902.5 182

GAPDH CAATGTGTCCGTCGTGGATCT
GTCCTCAGTGTAGCCCAAGATG NM_001289726.1 124

2.10. Network Pharmacological Analysis

The pharmaceutical property of SG was estimated using network pharmacology
technology. The Swisstarget website was used to predict the potential of SG, and metascape
software (https://metascape.org/gp/index.html#/main/step1, accessed on 9 September
2022) was used to analyze the target genes via GO and KEGG. Finally, Cytoscape software
provided a visual of the SG targeting pathway network.

2.11. Immunofluorescence Analysis

Paraffin slices were immersed in xylene for dewaxing and were dehydrated with ethanol
at different concentrations along a gradient. The tissue slices were permeated with PBS
appending Triton X-100 (Sigma, San Diego, CA, USA) and 10% BSA, then incubated overnight
with special primary antibodies and corresponding secondary antibodies. Nuclei were stained
with DAPI reagent. Finally, all sections were observed under a fluorescence microscope.

2.12. ROS Analysis

The production of ROS in mMECs was determined using an ROS Assay Kit (Beyotime,
Hangzhou, China). Cells (1 × 105 cells/mL) were passed into 6-well plates and then
incubated with control media or LPS in the presence or absence of SG (5, 25, and 50 µM).
The cells were incubated with DCFH-DA for 1 h in the dark, and extracellular DCFH-DA

https://metascape.org/gp/index.html#/main/step1


Cells 2022, 11, 3658 5 of 13

solution was removed. Finally, relative levels of fluorescence were quantified using a
fluorescence plate reader MTP902 (Olympus, Tokyo, Japan).

2.13. Data Analysis

Statistical analysis was conducted with SPSS software. The results are presented as
means ± SDs. All data in the present study were analyzed by one-way ANOVA followed
by Dunnett’s test, and significant differences were determined at p < 0.05.

3. Results
3.1. Network Pharmacological Analysis of SG

The development of bioinformatics technology, especially network pharmacological
analysis, allowed for more accurate predictions in this experiment. The results showed
197 common genes in “SG”, “inflammation”, and “oxidation”. GO annotation and KEGG
analysis showed that these target genes were related to oxidative stress and inflammatory
response (Figure 2).

Figure 2. Cont.
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Figure 2. Network pharmacological analysis of SG. (A) Three-dimensional structure formula of SG.
(B) The target classes of SG. (C) The potential targets of SG were predicted using the SwissTarget web-
site. (D) The common target genes in “SG”, “inflammation”, and “oxidation”. (E,F) GO annotation
and KEGG were used to analyze these target genes.

3.2. Cell Viability and Biological Assay

Cytokeratin-18 was used to identify the integrity of mMECs (Figure 3A). The cell
viability of mMECs was assessed by MTT assay. As shown in Figure 3B, the cell viability of
mMECs was not affected by the SG treatment.
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Figure 3. Cell viability and biological detection. (A) Cytokeratin-18 was used to identify the integrity
of mMECs (scale bar: 20 µm). (B) The effect of SG on cell viability was detected by MTT assay. Data
are presented as the means ± SEMs of three independent experiments.

3.3. Effect of SG on LPS-Induced Oxidative Stress

The increase in ROS yield caused by LPS was significantly alleviated under SG treat-
ment (Figure 4A). In addition, the enzyme activities of superoxide dismutase (SOD) and
glutathione peroxidase (GSH-Px) were also determined using commercial kits (Jiancheng
Bioengineering institute, Nanjing, China) in LPS-stimulated mMECs. The results showed
that the enzyme activities of SOD and GSH-Px in the LPS challenge group were lower than
those in the control group, but SG significantly increased the activities of SOD and GSH-Px
(Figure 4B).
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3.4. SG Alleviated LPS-Induced Mammary Gland Injury in Mice

Histological changes in mouse mastitis stimulated by LPS were evaluated by H&E
staining. Morphological changes in mammary glands were observed after the LPS and
SG treatments (Figure 5). The results of the histopathological analysis suggested that,
compared with the control group, LPS caused obvious pathological changes, including
breast tissue congestion, extensive inflammatory cell infiltration, and destruction of acinar
structures (Figure 5A,B). However, severe histopathological changes induced by LPS were
greatly attenuated by dexamethasone or SG treatment, especially at high concentrations of
SG (Figure 5C–F).
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50 µM).

