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Abstract: Sodium hydroxide was used as a base catalyst to reduce the flammability of poly(vinyl
alcohol) (PVA) aerogels. The base-modified aerogels exhibited significantly enhanced compressive
moduli, likely resulting in decreased gallery spacing and increased numbers of “struts” in their
structures. The onset of decomposition temperature decreased for the PVA aerogels in the presence
of the base, which appears to hinder the polymer pyrolysis process, leading instead to the facile
formation of dense char. Cone calorimetry testing showed a dramatic decrease in heat release
when the base was added. The results indicate that an unexpected base-catalyzed dehydration
occurs at fire temperatures, which is the opposite of the chemistry normally observed under typical
synthesis conditions.

Keywords: aerogel; flammability; base; alkali; char

1. Introduction

Aerogels are one of the lowest density families of known materials, first reported by
Kistler in 1931 [1], who used silicon alkoxides as sol-gel precursors to silica, which were
then carefully dried to avoid capillary collapse. The name “aerogel” means a wet gel whose
solvent has been exchanged with air; these materials possess the unique properties of low
densities (ranging from 0.005 to 0.1 g/cm3), high porosities, high specific surface areas and
low thermal conductivities [2–5]. As these material properties are valuable in designing
consumer and industrial products, there has been a steady increase in the use of aerogels
in thermal insulation, liquid absorbents, energy storage, and catalysis [6–10]. Inorganic
aerogels tend to be brittle, which has led to the evaluation of polymer-based aerogels,
which are materials that can exhibit polymer foam-like properties [11,12]. Poly(vinyl
alcohol) (PVA) is an ideal candidate for fabricating such polymer aerogels because of its
good chemical stability, low toxicity and favorable mechanical properties [13]. As a water
soluble polymer with abundant hydroxyl groups, PVA aerogels can be prepared using an
environmentally friendly, freeze drying method [14–17].

PVA aerogels are potentially promising candidates for the replacement of traditional
polymer foams in insulation, packaging and building areas; these polymer foams suffer
from their inherent flammability [3,17]. More than 1.3 million fires were reported in 2017
in the United States alone, resulting in an estimated 3400 civilian deaths and $23 billion
in property loss, hence the importance of materials flammability cannot be over empha-
sized [18]. Flame retardants can be incorporated into polymer systems, but often suffer from
toxicity and/or mechanical properties issues; additives such as polybrominated diphenyl
ethers (PBDEs) and polybrominated biphenyls (PBBs) are often effective in limiting poly-
mer flammabilities, but are under increasing scrutiny for toxicological reasons [19–21].
The few known flame retardants that could potentially resolve the toxicity/mechanical
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properties problems require high loadings, increasing final product densities and costs [22],
limiting their commercial attractiveness [23,24]. The thermal degradation of PVA has
been addressed by some authors, and to a limited extent the flammability of this polymer
has also been explored [25–28]. These previous works have focused on dense films and
molded PVA samples; one of those studies also showed that added NaOH could lower the
flammability of the system, though no explanation for the effect was given [25].

In the present work, we report a novel method of increasing the mechanical properties
of PVA aerogels, while decreasing their flammabilities, maintaining low densities, and
making use of a low cost/toxicity additive. Sodium hydroxide (NaOH) can act as a catalyst
at flame temperatures to promote a char forming process without the addition of other
flame retardants. Low additive levels of NaOH were found to profoundly alter the aerogel
properties, minimizing their impact on product density. To the best of our knowledge,
there is no similar system of PVA aerogels that incorporates low levels of NaOH, nor of a
systematic study varying that additive’s concentration previously reported in the literature.

2. Results and Discussion

The aerogel compositions examined in this study are given in Table 1.

Table 1. Compositions of aerogels.

Sample PVA (g) NaOH (g)/(mol/L) DI Water (g) pH

P5 5 0/0 100 5.8
P5/S0.001 5 0.001/2.5 × 10−4 100 6.0
P5/S0.01 5 0.01/2.5 × 10−3 100 8.3
P5/S0.1 5 0.1/2.5 × 10−2 100 11.7
P5/S0.5 5 0.5/2.5 × 10−2 100 12.8

Poly(vinyl alcohol), PVA; sodium hydroxide, NaOH; deionized water, DI water.

