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Accumulating diffusion tensor imaging (DTI) evidence suggests that white matter
abnormalities evaluated by local diffusion homogeneity (LDH) or fractional anisotropy
(FA) occur in patients with blepharospasm (BSP), both of which are significantly
correlated with disease severity. However, whether the individual severity of BSP can be
identified using these DTI metrics remains unknown. We aimed to investigate whether
a combination of machine learning techniques and LDH or FA can accurately identify
the individual severity of BSP. Forty-one patients with BSP were assessed using the
Jankovic Rating Scale and DTI. The patients were assigned to non-functionally and
functionally limited groups according to their Jankovic Rating Scale scores. A machine
learning scheme consisting of beam search and support vector machines was designed
to identify non-functionally versus functionally limited outcomes, with the input features
being LDH or FA in 68 white matter regions. The proposed machine learning scheme
with LDH or FA yielded an overall accuracy of 88.67 versus 85.19% in identifying non-
functionally limited versus functionally limited outcomes. The scheme also identified a
sensitivity of 91.40 versus 85.87% in correctly identifying functionally limited outcomes,
a specificity of 83.33 versus 83.67% in accurately identifying non-functionally limited
outcomes, and an area under the curve of 93.7 versus 91.3%. These findings suggest
that a combination of LDH or FA measurements and a sophisticated machine learning
scheme can accurately and reliably identify the individual disease severity in patients
with BSP.

Keywords: blepharospasm, fractional anisotropy, Jankovic Rating Scale, local diffusion homogeneity, machine
learning

INTRODUCTION

Primary blepharospasm (BSP) is the second most common primary adult-onset dystonia (Hallett
et al., 2008). BSP is not only characterized by motor manifestations, including orbicularis oculi
spasms, apraxia of eyelid opening, and increased blinking, but also by nonmotor aspects, including
sensory symptoms, psychiatric disturbances, sleep abnormalities, and cognitive dysfunction
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(Defazio et al., 2017). Motor and non-motor manifestations
contributing to BSP have the potential to substantially influence
quality of life, and even lead to functional blindness. However,
the exact etiology and pathophysiological mechanisms of BSP are
not entirely clear.

Clinical evaluation of BSP involves many challenges,
particularly in the severity rating (Krack and Marion, 1994).
Currently, the severity of BSP is mainly assessed by various types
of scales in both routine clinical practice and research settings.
However, the wide use of existing severity scales is subject to
criticism of varying extent (Albanese et al., 2013b; Defazio et al.,
2015, 2017). In addition, in the traditional rating scale, the raters
(usually doctors) are required to communicate with the patients
face-to-face for a period of time, and then give the score. The
reliability of the scale can be reduced not only because the raters
need special training, but also due to subjective errors caused by
patients and raters. In recent years, accumulating neuroimaging
evidence suggests that structural magnetic resonance image
(sMRI) and diffusion tensor imaging (DTI) can be applied
to investigate brain structural alterations in various types of
primary adult-onset dystonia, including BSP. Gray matter
changes in the basal ganglia, primary sensorimotor cortex,
cingulate/paracingulate cortex, and cerebellum have been found
in patients with BSP (Obermann et al., 2007; Martino et al., 2011;
Suzuki et al., 2011; Horovitz et al., 2012). However, the lack of
any correlation between severity of BSP and gray matter changes
in these areas suggest that sMRI has a limited value in evaluating
the BSP severity. Nevertheless, a recent DTI study based on
31 BSP patients revealed significant fractional anisotropy (FA)
decreases in the white matter of the left anterior lobe of the
cerebellum, which was significantly correlated with disease
severity (Yang et al., 2014). In addition, our previous study also
found widespread white matter abnormalities evaluated by local
diffusion homogeneity (LDH) in 29 patients with BSP, which
was also significantly correlated with disease severity (Guo et al.,
2020). FA, which is one of the most commonly used DTI indexes,
quantifies the degree of anisotropy characterized by the random
motion of water molecules preferentially directed along the
axis of the major axonal pathway, which only reflects diffusion
properties within the voxel (Melhem et al., 2002). LDH quantifies
the overall similarity of water molecules diffusion profiles
between voxels and their adjacent voxels, which is considered
to reflect the local consistency of fiber orientation, density,
diameter, or myelination of white matter (Gong, 2013). In
general, a higher FA or LDH value represents the microstructural
reorganization of brain white matter, and reduced FA or LDH
indicates the microstructural disruption of neural fibers (Tang
et al., 2012; Liu et al., 2017; Guo et al., 2020). These studies
suggest that DTI has the potential to evaluate the individual
severity of BSP, but the specific DTI markers for identifying the
individual severity of BSP remain unknown.

