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Purpose: To establish and evaluate algorithms for detection of primary angle closure
suspects (PACS), the risk factor for primary angle closure disease by combiningmultiple
static and dynamic anterior segment optical coherence tomography (ASOCT) parame-
ters.

Methods: Observational, cross-sectional study. The right eyes of subjects aged ≥40
years who participated in the 5-year follow-up of the Handan Eye Study, and underwent
gonioscopy and ASOCT examinations under light and dark conditions were included.
All ASOCT images were analyzed by Zhongshan Angle Assessment Program. Backward
logistic regression (BLR)wasused for inclusionof variables in thepredictionmodels. BLR,
naïve Bayes’classification (NBC), andneural network (NN)were evaluated and compared
using the area under the receiver operating characteristic curve (AUC).

Results: Data from 744 subjects (405 eyes with PACS and 339 normal eyes) were
analyzed. Angle recess area at 750 μm, anterior chamber volume, lens vault in light and
iris cross-sectional area change/pupil diameter change were included in the prediction
models. The AUCs of BLR, NBC, and NN were 0.827 (95% confidence interval [CI], 0.798-
0.856), 0.826 (95% CI, 0.797-0.854), and 0.844 (95% CI, 0.817-0.871), respectively. No
significant statistical differences were found between the three algorithms (P = 0.622).

Conclusions: The three algorithmsdid notmeet the requirements for population-based
screeningof PACS.Onepossible reason couldbe thedifferent angle closuremechanisms
in enrolled eyes.

Translational Relevance: This study provides a promise for basis for future research
directed toward the development of an image-based, noncontact method to screen for
angle closure.
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Introduction

Primary angle closure glaucoma (PACG), a leading
cause of ocular morbidity will affect approximately
21 million people worldwide by 2020; China has the
largest number of cases (about 48%of the total).1 If left
untreated, PACG can lead to severe irreversible visual
impairment.2 In China, approximately 5.2 million
people are blind in one eye and 1.7 million of these are
blind in both eyes from PACG.2

Primary angle closure suspect (PACS) is a risk factor
for primary angle closure disease (PACD). PACD
includes primary angle closure (PAC, defined as PACS
with raised intraocular pressure [IOP] and / or periph-
eral anterior synechia [PAS]) and PACG (PAC with the
presence of typical glaucomatous optic neuropathy or
visual field defects).3 Thomas et al reported that, over
5 years, 22% of PACS progressed to PAC and 28% of
the latter progressed to PACG.4–5

Iridotomy performed for PACS can decrease
progression to PAC and PACG.6–8 Hence, early screen-
ing and detection of PACD, especially at the PACS and
early PAC stages would be valuable for control of the
disease and prevention of visual impairment caused
by PACG.9

The current gold standard for angle-closure assess-
ment is gonioscopy; this is a contact-based, subjec-
tive, and examiner-dependent technique with moderate
reproducibility.10,11 Accordingly, gonioscopy is not an
optimal tool for large-scale population-based screen-
ing.11 A test for population-based screening should be
noncontact, easy to perform, clinician independent,
reproducible with a high specificity andmoderate sensi-
tivity.12

Several noncontact imaging devices of the angle
are available including Scheimpflug imaging (Penta-
cam) and anterior chamber segment optical coherence
tomography (ASOCT).10 However, none of them are
considered as an ideal screening test for PACD.13 Possi-
ble reasons for the poor performance of these tests in
screeningmay be failing to include essential risk factors
of PACD and using only one risk factor as the screen-
ing parameter in early detection of PACD.

Various factors, including age, shorter axial length
(AXL), increased iris thickness, and shallow anterior
chamber, a thick, anteriorly positioned lens and a large
lens vault (LV) have been reported to be associated
with PACD.14,15 A low central anterior chamber depth
(ACD) is a risk factor for angle closure that is easily
evaluated and commonly used as a screening tool.13
Recent studies suggest that the pathogenesis of PACD
depends not only on static anatomical factors but
also on different dynamic responses of the iris under

light and dark conditions as well as changes in the
choroid.16–19 To the best of our knowledge, dynamic
risk factors have not been evaluated for the screening
of PACD.