2.1. Apparent Density and Mechanical Performance

The apparent densities of the aerogels are shown in Table 2. No significant differences
in densities were noted, which is consistent with the percentage of solids used for each
of the compositions; the exception to this observation occurred in P5/S0.5 when a large
amount of sodium hydroxide was added to the formulation, increasing the aerogel density.
No obvious shrinkage was observed after freeze-drying and all samples maintained good
shape in the mold during the process. While the mechanical properties of the PVA aerogel
were reported to decrease with the addition of inorganic matter (because the poor interfacial
adhesion between them) [29], the addition of NaOH actually increased the mechanical
properties of PVA aerogels produced in this study. The initial compressive modulus of
P5/S0.5 was 1.30 ± 0.30 MPa, which is nearly four times that of the control, potentially
because phase separated NaOH could densify the solid “struts” in the aerogel structure

Table 2. Observed aerogel properties.

Sample Modulus
(MPa) Density (g/cm3)

Specific Modulus
(MPa cm3/g)

P5 0.31 ± 0.11 0.065 ± 0.002 4.8 ± 1.6
P5/S0.001 0.36 ± 0.01 0.066 ± 0.002 5.5 ± 0.2
P5/S0.01 0.47 ± 0.08 0.067 ± 0.001 7.1 ± 1.3
P5/S0.1 0.55 ± 0.16 0.066 ± 0.002 8.3 ± 2.0
P5/S0.5 1.30 ± 0.30 0.079 ± 0.001 16.3 ± 3.0

To eliminate the influence of density, the specific compressive modulus was also
compared. The specific moduli were calculated by dividing the ultimate compressive
modulus values by the sample densities. As can be seen in Table 2, the specific compressive
moduli increased from 4.8 ± 1.6 to 16.3 ± 3.0 MPa cm3/g as the NaOH was increased from
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0% to 9.1%. The increases in mechanical properties of the aerogels with increasing NaOH
levels differs from the observed mechanical properties of PVA films, which incorporate that
same additive [28]. Our previous work with PVA aerogels has shown that their mechanical
properties are extremely sensitive to the skeletal density of aerogel “struts”, which resemble
the cellular walls in foams, as well as the morphology of the aerogels [3,5,11–13]. It has
also been demonstrated that increasing levels of hydrogen bonding within PVA aerogels
can significantly enhance their mechanicals properties [3]. It is not surprising that even
low levels of additives, capable of binding to the polymer via hydrogen bonding, would
bring about skeletal densification and morphological changes.

2.2. Morphology

SEM was used to investigate the aerogel morphologies and the relationship between
the structure and properties. Figure 1A,B shows typical “house of cards” aerogel structures,
which is a lamellar structure caused by ice growth [30,31]. While with the addition of 0.02%
NaOH, the lamellar structure was retained, the structure of the individual layers was not
as neat as those of unmodified PVA aerogels samples. As the level of NaOH added to the
polymer was increased, structural changes were observed—previous work has shown that
mechanical properties trend with an aerogel structure [32]. In samples wherein the amount
of NaOH was increased to 3.8%, the lamellar structure was interrupted (Figure 1E,F),
gallery spaces decreased in size and increased in number; the samples shrank/densified,
with a concomitant increase in compressive moduli (typical of such aerogels).
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2.3. Thermal Stability & Degradation Mechanism