Machine learning has advantages of flexibility and scalability
relative to traditional biostatistical methods, which makes it
be applicable in many clinical fields, such as diagnosis and
classification, risk stratification, and survival predictions. In
addition, machine learning has the ability to analyze diverse
data types, such as imaging data, laboratory findings, and

demographic data, and extracts features from data that humans
may not be able to do (Ngiam and Khor, 2019). Moreover,
machine learning enables analysis at the individual level
compared with traditional biostatistical methods that compute
significance and effects at the group level, which guarantees a
proportion of aid in the diagnosis and treatment of individual
patients in the clinical practice (Kim and Na, 2018).

The goal of this study was to construct a sophisticated machine
learning model for accurately identifying the individual severity
of BSP (non-functionally and functionally limited) based on
diffusion metrics (FA and LDH) in 68 white matter regions.
Another purpose of the study was to identify brain structural
correlates of possible pathophysiological mechanisms of BSP
according to the frequency of each feature in FA or LDH
feature subsets. We chose this method because the frequency
of each feature may implicitly indicate a correlation between a
specific brain structure and the severity of BSP. In other words,
the diffusion indices of the brain structures with the highest
frequency may be highly associated with the severity of BSP and
may be efficient neuroimaging biomarkers of the severity of BSP.
We hypothesized that FA or LDH, combined with an appropriate
machine learning scheme, can accurately identify the individual
severity of BSP.

MATERIALS AND METHODS

Participants
This study was approved by the First Affiliated Hospital
of Sun Yat-sen University Clinical Research Review Board
([2020]323). Oral and written informed consent was attained
from each participant either personally or by proxy. Patients
were consecutively recruited from our outpatient clinic for
movement disorders between April 2019 and July 2020. Inclusion
criteria included: (1) patients aged 18–75 years; (2) patients
diagnosed with BSP according to the published standard criteria
(Albanese et al., 2013a) by a senior neurologist (G Liu) with long-
standing experience in movement disorders; and (3) recruited
patients treated with botulinum toxin (BoNT) at the end of
their treatment cycle, at least 3 months post-injection. Exclusion
criteria were the following: (1) patients with metallic medical
implants that were contraindicated for magnetic resonance image
(MRI); (2) patients with traumatic brain injury, stroke, epilepsy,
Parkinson’s disease, Alzheimer’s disease, psychiatric diseases, or
evidence of possible anxiety [Hamilton Anxiety Scale (HAMA)
score > 14; Hamilton, 1959); (3) patients with a history of drug
or alcohol abuse; and (4) patients with abnormal findings on
conventional MRI and known causes of secondary dystonia. We
also included age- and gender-matched healthy controls. All
subjects were right-handed.