We undertook this study to establish and compare
predictive models created from different machine-
learning techniques based on the concept of combin-
ing multiple static and dynamic ASOCT parameters as
a screening tool to detect PACS.

Methods

Subjects and Ophthalmic Examination

This observational, cross-sectional studywas part of
the 5-year follow-up of the Handan Eye Study(HES)
conducted on a sample of rural Chinese adults aged
35 years or older living in the Handan County, Hebei
Province.20 HES subjects aged ≥ 40 years who partici-
pated in this follow-up examination between June 2012
and May 2013, with limbal anterior chamber depth
≤ 40% and underwent gonioscopy and ASOCT exami-
nations under light and dark conditions were eligible.

Eyes with PAS, raised IOP, cup-disc ratio ≥ 0.6
or presence of typical glaucomatous optic neuropa-
thy, secondary angle closure, past history of an
acute angle closure attack, laser peripheral iridotomy
(LPI) or iridoplasty, ocular surface pathology, eye
trauma, intraocular surgery, and use of eyedrops that
could influence anterior chamber angle were excluded.
Other exclusion criteria were inability to fixate on the
target and general physical or mental impairment that
precluded testing. The right eye of each subject was
included for analysis.

The study was conducted in accordance with the
tenets of the Declaration of Helsinki and approved
by the Ethics committee at Beijing Tongren Hospi-
tal. Written informed consent was obtained from all
subjects.

All subjects underwent detailed and standard-
ized ocular examinations, including presenting visual
acuity (PVA) and best-corrected visual acuity using
the Early Treatment Diabetic Retinopathy Study
LogMAR E chart, objective refraction using a KR-
8800 auto kerato-refractometer (Topcon, Tokyo,
Japan) and subjective refraction, slit-lamp examina-
tion, IOP measurement using a Kowa applanation
tonometer, A-scan ultrasound biometry using an
OcuScan RxP (Alcon, Inc., Fort Worth, TX), and
stereoscopic optic disc examination with a 90-diopter
lens. Static gonioscopy was performed in a dark
room by one of the two glaucoma specialists using a
Goldmann type one-mirror lens with the eye in the
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primary gaze position. Dynamic examination (inden-
tation gonioscopy) with increased illumination was
performed after static gonioscopy, using the same lens
to assess angle opening and evaluate for PAS. The
specialists performing gonioscopy were masked to
ASOCT findings. PACS was diagnosed if ≥ 180° of
the posterior trabecular meshwork was not visible on
static gonioscopy.

ASOCT Image Acquisition and Analysis

Anterior segment optical coherence tomography
(Visante; Carl Zeiss Meditec, Inc., Dublin, CA) uses a
long wavelength (1310 nm) to optimize visualization of
the iridocorneal angle and a cross section of anterior
segments in the absence of visible light influence on
angle configuration and pupil size.10,21 Each eye was
imaged with an ASOCT first under dark conditions
(∼3 lux, to induce physiologic mydriasis) and then with
light (∼200 lux). The subjects adapted to the dark for
at least 3 minutes before examination. During ASOCT
scanning, an internal fixation target was used with the
subjects’ refractive correction in place to perform the
measurements in an unaccommodated state. All the
ASOCT scans were performed by a trained ophthalmic
technician masked to the subjects’ examination data.