The thermal stabilities of the aerogels in this study were investigated by thermogravi-
metric analysis (TGA; Figure 2) and differential thermogravimetry (DTG; Figure 3). The
related data are shown in Table 3, which includes the decomposition temperatures at 5%
weight loss (Td5%), at 20% weight loss (Td20%), and at the maximum decomposition rates
(Tdmax), the values at maximum mass decomposition rate (dW/dT) and the char. PVA
aerogels could easily capture water from the atmosphere because the existence of abundant
hydroxyl groups on its chain. To avoid the influence of moisture, the samples were heated
to 100 ◦C from room temperature at a heating rate of 40 ◦C/min and then equilibrated
at 100 ◦C for 2 min. After that it was heated to 700 ◦C at a heating rate of 10 ◦C/min
under nitrogen.
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Figure 2. TGA and DTG (differential gravimetry) curves of PVA and PVA/NaOH aerogels at a heating rate of 10 ◦C/min
under nitrogen.
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Table 3. TGA (thermogravimetric analysis) data of freeze dried PVA and PVA/NaOH aerogels.

Sample Td5%
(◦C)

Td20%
(◦C)

Tdmax
(◦C)

Dw/dt
(%/◦C)

Residue
(%)

P5 246 262 274 2.71 7.9
P5/S0.001 249 266 277 2.68 11.3
P5/S0.01 244 258 270 2.63 9.3
P5/S0.1 224 238 243 1.60 16.4
P5/S0.5 171 189 199 1.98 23.5

As hydrophilic materials rich in surface hydroxyl, PVA aerogels were difficult to
remove all physisorbed water by regular drying methods. The weight loss stage before
100 ◦C is attributed to the loss of this water. The main decomposition step occurred
between 150–500 ◦C. The onset decomposition temperature was evaluated by Td5%. With
the addition of NaOH, the onset temperature decreased, which is consistent with previously
reported observations [31,33]. We propose that NaOH is acting as a base catalyst at the
elevated temperatures associated with burning polymers. In this mechanism, which is
speculative at this time, PVA undergoes a rapid chain-stripping elimination of water
once it is heated above the decomposition temperature (shown in Scheme 1) [34,35]. The
chain stripping reaction (which is known chemistry in the absence of base catalysis) could
produce polyenes through dehydration, which is in a competitive relationship with chain
scission. Such polyenes are char precursors. With base catalysis, hydroxide may decrease
the C-H bond strength, decreasing the onset decomposition temperature of the PVA in the
aerogels, producing higher levels of polyenes and ultimately char was produced rather
than chain scission products. Catalysis of the mechanistic steps shown in Scheme 1 are not
normally associated with alkaline materials (rather with acids); the normal mechanisms of
organic chemistry are not necessarily in play at the elevated temperatures associated with
fire events—activation energies for reactions can be overcome when reaction temperatures
are increased by hundreds of degrees. Recent innovations in high temperature alkaline
catalysis (sodium hydroxide and calcium carbonate) used in biodiesel refining [36,37], as
well as in the Guerbet Coupling reaction [38], suggest that the hypothetical mechanism
shown in Scheme 1 has a prior art basis. In the most generally-accepted mechanism for
the Guerbet Coupling of ethanol to butanol (or of butanol to 2-ethylhexanol), the high
temperature dehydration of an alcohol is a key step, just as it is in the chain stripping
mechanism. Hence, new chemistries may need to be considered when examining the
mechanisms of flame retardation of organic polymers.

As can be seen in Table 3, the onset temperature for PVA aerogels decreased from
246 ◦C to 171 ◦C with an increasing base catalyst. A change in the degradation mechanism,
enhancing chain stripping at the expense of chain scissions, was similarly observed with
increasing levels of the base catalyst (Figures 2 and 3). With the greater extent of chain
stripping in the presence of base, more char (less weight loss) resulted. In the proposed
char-forming pathway, the polyenes undergo a Diels-Alder or intramolecular cyclization
reaction [34,35], producing substituted cyclohexenes and cyclohexadienes, respectively,
which can then aromatize to substituted aromatics. The fusion of aromatics results in the
final, observed char products [39]. With the increase in char yield from 7.9 to as much as
23.5% (at 0.5% NaOH), approximately logarithmic relations between NaOH concentration
and char yield are observed, with the data point at 0.001 being the only outlier; by increasing
the addition levels of the base, the maximum mass-decomposition rates (dW/dT) dropped,
as expected from 2.71 to under 2.0. Previously reported work by Arora and coworkers [28],
examining the effects of as much as 5 wt% NaOH to PVA films, proposes that dehydration
of alcohol groups in PVA likely commence at decreased temperatures when the alkaline
agent is added—this is consistent with our proposed alkaline catalysis in PVA aerogels.
The previous workers observed an increase in limiting oxygen index (LOI) from 20.5 to 27.2
with the incorporation of 4.5% NaOH. These authors also suggested that water generated
by alcohol dehydrations could provide a diluent effect in reducing flammability. We cannot
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rule out such a mechanism, but also propose the graphitization/char formation shown in
Scheme 1 to play an important role in the observed flame retardation.
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2.4. Combustion Behavior