Clinical Assessments
The most widely used severity scale specifically developed
for BSP is the Jankovic Rating Scale (JRS), which includes
both severity subscale (0 = None, 1 = Increased blinking
only with external stimulus, 2 = Mild but spontaneous eyelid
fluttering, but not functionally disabling, 3 = Moderate spasm,
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mildly incapacitating, and 4 = Severe, incapacitating spasm
including eyelid and other facial muscles) and frequency subscale
(0 = None, 1 = Slightly increased blinking frequency, 2 = Eyelid
fluttering shaking lasting less than 1 second, 3 = Orbicularis oculi
muscle spasm lasting more than 1 second with eyes opening
more than 50% of awake time, and 4 = Functionally “blind”)
(Jankovic and Orman, 1987; Defazio et al., 2017). Therefore, the
severity of BSP was assessed immediately before MRI scanning
based on a JRS score of 0–4. The JRS scores were used to
assign patients to a non-functionally limited group (spasm
intensity scores <3 and/or spasm frequency scores <4) or a
functionally limited group (spasm intensity scores≥3 and spasm
frequency scores = 4). The JRS was performed by a trained
neurologist (YM Guo) who was blind to the clinical information
of patients with BSP.

MRI Data Acquisition
Magnetic resonance image data for all subjects were acquired
using a 3T scanner (Tim Trio; Siemens, Erlangen, Germany) with
a 12-channel head coil. DTI data were acquired using a spin-
echo, echo planar imaging sequence in 50 axial planes with 64
non-collinear directions (b = 1,000 s/mm2), and a non-diffusion-
weighted volume (b = 0 s/mm2). Scan parameters were as follows:
flip angle = 90◦, echo time = 91 ms, repetition time = 7,000 ms;
128× 128 matrix dimensions; 2 mm× 2 mm× 3 mm voxel size;
and 256 mm× 256 mm of view.

DTI Data Preprocessing and Feature
Extraction
We employed the DTI pipeline software PANDA (Pipeline
for Analyzing Brain Diffusion Images)1 to perform DTI data
preprocessing (Cui et al., 2013). More detailed information
about the DTI data preprocessing can be found in our previous
studies (Liu et al., 2017; Guo et al., 2020). A total of 68 white
matter regions were extracted from the ICBM-DTI-81 white-
matter labels atlas (rICBM_DTI_81_WMPM_90p_FMRIB58;
Oishi et al., 2008) and then we calculated the averaged FA
and LDH values of each region using the normalized diffusion
parameter maps. More details about each structure can be found
in Supplementary Table 1.

Feature Normalization
Since each feature has a different value range, the role of features
with higher values in the comprehensive analysis is highlighted
while the role of features with lower values is relatively weakened.
The zero-mean normalization method was used to normalize the
data for the purpose of improving the reliability and accuracy of
the model. Specifically, the standardization of each feature was
calculated as below

x
∗

ij =
xij − µ(xj)

σ(xj)
,

where xij denotes the value of the jth feature of the ith patient,
µ(xj) denotes the mean value of the jth feature of all patients,

1http://www.nitrc.org/projects/panda/

σ(xj) denotes the standard deviation of the jth feature of all
patients, and x∗ij denotes the normalized feature value. The same
normalization procedure was used in both training and test
samples to make the experiments more precise.

Feature Selection and Classifier
We conducted two sets of experiments using LDH and FA,
respectively. Principal component analysis (PCA), ReliefF, and
beam search (BS) were used to reduce feature dimensions. PCA is
a reduction method that uses orthogonal transformation to map
original features to a set of new features with smaller dimensions
(Sirovich and Kirby, 1987). ReliefF, a feature weighting algorithm,
assigns different weights to each feature according to the
relevance of each feature and category (Robnik-Sikonja and
Kononenko, 2003). Both PCA and ReliefF are fast and commonly
used, but their effect is usually worse than that of a complete
search. As such we also used BS to select features as accurately
as possible (Sabuncuoglu and Bayiz, 1999). The entire procedure
for BS is shown in Figure 1; within each loop, each feature
subset was used as input data for a model to classify the samples.
In order to select the stable feature subsets, the average area
under curve (AUC) of a 1,000 times bootstrap validation was
used as the evaluation index of each feature subset, and all
feature subsets were ranked by AUC. First, we performed three
feature combinations on 68 features to obtain a feature subset
queue with a size of 50,116. Then, we traversed this queue
to classify the samples and took the feature subset with the
highest AUC as the priority feature subset, and similarly, the
feature subsets with the top 100 AUC as the priority queue.
Finally, we exhaustively added a feature to these subsets in the
priority queue to form a new feature subset queue. This process
was repeated until the AUC of the priority feature subset of
the next loop no longer increased significantly, i.e., the increase
of the AUC was less than 0.002, to get the optimal feature
subset and the final priority queue. In addition, classification
was based on the mapping relationship between the feature
and label. The frequency of each feature may implicitly indicate
the correlation between the corresponding brain structure and
severity of BSP. We also calculated the frequency of each feature
in the final priority queue.