All images were obtained in the “anterior segment
quadrant” mode at the 0° to 180°, 45° to 225°, 90°
to 270°, and 135° to 315° meridians. Imaging was
repeated if the scleral spur visibility was poor; the best
set of images were selected. The Zhongshan Angle
Assessment Program (Guangzhou, China) was used to
analyze the ASOCT images.22

Once the location of two scleral spurs on each
image was determined by one ophthalmologist (Z.Y.),
the following angle and anterior chamber config-
uration parameters were measured: angle opening
distance at 500 μm (AOD500), trabecular-iris space
area at 500 μm (TISA500), angle recess area at
750 μm (ARA750), anterior chamber area (ACA),
anterior chamber volume (ACV), anterior chamber
width (ACW), iris thickness at 750 μm (IT750), iris
curvature (IC), iris cross-sectional area (IA), LV, and
pupil diameter (PD).22

AOD500 is the perpendicular distance from the
point at 500 μm from the scleral spur to the anterior
iris surface and TISA500 is the area bounded by the
AOD500, the anterior iris surface, the inner corneoscle-
ral wall, and the perpendicular distance between the
scleral spur and the opposing iris.23 ARA750 is the area
bordered by the anterior iris surface, corneal endothe-
lium, and a line perpendicular to the corneal endothe-
lium drawn to the iris surface from a point at 750 μm
anterior to the scleral spur.23 The ACA is defined as the

cross-sectional area of the anterior segment bounded
by the corneal endothelium, anterior surface of the iris,
and anterior surface of the lens. The ACV is derived by
rotating anterior chamber area 360° around a vertical
axis.24 TheACWwasmeasured as the horizontal scleral
spur-to-spur distance.25

The IT750 is defined as the iris thickness measured
at 750 μm from the scleral spur and the IC is deter-
mined by measuring the maximum distance between
the posterior iris surface and a line from the iris root
to the first point of contact between the iris and lens.25
The LV was defined as the perpendicular distance
between the anterior pole of the lens and the horizontal
line joining the scleral spurs.26 The PD is automatically
measured as the distance between the pupillary tips of
the iris on both sides on the cross-sectional images.25
The IA is defined as the cross-sectional area of the nasal
and temporal sides.27 IA change was calculated as IA in
lightminus IA in dark. PD changewas calculated as PD
in dark minus PD in light. IA change/PD change was
calculated as the IA change divided by the PD change.
Eyes with a PD increase of less than 0.5mmafter physi-
ologic mydriasis were excluded.

Statistical Analysis

Three prediction algorithms for the detection of
PACS were evaluated: backward logistic regression
(BLR), naïve Bayes’ classification (NBC), and neural
network (NN).28 The three methods are summarized
as follows:

1. Logistic regression is a well-established classifica-
tion technique that is widely used in epidemiolog-
ical studies.28 In backward logistic regression, the
least significant effect that does not meet the level
for staying in the model is removed. Once an effect
is removed from themodel, it remains excluded. The
process is repeated until no other effect in the model
meets the specified level for removal.29

2. Naïve Bayes’ classification estimates the probabil-
ity that an observation is in a particular class
based on its covariate values under the assumption
that the covariates are independent conditional on
class membership and, if they are continuous, are
normally distributed.28 The algorithm works well
with heterogeneous data types and alsowithmissing
values, because of the independent treatment of
each predictor variable for model construction.30

3. NN comprises layers of interconnected artificial
neurons.31 An artificial neuron is designed based
on the biological neuron itself and receives multi-
ple inputs multiplied by weights; it outputs the sum
of the inputs.31 It is equivalent to logistic regression
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but can solve more difficult problems with more
complex network architectures.28,30 The price of
using complex architectures is that it produces
models that are more difficult to interpret.30

BLR was used for inclusion of variables in
the prediction models. There were 12 parameters
under two conditions respectively: AOD500, TISA500,
ARA750, IT750, IC, LV, ACD, ACW, ACA, ACV,
IA, and PD. And plus two calculated parameters of
changes from dark to light conditions including IA
change and IA change/PD change, there were a total
of 26 candidate parameters for inclusion of variables in
the prediction models. First of all, we used the univari-
ate logistic regression analysis (backward) on the 26
parameters and excluded the variables with a P value
more than 0.05.