3.5. SG Reduced LPS-Induced Inflammatory Response and Improved the Integrity of the
Blood–Milk Marrier

It is well known that TNF-α and IL-1β play vital roles in inflammatory response.
In order to analyze the effect of SG on LPS-induced inflammation, the expression levels
of TNF-α and IL-1β in tissues were detected by ELISA assays. LPS stimulation could
markedly increase the expression of TNF-α and IL-1β. Compared with the LPS group, SG
treatment greatly decreased the levels of these pro-inflammatory cytokines (Figure 6A).
Moreover, myeloperoxidase (MPO) is a heme protein rich in neutrophils and serves as a
marker of neutrophil function and activation [21]. The results showed that SG treatment
significantly reduced LPS-induced MPO activity (Figure 6B). The tight junction proteins,
such as Claudin-3, play vital roles in the blood–milk barrier [23]. An immunofluorescence
technique was used to evaluate the integrity of the blood–milk barrier. The results showed
that SG significantly reduced the inhibition by LPS of the expression of the tight junction
protein claudin-3 (Figure 6C).



Cells 2022, 11, 3658 9 of 13Cells 2022, 11, x FOR PEER REVIEW 8 of 12 
 

 

Figure 6. SG reduced LPS-induced inflammatory response and improved the integrity of the blood–

milk barrier. (A) The expression levels of TNF-α and IL-1β in tissues were detected by ELISA assays. 

(B) MPO activity. (C) The tight junction protein Claudin-3 was detected by immunofluorescence 

assay (Scale bar: 20 µm). Data are presented as the means ± SEMs of three independent experiments. 

The symbol # indicates p < 0.05 vs. the control group. The symbols * and ** represent significant 

differences at p < 0.05 and p < 0.01, respectively. 

3.6. Effects of SG on the Activation of Nrf2 and the Wnt/β-Catenin Pathway 

It has been found that the activation of Nrf2 is related to oxidative stress and inflam-

matory reaction [24]. An immunofluorescence technique was used to detect the expression 

levels of Nrf2 protein in the mammary gland tissues. As shown in Figure 7A, SG treatment 

could significantly increase the activation of Nrf2, but the activation of Nrf2 was reduced 

by LPS challenge. Additionally, the Wnt/β-catenin signaling pathway plays a crucial role 

in LPS-induced inflammation [25]. Thus, we also investigated the effect of SG on the 

Wnt/β-catenin pathway in LPS-induced mouse mastitis. Compared with the control 

group, LPS challenge significantly increased the expression of wnt3a and β-catenin pro-

teins. In contrast, SG treatment significantly reduced the expression levels of wnt3a and 

β-catenin (Figure 7B). 

Figure 6. SG reduced LPS-induced inflammatory response and improved the integrity of the blood–
milk barrier. (A) The expression levels of TNF-α and IL-1β in tissues were detected by ELISA assays.
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3.6. Effects of SG on the Activation of Nrf2 and the Wnt/β-Catenin Pathway

It has been found that the activation of Nrf2 is related to oxidative stress and inflam-
matory reaction [24]. An immunofluorescence technique was used to detect the expression
levels of Nrf2 protein in the mammary gland tissues. As shown in Figure 7A, SG treatment
could significantly increase the activation of Nrf2, but the activation of Nrf2 was reduced
by LPS challenge. Additionally, the Wnt/β-catenin signaling pathway plays a crucial
role in LPS-induced inflammation [25]. Thus, we also investigated the effect of SG on the
Wnt/β-catenin pathway in LPS-induced mouse mastitis. Compared with the control group,
LPS challenge significantly increased the expression of wnt3a and β-catenin proteins. In
contrast, SG treatment significantly reduced the expression levels of wnt3a and β-catenin
(Figure 7B).
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Figure 7. Effects of SG on the activation of Nrf2 and the Wnt/β-catenin pathway. (A) The expression
of Nrf2 was determined by qRT-PCR assay. (B) The levels of proteins in the Wnt/β-catenin pathway
were detected by Western blot assay. (C) The level of β-catenin protein was determined by an im-
munofluorescence technique (scale bar: 50 µm). Statistical analysis of the Western blot quantification
should be carried out by performing a multiple t-test. Data are presented as the means ± SEMs of
three independent experiments. The symbol # indicates p < 0.05 vs. the control group. The symbols *
and ** represent significant differences at p < 0.05 and p < 0.01, respectively.