In classifying non-functionally and functionally limited
groups, support vector machines (SVMs) were used to construct
the classifier, which is a small sample learning method (Hsu and
Lin, 2002). AUC, accuracy, sensitivity, and specificity were used
to evaluate the performance of the classifier.

Bootstrap Validation and Stratified
Five-Fold Cross-Validation
Due to the small sample size, we conducted two different
validation methods, bootstrap validation and stratified
five-fold cross-validation, to improve the robustness of the
observation results.

Bootstrap validation is based on bootstrap sampling, which
is useful for small data sets and the condition of hard dividing
into training and test sets. Within each iteration, one sample was
randomly selected from 41 samples and put into the training
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FIGURE 1 | Workflow of Beam search. N indicates sample size. AUC, area under curve; SVMs, support vector machines.

set, then put back into the sample set. After being repeated
41 times, a training set containing 41 samples was obtained,
and the samples that were not selected would be used as the
test set. The training set was used to train the model, and
correspondingly, the test set was used to evaluate the model’s
performance. The procedure above was repeated 1,000 times to
calculate the average results, which was regarded as the bootstrap
validation result of the model.

However, the bootstrap method changes the distribution of
the initial data set, which introduces estimation bias. To account
for this, we also performed five-fold cross-validation. The entire
training process is shown in Figure 2. Within each iteration, one-
fold was used as the test set to evaluate the trained model, and
the remaining folds were used to train model. This procedure
was repeated five times, and the average result of five-folds was
regarded as cross-validation result of the model. At last, we
calculated the average results of 10 repeats of cross-validation.
Scikit-learn (version: 0.23.1) software package was used in our
experiments (Pedregosa et al., 2011).

Statistical Analysis
In analyzing demographic information, clinical characteristics,
and behavioral test scores, categorical data were compared

between groups using Pearson chi-square or Fisher exact tests
(when the expected number was ≤5). Parametric data were
compared using the one-way ANOVA after normality testing by
the Shapiro–Wilk test, and nonparametric data were compared
using the Mann–Whitney U test. All analyses were performed
using SPSS 16.0 for Windows software (SPSS Inc., Chicago, IL,
United States) and statistical significance was set at P < 0.05.

RESULTS

Participant Characteristics and
Behavioral Evaluations
Three patients were excluded from analyses due to early
termination of scanning (n = 1) and stroke lesions (n = 2). This
resulted in a final study sample of 41 patients (26 women and
15 men; median age, 53 years). The demographic information,
behavioral test scores, and clinical characteristics for both groups
are shown in Table 1. The functionally limited group had higher
JRS scores than the non-functionally limited group (P < 0.001).
No significant differences in age, gender, educational level,
duration, and BoNT duration were found between the groups.
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FIGURE 2 | Workflow of 5-fold cross-validation. N indicates sample size. AUC, area under curve; SVMs, support vector machines.

TABLE 1 | Subjects demographics and clinical assessments.

Non-functionally
limited group

(n = 12)

Functionally
limited group

(n = 29)

Healthy
control group

(n = 29)

Median age, years (range) 52 (28–74) 54 (38–75) 54 (37–75)

Female/male ratio 1 2.22 1.9

Education, years (range) 12 (9–16) 12 (0–16) –

Median JRS (range) 5 (2–5) 6 (4–8)* –

Median duration, years
(range)

5.5 (1–12) 8 (1–25) –

Median BoNT duration,
years (range)

2 (0–7) 2 (0–20) –

*P < 0.05, compared to the non-functionally group.
BoNT, botulinum neurotoxin; JRS, Jankovic rating scale.