Then, to avoid the obvious correlations between
the independent variables, we designed four combina-
tions of variables for multivariate logistic regression
analysis (backward) to build the models: (1) 12 param-
eters under light conditions plus IA change; (2) 12
parameters under light conditions plus IA change/PD
change; (3) 12 parameters under dark conditions
plus IA change; and (4) 12 parameters under dark
conditions plus IA change/PD change. The variance
inflation factors and clinical significance of included
factors were calculated and considered to determine
the included variables inmultivariate logistic regression
analysis of each model. Significant variables with a P
value < 0.1 in the multivariate analysis were used to
produce each logistic model. TheNagelkerkeR squares
were calculated to evaluate the four logistic models and
to select the best logistic model that fitted the data. The

variables selected through BLR analysis were also used
to build the NBC and the NN models.

The three prediction models created were evalu-
ated and compared in terms of point and inter-
val estimates of the area under the receiver operat-
ing characteristic curve (AUC), sensitivity and speci-
ficity. The receiver operating characteristic (ROC) plot
expresses the relationship between sensitivity and 1–
specificity. The closer the ROC curve is located to
upper-left hand corner, the better the model.32 The
AUC can have any value between 0 and 1 and it is a
good indicator of the goodness of the model.32 The
sensitivity of a model refers to the ability of the model
to correctly identify those patients with the disease and
the specificity refers to the ability of the test to correctly
identify those patients without the disease.32

Statistical analysis was performed using the Statis-
tical Analysis System (SAS), version 9.4 (SAS Insti-
tute, Cary, NC). P values< 0.05 were considered statis-
tically significant. The estimates of AUC (95% confi-
dence interval [CI]), sensitivity, and specificity of three
models were analyzed using the Statistical Package for
Social Sciences (SPSS), version 25 (SPSS, Chicago, IL).

Results

A total of 989 subjects who completed the ocular
examinations as well as gonioscopy and ASOCT
measurements under light and dark conditions were
included. A total of 202 eyes were excluded for the
following reasons: 132 eyes (13.3%) had poor-quality
ASOCT images or scleral spurs that could not be
accurately determined; 70 eyes had PD change less than

Table 1. Demographic Data and Ocular Biometric Measurements in PACS and Normal Subjects

Parameter Normal Subjects (n = 339) PACS Subjects (n = 405) P Value

Age (IR), years 61.0 (56.0, 66.0) 62.0 (57.0, 67.0) 0.119†

Male (%) 121 (35.7) 125 (30.9) 0.163‡Female (%) 218 (64.3) 280 (69.1)
PVA (IR) 0.20 (0.10–0.32) 0.30 (0.12–0.44) <.001†

BCVA (IR) 0.00 (0.00–0.18) 0.08 (0.00–0.20) 0.025†

SE (IR), diopter 0.50 (-0.25–1.13) 0.81 (0.25–1.50) <0.001†

IOP (IR), mm Hg 12.0 (10.0–13.5) 11.5 (10.0–13.0) 0.086†

CCT (IR), mm 528 (510–545) 528 (514–548) 0.282†

Central ACD (IR), mm 2.71 (2.49–2.92) 2.51 (2.33–2.76) <0.001†

LT (IR), mm 4.79 (4.51–5.07) 4.86 (4.53–5.11) 0.139†

AL (IR), mm 22.73 (22.19–23.27) 22.28 (21.81–22.97) 0.001†

ACD, anterior chamber depth; AL, axial length; BCVA, best corrected visual acuity; CCT, central corneal thickness; IOP, intraoc-
ular pressure; IR, interquartile range; LT, lens thickness; PVA, presenting visual acuity; SE, spherical equivalent.