4. Discussion

Mastitis is a common clinical disease in dairy cows, which affects the health and
welfare of dairy cows and causes huge economic losses to the dairy industry [26,27]. At
present, the most commonly used treatment for cow mastitis is antibiotic therapy. However,
the nonstandard use of antibiotics leads to drug resistance and drug residues of pathogenic
bacteria, which bring greater challenges in the prevention and treatment of mastitis and
affect the quality of dairy products [28]. Therefore, it is imperative to reduce the use of
antibiotics clinically, and it is urgent to find new drugs to treat mastitis.

SG has been proved to have anti-inflammatory and anti-oxidative-stress effects, with
few side effects [29]. We tried to explore the protective role of SG against mastitis in
mice and the mechanisms involved. mMECs are the first line of defense for contacting,
recognizing, and responding to foreign microorganisms in the mammary glands, and their
role is similar to that of sentinel cells [30,31]. The overproduction of ROS will lead to
oxidative stress, which damages the immune and anti-inflammatory functions of dairy
cows in the transition period [16]. Moreover, the antioxidant enzymes, such as SOD and
GSH-Px, play key roles in the antioxidant defense system of dairy cows [32]. In in vitro
studies, SG significantly reduced oxidative stress induced by LPS and increased antioxidant
enzyme activity.

One of the characteristics of immune response is the release of cytokines, which play
an important role in host immune response to infection and disease [33]. It was reported
that IL-1β and TNF-α expression levels were critical to the body’s immunity, but excessive
secretion caused fatal systemic inflammation and damaged breast tissue and cells [34]. SG
treatment could down-regulate the LPS-induced production of IL-1β and TNF-α. MPO
is a biomarker of neutrophil infiltration, can produce reactive oxidants and diffuse free
radicals, and is involved in the immune regulation of inflammation. In the process of
inflammation, the activity of MPO increases, which can lead to acute and chronic vascular
tissue damage [35]. The present experiments found that the mice in the LPS-treated group
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exhibited significantly increased MPO activity, but the MPO activity gradually decreased
with the increase in SG concentration. The above results indicated that SG could protect
against the LPS-induced inflammatory injury process by reducing oxidative stress and
improving antioxidant enzyme activity.

Nrf2 is an important antioxidant transcription factor, which can reduce inflammation
by promoting the expression of its downstream anti-inflammatory genes [36]. In the present
study, it was found that SG promoted the expression of Nrf2. Studies have shown that
the Wnt/β-catenin signaling pathway is associated with a variety of diseases, including
inflammation [37]. Wnt proteins are a family of secreted adiponectins that play decisive
roles in cell proliferation, migration, and differentiation [38]. The Wnt/β-catenin signaling
pathway could also promote the expression of cytokines and thus aggravate inflammatory
response [39]. The present study showed that SG inhibited the LPS-induced activation of
the Wnt/β-catenin signaling pathway.

5. Conclusions

In conclusion, this study clarified the protective effect of SG against mastitis and
provided evidence for new potential mechanisms. The dosage of SG used in this experiment
was non-toxic to mMECs. SG not only inhibited the increase in ROS induced by LPS, but
also enhanced the activities of antioxidant enzymes. Thus, SG exerted its anti-inflammatory
and antioxidant functions by activating Nrf2 and inhibiting the Wnt/β-catenin pathway,
repairing the blood–milk barrier.
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