Classification Performance
When using BS to select features of LDH, the AUC of the
priority feature subset gradually increased as the number of
features increased. When 10 features were selected, the AUC
increased only slightly (Supplementary Table 2). Therefore,
10 features were selected as an optimal subset of LDH. The
corresponding brain structures were the corticospinal tract (CT),
left inferior cerebellar peduncle (ICP), left middle frontal blade
(MFB), left parieto-temporal blade, right posterior limb of
internal capsule (PLIC), right superior parietal blade (SPB), right
CT, left precentral blade (PB), right ICP, and right tapetum.
The frequency of each brain structure in the final priority
queue is shown in Supplementary Table 3. As shown in

Table 2, the 10 features with the highest frequencies were
the optimal subset we selected. No significant differences in
the LDH values in these brain regions between groups (non-
functionally limited group versus functionally limited group,
non-functionally limited group versus healthy control group,
and functionally limited group versus healthy control group)
were observed (Supplementary Table 4). In addition, we
performed the same operation on the FA (Supplementary
Table 5), and the corresponding frequencies of brain structures

TABLE 2 | Full name and frequency of each brain structure in the optimal feature
subset of LDH and FA.

Feature Index Full name Location Frequency

LDH 8 Corticospinal tract Left 1

12 Inferior cerebellar peduncle Left 1

54 Middle frontal blade Left 1

64 Parieto-temporal blade Left 1

19 Posterior limb of internal capsule Right 0.92

61 Superior parietal blade Right 0.84

7 Corticospinal tract Right 0.8

58 Pre-central blade Left 0.7

11 Inferior cerebellar peduncle Right 0.58

49 Tapetum Right 0.53

FA 27 Posterior corona radiata Right 0.53

8 Corticospinal tract Left 0.31

12 Inferior cerebellar peduncle Left 0.25

FA, fractional anisotropy; LDH, local diffusion homogeneity.
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are shown in Supplementary Table 6. The optimal FA feature
subset we selected contained 3 features, including the right
posterior corona radiata, left CT, and left ICP, which fit the
most frequently appearing features in the final priority queue
perfectly (Table 2). Moreover, no marked differences in the FA
values in these brain structures between groups were observed
(Supplementary Table 4).

The results of all classification experiments are shown in
Table 3. The machine learning scheme we proposed, with BS,
SVMs, and multiple (10×) stratified five-fold cross-validation,
achieved an AUC of 0.937 and an overall accuracy of 88.67%
when using LDH features. Furthermore, it had an accuracy of
91.40% in correctly identifying functionally limited BSP patients
(i.e., sensitivity) and an accuracy of 83.33% in identifying non-
functionally limited BSP patients (i.e., specificity). When FA
features were used as input data, the model also presented a
good classification performance. More specifically, the model
achieved an AUC of 0.913 and an overall accuracy of
85.19%. In addition, it had a sensitivity of 85.87% and a
specificity of 83.67%.

As shown in Table 3, when using LDH features, no matter
which validation approach we choose, the performance of the
feature subset we selected by BS was better. Specifically, when
using cross-validation, the feature subset we selected increased
the model’s AUC from 0.438 to 0.937 and the accuracy from
68.36 to 88.67%. However, in the same settings, ReliefF only
increased the accuracy of the model from 68.36 to 72.53%,
while PCA reduced the accuracy from 68.36 to 65.64%. We also
observed similar results with the bootstrap validation; the
feature subset selected by BS outperformed PCA or ReliefF. The
superiority of our proposed “BS+ SVMs” scheme was confirmed
by such results.