†Mann-Whitney U test.
‡χ2 test.
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Table 2. Anterior Chamber, Angle, Lens, and Iris Parameters Measured by ASOCT in Light and Dark Conditions in
PACS and Normal Subjects

Conditions Parameter Normal Subjects (n = 339) PACS Subjects (n = 405) P Value*

Light AOD500 (IR), mm 0.349 (0.286–0.448) 0.249 (0.183–0.313) <0.001†

TISA500 (IR), mm2 0.144 (0.120–0.181) 0.103 (0.076–0.131) <0.001†

ARA (IR), mm2 0.406 (0.322–0.488) 0.269 (0.193–0.345) <0.001†

ACD (IR), mm 2.488 (2.321–2.639) 0.245 (2.072–2.401) <0.001†

ACW (SD), mm 11.10 (0.40) 10.87 (0.42) <0.001‡

ACA (IR), mm2 18.26 (16.60–19.81) 15.85 (14.25–17.25) <0.001†

ACV (IR), mm3 73.61 (65.26–82.33) 60.40 (53.41–68.18) <0.001†

IT750 (IR), mm 0.44 (0.39–0.48) 0.47 (0.43–0.50) <0.001†

IC (SD), mm 0.24 (0.19–0.28) 0.26 (0.21–0.31) <0.001‡

LV (IR), mm 252.3 (111.1–393.3) 415.9 (287.2–516.5) <0.001†

Dark AOD500 (IR), mm 0.309 (0.252–0.388) 0.211 (0.138–0.278) <0.001†

TISA500 (IR), mm2 0.129 (0.105–0.156) 0.084 (0.059–0.111) <0.001†

ARA (IR), mm2 0.329 (0.266–0.408) 0.206 (0.142–0.278) <0.001†

ACD (IR), mm 2.483 (2.327–2.633) 2.251 (2.066–2.402) <0.001†

ACW (IR), mm 11.08 (10.80–11.33) 10.94 (10.69–11.19) <0.001†

ACA (IR), mm2 18.60 (16.96–20.25) 16.24 (14.63–17.79) <0.001†

ACV (IR), mm3 74.47 (66.57–83.86) 62.76 (54.23–70.95) <0.001†

IT750 (IR), mm 0.47 (0.42–0.51) 0.49 (0.46–0.53) <0.001†

IC (IR), mm 0.24 (0.20–0.28) 0.25 (0.21–0.30) <0.001†

LV (IR), mm 276.4 (136.3–390.3) 418.9 (303.5–558.1) <0.001†

ACA, anterior chamber area; ACD, anterior chamber depth; ACV, anterior chamber volume; ACW, anterior chamber width;
AOD500, angle opening distance at 500 μm; ARA750, angle recess area at 750 μm; IC, iris curvature; IT750, iris thickness at
750 μm; IR, interquartile range; LV, lens vault; SD, standard deviation; TISA500, trabecular-iris space at 500 μm.

†Mann-Whitney U test.
‡Two sample t-test.

0.5 mm from dark to light conditions. Data from the
right eye of 744 remaining subjects were included in
the final analysis; 498 (66.9%) were female. The mean
age was 61.39 ± 8.27 years. There were no statisti-
cally significant differences in demographic or ocular
features between those included and excluded.

The demographic characteristics and ocular
biometric data of subjects are summarized in Table 1.
There were 405 PACS (54.4%) and 339 normal subjects.
Compared with normal subjects those with PACS had
worse PVA (P < 0.001), worse best-corrected visual
acuity (P = 0.025), larger spherical equivalence (P <

0.001), smaller ACD (P < 0.001), and shorter AXL (P
< 0.001). There was no significant difference in age,
sex, IOP, central corneal thickness, and lens thickness
(LT) between the two groups.

