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The ability of NR LBDs to transfer repression function to a heterologous DNA binding domain, and the
cross-squelching of repression by untethered LBDs, has suggested that repression is mediated by interactions
with putative cellular corepressor proteins.The yeast-two hybrid screen for protein interactors has proven
to be the key to the isolation and characterization of corepressors.This short review will focus on N-CoR and
SMRT.
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Background
Hormone binding to nuclear receptors has long been
known to activate gene expression. In the case of steroid
hormone receptors, hormone triggers dissociation from
cytoplasmic chaperones, nuclear localization, and DNA
binding. Hence, expression of target genes is neutral in
the absence of ligand. The related thyroid hormone
receptor (TR) and retinoic acid receptor (RAR) also
activate gene expression in the presence of their cognate
ligands but, by contrast, these receptors are constitutively
nuclear and bind to DNA in the absence of ligand
[Samuels et al., 1988]. Molecular analysis has revealed
that the ligand binding domains (LBDs) of nuclear
receptors (NRs) contain potent transcriptional repression
functions [Brent et al., 1989; Graupner et al., 1989]. In
addition to TR and RAR, potent repression functions have
been identified in the orphan receptors liver X receptor
(LXR) [Hu et al., 2003] and RevErb [Harding and Lazar,
1995].

The ability of NR LBDs to transfer repression function to
a heterologous DNA binding domain, and the
cross-squelching of repression by untethered LBDs,
suggested that repression was mediated by interactions
with putative cellular corepressor proteins [Baniahmad
et al., 1995; Qi et al., 1995]. The yeast-two hybrid screen
for protein interactors proved the key to the isolation and
characterization of corepressors. The first corepressors
identified were named N-CoR (Nuclear Receptor
CoRepressor), first identified by Rosenfeld and colleagues
[Horlein et al., 1995], and SMRT (Silencing Mediator of
Retinoid and Thyroid Receptors, first identified by Evans
and colleagues [Chen and Evans, 1995]). Other
molecules that may serve as corepressors for nuclear
receptors include Alien [Dressel et al., 1999], Hairless
[Potter et al., 2001], LCoR [Fernandes et al., 2003],
RIP-140 [Cavailles et al., 1995], and SUN-CoR [Zamir et
al., 1997].

This short review will focus on N-CoR and SMRT, which
have received the most attention because they are
structurally related molecules that fulfill two important
criteria: 1) they bind to NRs in the absence of ligand, and

2) they possess autonomous, transferable repression
domains. N-CoR and SMRT are large proteins, whose
NR binding and repression functions are mediated by the
carboxyl and amino terminal halves of the molecules,
respectively ( Figure 1).

Nuclear Receptor Binding to N-CoR and
SMRT
The major structural change in the NR LBD upon ligand
binding is the position of helix 12 (H12), whose
importance for coactivator binding has been demonstrated
biochemically as well as structurally [Wurtz et al., 1996].
Intriguingly, deletion of H12 actually enhances repression
and corepressor binding of several NRs, including TR
[Damm et al., 1989; Sap et al., 1989], RAR [Tsai et al.,
1992], RXR [Schulman et al., 1997; Zhang et al., 1999]
and the orphans PPAR [Gurnell et al., 2000] and ROR
[Harding et al., 1997]. Indeed, the orphan NR RevErb is
a very potent repressor and does not possess H12 at all
[Harding and Lazar, 1995]. The corepressors bind to a
surface, composed of residues in NR helices 3, 4 and 5
that is fundamentally similar to that bound by coactivator.
This was predicted from biochemical studies, which
demonstrated that a "CoRNR box" motif in corepressors,
similar to the "NR box" motif in coactivators [Heery et al.,
1997; McInerney et al., 1998], was required for NR
interaction [Hu and Lazar, 1999; Nagy et al., 1999; Perissi
et al., 1999]. This has been recently proven by the first
crystal structure of an NR bound to a CoRNR-box
containing corepressor- derived peptide [Xu et al., 2002].