DISCUSSION

In this study, we found that a combination of diffusion metrics,
particularly LDH, and sophisticated machine learning techniques
can accurately predict the severity of BSP. In addition, we
identified brain structures that may be highly associated with the
severity of BSP and may be efficient neuroimaging biomarkers for
the severity of BSP.

We found that although both the classification accuracy of
LDH and FA are satisfactory, the combinations of brain regions
with the best classification performance for LDH and FA are
not exactly the same. In contrast to the FA feature subset, the
LDH feature subset included more widespread white matter
regions. This difference is accordance with previous studies on
LDH (Gong, 2013; Liu et al., 2016, 2017; Liang et al., 2019),
which suggested that LDH and FA have different sensitivities
to specific white matter microstructural properties under the
same pathological conditions, and that LDH is complementary
to the conventional diffusion markers as a novel inter-voxel
diffusion measure.

We reported the frequency of each brain structure in the
priority queues in the final feature subsets of LDH and FA,
respectively. The frequency may implicitly represent a correlation
between the specific brain structure and the severity of BSP.
Although no significant differences in the diffusion metric
values in the brain regions selected in our classification model
between groups were found in this study, the advantages of
flexibility and scalability compared with traditional biostatistical
methods (Ngiam and Khor, 2019) has been demonstrated by
machine learning. Moreover, machine learning has the greater
ability to detect potentially distributed brain features that may
more effectively characterize diseases compared with traditional

TABLE 3 | A summary of all classifications results (mean and deviation).

Feature Validation Feature selection AUC Accuracy (%) Sensitivity (%) Specificity (%)

LDH Bootstrap None 0.506 ± 0.156 66.45 ± 9.04 91.36 ± 10.55 9.82 ± 17.96

PCA 0.458 ± 0.143 65.09 ± 8.83 92.63 ± 9.92 3.43 ± 13.05

ReliefF 0.639 ± 0.149 69.56 ± 9.98 93.41 ± 8.93 15.59 ± 21.02

BS 0.895 ± 0.097 85.06 ± 8.71 94.27 ± 7.58 66.09 ± 25.00

Stratified 5-fold cross validation None 0.438 ± 0.066 68.36 ± 3.71 91.93 ± 3.69 12.00 ± 6.35

PCA 0.360 ± 0.073 65.64 ± 4.51 85.73 ± 5.40 18.00 ± 5.41

ReliefF 0.474 ± 0.110 72.53 ± 4.20 94.13 ± 3.80 21.00 ± 6.84

BS 0.937 ± 0.041 88.67 ± 3.40 91.40 ± 3.69 83.33 ± 8.43

FA Bootstrap None 0.422 ± 0.141 59.73 ± 9.35 82.01 ± 14.45 10.44 ± 17.05

PCA 0.483 ± 0.156 65.28 ± 8.91 90.62 ± 9.32 6.39 ± 15.88

ReliefF 0.597 ± 0.136 65.55 ± 8.70 88.24 ± 11.25 15.22 ± 19.55

BS 0.886 ± 0.085 82.06 ± 9.42 85.01 ± 11.22 76.93 ± 23.12

Stratified 5-fold cross validation None 0.603 ± 0.103 57.33 ± 4.33 78.07 ± 5.23 7.67 ± 6.51