The mean values and the absolute and relative
changes when going from dark to light for ASOCT
parameters in PACS and normal subjects and the

differences between the groups are summarized in
Tables 2 and 3. Compared with normal subjects, PACS
had smaller AOD500 (P < 0.001), TISA500 (P <

0.001), ARA (P < 0.001), ACD (P < 0.001), ACW (P
< 0.001), ACA (P< 0.001), ACV (P< 0.001), IT750 (P
< 0.001), IC (P < 0.001), LV (P < 0.001) in light and
dark conditions, and smaller IA change (P < 0.001),
PD change (P = 0.001), and IA change/PD change (P
= 0.001) from dark to light conditions. All differences
were statistically significant.

The logistic model with a combination of param-
eters measured under light conditions plus IA
change/PD change as included variables was deter-
mined to be the best one (Nagelkerke R2 = 0.413). The
following four variables were included in the prediction
models using BLR (Table 4): ARA750 in light (P <

0.001), ACV in light (P = 0.003), LV in light (P =
0.005), and IA change/PD change (P = 0.004). Table 5
shows the prediction accuracies of the three algorithms.
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Table 3. ASOCT Data: IA, PD, IA Changes and IA Changes per PD Changes for PACS and Normal Subjects

Parameter Normal Subjects (n = 339) PACS Subjects (n = 405) P Value*

IA; L (SD), mm2 2.94 (0.37) 2.90 (0.39) 0.155‡

PD; L (SD), mm 3.82 (0.64) 3.90 (0.64) 0.113‡

IA; D (SD), mm2 2.69 (0.34) 2.71 (0.37) 0.383‡

PD; D (IR), mm 4.86 (4.25–5.28) 4.81 (4.34–5.23) 0.952†

IA Change; D (IR), mm2 0.25 (0.13–0.39) 0.20 (0.03–0.35) <0.001†

PD Change; D (IR), mm 0.88 (0.61–1.18) 0.74 (0.31–0.35) 0.001†

IA Change / PD Change (IR), mm 0.26 (0.16–0.36) 0.22 (0.05–0.37) 0.001†

D, dark; IA, iris cross-sectional area; IR, interquartile range; L, light; PD, pupil diameter; SD, standard deviation.
†Mann-Whitney U test.
‡Two sample t-test.

Table 4. Variables Included in the Prediction Models Using Backward Logistic Regression

Estimated Regression Standard
Parameter Coefficient Error χ2 P Value OR (95% CI)

ARA750 -7.846 1.112 49.764 <0.001 <0.001 (<0.001–0.003)
ACV -0.029 0.010 8.863 0.003 0.971 (0.953–0.990)
LV 0.001 0.001 7.741 0.005 1.001 (1.000–1.003)
IA change/PD change -1.014 0.353 8.272 0.004 0.363 (0.182–0.724)

ACV, anterior chamber volume; ARA750, angle recess area at 750 μm; CI, confidence interval; IA, iris cross-sectional area; LV,
lens vault; OR, odds ratio; PD, pupil diameter.

Table 5. AUC, Sensitivity, and Specificity of Algorithms

Prediction 95% CI of 95% CI of 95% CI of
Algorithm AUC of AUC Sensitivity Sensitivity Specificity Specificity

Backward logistic Regression 0.827 0.798–0.856 72.35% 67.99–76.71 78.17% 73.77–82.57
Naïve Bayes’ classification 0.826 0.797–0.854 72.84% 68.51–77.17 76.40% 71.88–80.92
Neural network 0.844 0.817–0.871 78.02% 73.98–82.05 74.93% 70.32–79.54

AUC, area under the receiver operator characteristic curve; CI, confidence interval.

The Figure shows the ROC curves of the 3 algorithms.
The AUCs and 95% CIs of BLR, NBC, and NN
were 0.827, (95% CI, 0.798–0.856), 0.826 (95% CI,
0.797–0.854), and 0.844 (95% CI, 0.817–0.871) respec-
tively. There were no statistically significant differences
between the three algorithms (P = 0.622).