The combustion behavior of the aerogels was studied using cone calorimetry. Cone
calorimetry is widely used in fire studies, it could provide plentiful data, including the
time to ignition (TTI), peak of heat release (PHRR), time to peak of heat release (TTPHRR)
and total heat release (THR); the results are shown in Table 4.

Table 4. Cone Calorimetry Data for PVA and PVA/NaOH Aerogels.

Sample Weight
(g)

TTI
(s)

PHRR
(kW/m2)

TTPHRR
(s)

THR
(MJ/m2)

THR/Mass
(MJ/(m2 g))

P5 5.3 8 533 ± 35 32 12.9 2.4 ± 0.0
P5/S0.001 6.6 10 424 ± 37 55 14.0 2.1 ± 0.0
P5/S0.01 4.8 11 314 ± 13 45 9.9 2.1 ± 0.0
P5/S0.1 5.3 10 311 ± 31 35 11.2 2.1 ± 0.0
P5/S0.5 5.9 5 160 ± 20 13 9.5 1.6 ± 0.0

The samples were ignited under the heat flux of 50 kW/m2. While all the samples
were ignited in a short time, their overall flammability’s were significantly reduced with
incorporating NaOH. Figure 3 shows the HRR plots of PVA/NaOH aerogels and the control
sample. The HRR curve of pristine PVA samples exhibited a sharp peak, with a PHRR of
533 kW/m2; with the addition of a relatively small amount of NaOH, the curve showed
a similar, relatively broad peak, and PHRR was decreased to about 310 kw/m2; When
the amount of NaOH was “sufficient”, the HRR curve showed a very broad peaks with
the lowest PHRR. The shape of P5/S0.5 aerogel was a typical HRR curve of thick charring
materials [40]. The PHRR of P5/S0.5 was 160 kw/m2, which was 30% of the number for
pure PVA aerogel. The results indicate the addition of NaOH could decrease the fire risk
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of PVA based aerogel material in a big fire test. No dripping was observed for any of the
samples during combustion testing.

Total heat release (THR) data are listed in Table 4. THRs of aerogel samples were
all lower than that of the control samples, except for P5/S0.001, which likely contained
insufficient base catalyst to produce an observable effect. To eliminate the influence of mass
differences and to better illustrate the combustion behavior of the samples, THR/mass
was compared. The P5/S0.5 aerogel exhibited the lowest THR/mass value, which was
1.6 MJ/(m2 g), much lower than the results of the control PVA aerogels. The THR/mass
values of P5/S0.001, P5/S0.01, and P5/S0.1 samples were similar, which is consistent with
the PHRR results, indicating similar flammabilities.