PCA 0.534 ± 0.072 51.97 ± 5.49 70.20 ± 7.11 7.67 ± 4.73

ReliefF 0.472 ± 0.083 63.97 ± 2.52 85.47 ± 3.12 12.0 ± 5.42

BS 0.913 ± 0.040 85.19 ± 3.71 85.87 ± 4.05 83.67 ± 7.52

Values expressed as mean ± deviation. Bold indicates the best performance in different settings. None indicates no feature selection. AUC, area under curve; BS, beam
search; FA, fractional anisotropy; LDH, local diffusion homogeneity; PCA, principal component analysis.
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biostatistical methods (Ung et al., 2014). Therefore, the 10
brain structures with the highest frequency in Supplementary
Table 3 and the 3 brain structures with the highest frequency
in Supplementary Table 6 (the subsets of LDH and FA features
we selected) may be highly correlated with the disease severity,
which further supports the important role of these brain
structures in the pathophysiology of BSP. The CT, PB, PLIC,
and SPB are the important components of the corticosubcortical
sensorimotor networks. These findings are consistent with a
previous study that demonstrated anatomical abnormalities in
the corticosubcortical sensorimotor networks in focal dystonia
(Delmaire et al., 2009). It has been reported that gray matter is
altered in the sensorimotor cortex, basal ganglia, and cerebellum
in BSP patients. These results indicate that focal dystonia
is associated with abnormal anatomical connectivity of the
corticosubcortical sensorimotor areas and highlight findings of
the role played by sensorimotor structures and their connections
in the pathophysiologic mechanisms of the disease.

The ICP is the main spinocerebellar pathway that connects
the spinal cord and cerebellum. The dorsal spinocerebellar tract,
a major feedback pathway, transmits sensory signals derived
from movement generated by the precentral gyrus (Grimaldi and
Manto, 2012). Accumulating evidence indicates that the dorsal
spinocerebellar tract exhibits major connectivity with the anterior
lobe of the cerebellum (Jang and Kwon, 2014, 2016). The anterior
lobe of the cerebellum engages in conveying peripheral afferent
signals to motor-oriented commands in the sensorimotor cortex
(Ben Taib et al., 2005). A recent DTI study based on 31 BSP
patients revealed significant FA decreases in the white matter of
the left anterior lobe of the cerebellum, which was significantly
correlated with disease severity (Yang et al., 2014). Structural and
functional neuroimaging studies also showed that the cerebellum
is an important contributor to the regional anomalous network
model of BSP (Peller et al., 2006; Obermann et al., 2007). Our
current findings indirectly support the notion that BSP may result
from the abnormalities of a sensorimotor network involving the
cerebellum, especially the anterior lobe of the cerebellum.

The MFB is involved in the inhibitory control of involuntary
movements along with other subregions of the prefrontal cortex
(Leung and Cai, 2007). A transcranial magnetic stimulation study
confirmed that the cortical center of upper facial movement,
including blinking, is not mainly located in facial motor cortex,
but rather in the mesial frontal region (Sohn et al., 2004). A sMRI
study of patients with BSP found gray matter volume changes
in the right middle frontal cortex. These results suggest that
in addition to the corticosubcortical areas primarily involved
in sensory processing and motor control, other brain regions
pertaining to the prefrontal cortex may also engage in the
mechanisms underlying motor features of BSP.

Several limitations in the present study should be discussed.
Only 41 subjects were used in our study, such a small sample size
makes building a regression model to predict individual JRS score
of patients with BSP based on DTI parameters combined with
machine learning algorithms impossible. However, findings of
this study preliminarily suggest that the diffusion metrics (LDH
or FA) may have potential value in identifying the individual
severity of BSP, which may promote future studies with larger

sample sizes. In addition, the sex ratio and disease duration were
different between the groups; although the potential influences
of these differences on our conclusion remain unclear, these
associations should be considered. Additionally, the potential
influences of BoNT on DTI metrics also should be taken in
consideration. Finally, our research continues on the theoretical
basis of model establishment; however, the effectiveness of the
model has not been further verified on large clinical samples.
At present, our model was not combined with other computer
technology and hardware to generate a runnable platform or
application program; therefore, it has limited application in
clinical practice.

SUMMARY

In summary, we show that a combination of LDH or FA
measurements with a sophisticated machine learning scheme
can accurately and reliably identify the individual disease
severity in patients with BSP (non-functionally limited versus
functionally limited), suggesting that DTI parameters may be
of clinical value in assessing and following the individual
severity of BSP. In addition, our current findings highlight
an important role of corticosubcortical sensorimotor networks
and other brain regions pertaining to the prefrontal cortex
in the pathophysiological mechanisms underlying the motor
features of BSP.
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