BLR had a sensitivity of 72.35% (95% CI, 67.99%–
76.71%) and a specificity of 78.17% (95% CI, 73.77%–
82.57%). NBC showed a sensitivity of 72.84% (95%CI,
68.51%–77.17%) and a specificity of 76.40% (95% CI,
71.88%–80.92%). NN provided a sensitivity of 78.02%
(95% CI, 73.98%–82.05%) and a specificity of 74.93%
(95% CI, 70.32%–79.54%).

Discussion

The two main approaches for the systematic detec-
tion of early PACD are population-based screening
and case detection (also known as opportunistic screen-
ing).12 To date, there is no ideal population-based
screening test for PACD, which requires a high speci-
ficity with moderate sensitivity.12

We hypothesized that the possible reasons for the
lack of an ideal early screening test for PACD were
failure to include risk factors other than ACD as
screening parameters and not using a combination of
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Figure Receiver operating characteristic curves of three machine-
learning algorithms

risk factors for PACD. Accordingly, we tried to build
a predictive model for early screening of PACD using
classification algorithms based on static and dynamic
ASOCT measurements.

Use of machine-learning techniques is still new in
this field.32 They have been used in detection and
diagnosis of glaucoma.32,33 To the best of our knowl-
edge, no studies that use machine-learning algorithms
or combine the static and dynamic ASOCT parameters
in the early screening of PACD have been published.

In our study, three machine-learning algorithms
including BLR, NBC, and NN for the detection of
PACS were created and compared. These algorithms
were found to have good AUCs but still failed to meet
the need of a high specificity and moderate sensitivity
required for population-based screening of PACD.

Nongpiur et al reported that a classification
algorithm based on stepwise logistic regression that
used a combination of six parameters obtained from
a single horizontal ASOCT scan identified subjects
with gonioscopic angle closure 95% of the time, with
an AUC of 0.954 (95% CI, 0.942-0.966).34 Differences
in predictive power across that study and ours can
be ascribed to different characteristics of the datasets,
different stages of the disease, different angle closure
mechanisms involved and different candidate variables
for building and evaluating the models.

Diagnostic test accuracy may vary according to the
severity of the disease.35 According to our previous
study and other publications, eyes with different stages
of PACD have statistically significant differences in
ASOCT parameters.18,36–37

Guzman et al. reported that compared with PAC
and PACG, the PACS eyes had wider anterior chamber
angles as well as a more spacious anterior chamber
characterized by larger ACA, ACV, deeper ACD, and
a smaller LV.36 Lin et al reported that PACG eyes had
smaller ACD and ACA in both light and dark condi-
tions, smaller AOD500, ARA750, and IA in light, and
smaller IT in dark than PACS/PAC eyes.37 They also
found that PACG eyes had smaller IA change from
light to dark conditions compared with PACS/PAC
eyes.37

We have reported that PAC/PACG eyes had smaller
AOD500, TISA500, and ARA and larger LV than
PACS eyes.18 It seems that eyes with different stages
of PACD have different ASOCT parameters. Hence,
the accuracy of these models is likely to vary with the
stage of PACD. Moreover, the accuracy may also vary
among PACS with different angle closure mechanisms.

In a previous study, we categorized enrolled PACD
eyes into three subgroups: pupillary block (PB),
plateau iris configuration (PIC) and thick periph-
eral iris roll (TPIR), according to their dominant
angle closure mechanisms as determined by ASOCT
images.17 We demonstrated that PACD eyes with PB
had the smallest ACD, ACW, ACA, ACV, AXL, and
largest LT, whereas PACD eyes with PIC had the
largest ACD, ACW, ACA, ACV, AXL, and smallest
LT.17 PACD eyes with TPIR had the smallest AOD500,
TISA500, and ARA750.17

Baek et al reported two different clusters based on
ASOCT images from the total angle closure popula-
tion.38 One cluster was characterized by relatively
higherACDandACA, lower LV, thicker peripheral iris,
and higher ACW which could be attributed to plateau
iris configuration or thick peripheral iris.38 The second
cluster was characterized by higher LV, smaller AXL,
smaller ACW, and lowerACA,whichmay be attributed
to the lens or crowding of intraocular structures in eyes
with smaller dimensions.38