The data above all showed that the addition of NaOH decreases the flammability of
the PVA aerogels. The samples containing NaOH could form char to protect the unignited
matrix polymer. The samples with relatively small amounts of NaOH in the PVA system
showed slightly lower flammabilities compared to the pristine PVA aerogels, but the char
forming process was insufficient to protect the unignited polymer. With a sufficient level of
NaOH incorporated into the aerogel system, the samples could form denser char rapidly
to fully cover the unignited part. The TGA char yields, given in Table 3, support the
increasing levels of char with increased NaOH addition levels (8–11% char at/under 0.01%
NaOH; 16% char at 0.1% NaOH; 24% char at 0.5%); these controlled values are consistent
with the qualitative observations from cone calorimetry experiments. The mechanism
of graphitization of PVA under flame conditions is consistent with the literature of PVA
degradation, with the largely undescribed addition of alkaline catalysis. This hampered
heat transfer and isolated the unignited matrix from the ignition source. Figure 4 illustrates
the chars remaining after cone calorimetry testing. The control samples burned totally
with little char forming. P5/S0.01 aerogel formed slightly more char than the pristine PVA
aerogel, while P5/S0.5 formed a much denser char and was sustained in a good shape, even
after the test. This result is in accordance with our proposed mechanism of base catalyzed
char formation.
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To better understand the catalytic function of NaOH in PVA aerogel during com-
bustion, the residues were studied using Raman spectroscopy (Figure 5). The spectra
of chars with and without NaOH all exhibit two broad peaks with intensity maxima at
1580–1600 cm−1 (G band) and 1350 cm−1 (D band) [41,42]. The G band corresponds to
the stretching vibration mode with E2 g symmetry in the aromatic layers of the graphite
crystalline, whereas the D band is due to the disordered graphite [41,43,44]. The graphi-
tization degree of the chars were estimated by the ratio of the intensity of the D and G
bands (ID/IG) [41,45]. The ID/IG of pristine PVA(0.76) is lower than that of the sample
prepared with NaOH(0.80). While lower ID/IG means better graphitization degree of the
char and the better flame retardancy, it was more important that the graphitized carbons
could realize an effective aggregate or crosslinking. The amount of char plays the key role
in providing protection from the ignition source [43,45]. Both spectra exhibited a shoulder
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at ∼1200 cm−1 in the D band, assigned as D4, and attributed to the presence of polyene
sp2-sp3 bonds or C–C and C=C stretching vibrations of polyene-like structures [46–49].
The charring residue of PVA/S had a higher D4 intensity than was seen with the char
residue of pristine PVA aerogels, indicating more polyenes were produced during the
combustion tests in the presence of the base, again consistent with the proposal that NaOH
was playing the role of catalyst promoting polyenes formation. The char structure enabled
by the NaOH could hinder the transfer of combustible volatiles and heat, restricting the
further decomposition of the polymer matrix.
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A potential concern to the addition of sodium hydroxide to the PVA aerogels prepared
in this study is that this additive is both hydroscopic and water soluble. One could
reasonably worry that properties could change with time and with environmental aging.
To the former point, samples were allowed to age under laboratory conditions and appear
not to suffer from any water uptake, perhaps due to hydrogen bonding between the
polymer and additive, and environmental equilibration native to the PVA polymer itself.
We have not carried out any experiments wherein the polymer is exposed to significant
washing with water—this is a point that should be addressed with any polymer system
that makes use of such basic catalysis.

3. Conclusions

PVA aerogels incorporating differing levels of NaOH were fabricated through a simple
and environmentally friendly freeze-drying process. The corresponding apparent densities,
compressive properties, morphologies, thermal stabilities, combustion behaviors, and
Raman spectroscopy were investigated. The moduli of PVA aerogels increased with in-
creasing NaOH concentration, likely due to higher overall levels of solids and densification
of polymeric “struts” and morphological changes in the aerogels. The specific moduli
increased by more than three times with the addition 9.1% NaOH. The microstructure of
the aerogels showed that the gallery spaces decreased in size and increased in number
with increasing base levels. While the thermal degradation onset temperature was lower
with the addition of NaOH, the decomposition process was shunted to a pathway wherein
higher char yields were obtained once a threshold level of the base was present. Combus-
tion tests showed the addition of NaOH formed much higher char yields once the threshold
level of NaOH was met; that char does protect the unignited polymer matrix, leading to
overall lower levels of combustion. The PHRR decreased from 533 kw/m2 to 160 kw/m2

and THR/Mass decreased from 2.4 MJ/(m2 g) to 1.6 MJ/(m2 g) in the presence of the
base. The results of this study suggest that NaOH can act as catalyst, promoting polyenes
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formation in PVA, therefore forming significant char. With a small quantity of base catalyst,
the PVA aerogel is mechanically stronger and much less flammable, maintaining, the most
important advantage of aerogel, low density without using any char forming agents or
halogens compounds in order to decrease flammability.