Cellular localization of N-CoR and SMRT
N-CoR and SMRT are predominantly nuclear proteins,
but recent evidence suggests that changes in signaling
at the cell surface can activate second messenger
systems leading to protein phosphorylation and
nuclear-cytoplasmic shuttling of the corepressors. In the
case of SMRT, MAP kinase directed phosphorylation has
been implicated [ Hong et al., 2001], For N-CoR the
phosphorylation of an associated protein, TAB2, by IKK
kinase has been reported to induced nuclear exit [Baek
et al., 2002].

www.nursa.org  NRS  | 2003 | Vol. 1 |  DOI: 10.1621/nrs.01001 | Page 1  of 4

Review  Nuclear Receptor Signaling  | The Open Access Journal of the Nuclear Receptor Signaling Atlas



Figure 1. NR corepressors See text for details

N-CoR/SMRT-Containing Repression
Complexes
A large number of proteins have been suggested to
interact with N-CoR and SMRT, based upon
GST-pulldown and yeast two-hybrid studies. Direct
biochemical purification of the corepressors by three
different groups has demonstrated a major complex
involving a WD40-repeat protein called transducin
α946;-like protein 1 (TBL1, or a related protein TBL1R)
and histone deacetylase 3 (HDAC3) [Guenther et al.,
2000; Li et al., 2000; Zhang et al., 2002]. The associated
proteins are likely to mediate repression by N-CoR and
SMRT, as will be discussed below. This core complex
also contains G-protein suppressor 2 (GPS2) [Zhang et
al., 2002] and IR-10 [Yoon et al., 2003], as well as a
TBL1-related protein (Figure 2). Alternative complexes
that include the HDAC1-Sin3 corepressor complex have
been reported [Jones et al., 2001; Underhill et al., 2000],
although studies of HDAC recruitment by NRs has
implicated HDAC3 but not HDACs 1 and 2 [Ishizuka and
Lazar, 2003; Li et al., 2002]. Class II HDACs have also
been shown to bind strongly to N-CoR and SMRT [Huang
et al., 2000; Kao et al., 2000], but their CaM-kinase
dependent nuclear-cytoplasmic shuttle [Grozinger and
Schreiber, 2000; McKinsey et al., 2000] may limit their
interaction with NR corepressors in vivo.

Figure 2.  N-CoR/SMRT repression complexes See text for details

Mechanisms of Repression by N-CoR
and SMRT
Gene expression is regulated by changes in chromatin
structure that include DNA unwinding and covalent
modification of nucleosomal histones [Jenuwein and Allis,
2001; Kouzarides, 2000; Schreiber and Bernstein, 2002].

SMRT and N-CoR both exist in repression complexes
with HDAC enzyme activity, and HDAC3 is largely
responsible for this activity [Guenther et al., 2000; Li et
al., 2000; Zhang et al., 2002]. Remarkably, the enzyme
activity of HDAC3 requires SMRT/N-CoR, which interacts
with and activates HDAC3 via a region termed the
deacetylase activation domain (DAD) [ Guenther et al.,
2001] . The DAD activity of NCoR and SMRT requires
the N-terminal SANT1 motif [ Guenther et al., 2001; Zhang
et al., 2002], and the downstream SANT2 is part of a
histone interaction domain that enhances this activity [Yu
et al., 2003]. HDAC3 is required for repression by TR
[Ishizuka and Lazar, 2003;Yoon et al., 2003], as is TBL1
which is also a histone binding protein that may function
via an HDAC-independent mechanism [Guenther et al.,
2000;Yoon et al., 2003].

Biological Functions of N-CoR and
SMRT
There are clearly quantitative differences between N-CoR
and SMRT binding to NRs both in solution, on DNA, and
on target genes in living cells [Hu et al., 2001; Ishizuka
and Lazar, 2003; Makowski et al., 2003; Webb et al.,
2000; Zamir et al., 1997]. N-CoR and SMRT also function
as corepressors for transcription factors other than NRs
[Xu et al., 1998] . The best evidence that N-CoR and
SMRT have non-redundant functions comes from the
knockout of N-CoR, which is embryonic lethal [Jepsen et
al., 2000], indicating that SMRT cannot compensate for
the lack of N-CoR. NR corepressors have also been
implicated in the mechanisms of human diseases,
including acute promeyleocytic leukemia due to RAR
translocations [Grignani et al., 1998; Guidez et al., 1998;
He et al., 1998], acute myeloid leukemia due to the
AML1-ETO translocation [Gelmetti et al., 1998; Lutterbach
et al., 1998; Wang et al., 1998], thyroid hormone
resistance [Tagami et al., 1997;Yoh et al., 1997], and
insulin resistance due to mutation in PPARγ [ Gurnell et
al., 2000].

Future
Corepressors are complicated molecules, that mediate
repression by NRs as well as other transcription factors.
Their interactions with NRs are highly specific, and they
repress transcription in the context of large, multiprotein
complexes with several potential effectors of repression,
including potent HDAC activity. These complexes are
potential targets of therapy for leukemia, diabetes, and
other diseases. Corepressor function may be regulated
by extracellular signals, intracellular localization, and
cell-specific factors, in addition to the NRs to which they
bind.We are rapidly learning more about the composition
and regulation of corepressor complexes, and how this
regulates NR physiology and function.
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