Nongpiur et al identified three subgroups among
PACS eyes based on ASOCT images.39 Subgroup 1
was characterized by a greater IA and IT. Subgroup
2 was characterized by a smaller ACD, ACA, ACW,
AXL, and greater LV. Subgroup 3 was characterized
by elements of both subgroups 1 and 2.39

Moghimi et al also reported three different angle
closure subtypes among PACS, PACG, acute primary
angle closure, and the fellow eyes of acute primary
angle closure using statistical clustering analysis based
on ASOCT parameters.40 Cluster 1 had the smallest
ACD and ACA, as well as the largest LV, suggest-
ing a pushing mechanism as a result of the forward
movement of the lens and increased LT.40 Cluster 2
had the largest IT at 2000 μ, largest IA, and deepest
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ACD, which may result in angle crowding and subse-
quent angle closure due to a predominant iris compo-
nent.40 Cluster 3 was characterized by elements of both
clusters 1 and 2 and a higher iris curvature suggesting
a predominant PB mechanism.40

We further categorized the enrolled 405 PACS eyes
into different subgroups based on the main angle
closure mechanisms. 129 eyes were found to have PB
(33.3%), 138 eyes PIC (35.7%), and 120 eyes TPIR
(31.0%) as the dominant angle closure mechanism. In
addition, five eyes were determined to have an exagger-
ated lens vault as the dominant angle closure mecha-
nism. The dominant angle closure mechanisms of the
rest 13 eyes could not be identified. Considering that
the algorithms we describe may have different perfor-
mances among the three subgroups, we plan to study
the accuracy of machine-learning algorithms in differ-
ent angle closure mechanism subgroups as the next
step.

One may argue about the significance of
population-based screening of PACS given the low
incidence of development of PAC or PACG over
6 years in subjects with PACS found by the Zhongshan
Angle Closure Prevention trial.41 They also suggested
that prophylactic LPI on a population basis may
not be the best strategy for preventing vision loss
in PACS.41 However, the Zhongshan Angle Closure
Prevention trial does not provide sufficient information
to estimate the risk in an individual PACS, which is
especially important for determining who is at higher
risk of a sight-threatening acute attack and should
undergo a preventive LPI.41

In our opinion, screening for PACS is not useless,
but we do need to identify and decide which PACS have
a higher risk of developing PAC or vision-threatening
acute angle closure. Also, in our study, we were looking
for an ideal screening method for PACD, not only
for PACS. However, this observational, cross-sectional
study was part of a population-based study (the 5-
year follow-up of the Handan Eye Study), in which
the number of PAC/PACG was limited. We intended
to establish and evaluate this newmethod first in PACS
subjects, and in future study, we will further evaluate
this screening method in PAC/PACG subjects.

To the best of our knowledge, this is the first study
to establish and evaluate novel classification algorithms
for detection of PACS by combiningmultiple static and
dynamic anterior segment parameters. The study has
several limitations. One is the utilization of semiauto-
mated image analysis software requiring manual local-
ization of the scleral spur that introduces a degree of
subjectivity. Another limitation is that we used the two-
quadrant definition of PACS and we did not look at
other definitions of PACS such as 270° of closure.

Conclusion

In conclusion, we evaluated the ability of a range
of static and dynamic ASOCT-derived parameters
using three classification algorithms in the screen-
ing of PACS. All provided similar results from the
same dataset: three models with a set of only four
ASOCT parameters showed an AUC of 0.826 to 0.844
for detecting PACS. Although all algorithms failed to
reach the requirements for population-based screening,
they do provide a promise for basis for future research
directed toward the development of an image-based,
noncontact method to screen for angle closure.
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