4. Materials and Methods

Poly(vinyl alcohol) (PVA; Mw 13,000–23,000, 98% hydrolyzed, SIGMA-Aldrich, St. Louis,
MO, USA) and sodium hydroxide pellets (ACS grade, >98%; Innovating Science, Avon, NY,
USA) were used without further purification. Deionized (DI) water was obtained using a
Barnstead RoPure low-pressure, reverse-osmosis system (Lake Balboa, CA, USA).

4.1. Preparation of Aerogels

The aerogel compositions are shown in Table 1. PVA solutions were prepared by
stirring PVA powder with DI water for six hours at 90 ◦C. Sodium hydroxide was mixed
with DI water under magnetic stirring at 40 ◦C for 30 min before addition to the PVA
solutions; the solutions were mixed to the desired PVA concentrations at 50 ◦C until
they were homogeneous suspensions (the final compositions are given in Table 1). The
suspensions were then cast into a 100 mm × 100 mm × 10 mm rectangular mold (for cone
calorimetry testing) or poured into 12.5 mL polystyrene vials (for compression testing) and
frozen in a solid carbon dioxide/ethanol bath (−70 ◦C). These samples were freeze dried
using a VirTis Advantage EL-85 lyophilizer, with the shelf temperature set to 25 ◦C, and the
pressure set to under 10 µbar. The products were named as Px/Sy, where P represents PVA
and S represents sodium hydroxide; the subscripts indicate their content per 100 g water.
P5 were prepared by same method and fabricated as the general controls. The samples
were stored in a desiccator after fabrication and were dried in a vacuum oven at 50 ◦C for
20 min before characterization.

4.2. Characterization

The pH values were measured using a pH meter (Hanna Instruments, Smithfield, RI,
USA). The meter was calibrated by two standard buffers (pH 4.01, 7.01) before every test;
each composition was tested 3 times, with average values given in Table 1.

The apparent densities were calculated by measuring the mass and dimensions using
a Mettler Toledo (Columbus, OH, USA) AB204-S analytical balance and an electronic digital
caliper (RCBS); each composition was tested with 5 samples.

Compression testing was conducted on Instron model 5500 universal testing machine
(Instron, Norwood, MA, USA), fitted with a 1 KN load cell and 10 mm/min compression
rate. The modulus values were attained from the slope of the area under the linear portion
of the stress-strain curves, using specimens measuring 20 mm in both height and diameter.
Each composition was tested with a minimum of five cylindrical samples, and the results
were averaged.

Thermal properties were measured by thermogravimetric analysis (TGA), using a
TGA Q500 (TA Instruments, New Castle, DE, USA). The specimens were placed in a
platinum pan, equilibrated at 100 ◦C for 3 min, then heated to 700 ◦C at a heating rate of
10 ◦C/min. The process was conducted under a nitrogen flow rate of 40 mL/min. Each
composition was replicated 3 times.

The morphological microstructure of the aerogels was investigated using a JEOL JSM
5900LV scanning electron microscopy (SEM)(JEOL, Tokyo, Japan) with an accelerating
voltage of 20 kV. Samples were frozen in liquid nitrogen for 20 min, then cryofractured
before imaging.

The combustion behavior of the aerogels was measured using a cone calorimeter (Fire
Testing Technology, East Grinstead, UK) in accordance with the ASTM E 1354 standard,
with the limitation noted below. The heat flux was set to 50 kW/m2. The rectangular
samples (100 mm × 100 mm × 10 mm) were wrapped with aluminum foil before testing.
Note that smoke generation measurements were not made due to equipment limitations.
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Raman spectroscopy was conducted on an inVia laser Raman spectrometer (Renishaw,
Gloucestershire, UK) at room temperature with excitation provided by a 514 nm laser line.
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