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Effect of disconnection 
of deformable units on the mobility 
and stiffness of 3D prismatic 
modular origami structures using 
angular kinematics
Kai Xiao1, Xiang Zhou2 & Jaehyung Ju1*

Architected modular origami structures show potential for future robotic matter owing to their 
reconfigurability with multiple mobilities. Similar to modular robots, the units of modular origami 
structures do not need to be assembled in a fully packed fashion; in fact, disconnection can provide 
more freedom for the design of mobility and functionality. Despite the potential of expanded 
design freedom, the effect of the disconnection of units on the mobility and physical properties has 
not yet been explored in modular origami structures. Determining the mobility and weak spots of 
modular origami structures is significant to enable transformation with minimum energy. Herein, 
we investigate the effect of the disconnection of units on the mobility and stiffness of architected 
modular origami structures with deformable units using angular kinematics of geometry and topology 
of units and closed loops. Angular kinematics provides a valuable tool for investigating the complex 
mobility of architected modular origami structures with the disconnection of loops. The mobility of 
the network structure is a function not only of the number of disconnections but also of the topology 
of the loop. In contrast to the conventional negative perception of defects or disconnection in these 
materials, the disconnection can potentially be used to expand the design space of mobility for future 
robotic matter. Our findings can be used to develop powerful design guidelines for topologically 
reconfigurable structures for soft modular robots, active architected materials, implanted modular 
devices, deployable structures, thermal metamaterials, and active acoustic metamaterials.

Next-generation artificial materials require exceptional multi-functionality with reconfigurability connected with 
various sensors and actuators; we refer to these materials as "robotic matter”. Robotic matter that can self-assem-
ble, self-disassemble, and transform its modules to maximize physical performance shows potential for exotic 
applications such as soft modular robots1, active architected materials2,3, injected medical implants4, shape-mor-
phing propulsion devices5, deployable structures6, active acoustic metamaterials7, and thermal metamaterials8.

A design strategy for robotic matter might be found in the features of modular robots as they both involve 
the assembly of individual units for functionality9–11. Modular robots consisting of multiple units assemble and 
disassemble for 3D motion while maintaining automatic disconnection and rearrangement among units. Notably, 
the units of modular robots do not all need to be fully packed to facilitate their mobility9–11. The module-based 
scheme has been explored for materials design—customizing physical properties such as Poisson’s ratio and 
directional stiffness by assembling modules12,13. However, the modules of functional materials do not possess 
transformability, limiting their reconfigurability and tunability.

The advanced mobility of modular robots with loose connection among modules can be applied to the design 
of intelligent architected materials. Among various architected materials, modular origami structures are strong 
candidates for future robotic matter owing to their versatile transformability—multiple degrees of freedom 
(DOF) in motion, change of their shape for extreme anisotropic physical properties using a modular function), 
disconnection, and rearrangement. Unlike the traditional two-dimensional (2D) lattice motion structures14–16 
and Miura-ori type structures17–20, whose transformation patterns have only a single DOF in motion, 3D modular 
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origami structures can possess multi-DOF, enabling dexterous transformability and functionality21–25. Advanced 
modular origami has deformable units and assembles while creating connecting units18–23.

One group pioneered the synthesis of 3D reconfigurable modular origami structures with multi-DOF by 
connecting deformable units23,24. Their prismatically deformable 3D building blocks constructed by polyhedral 
templates showed remarkable tunability23 with potential application for tubular acoustic metamaterials25. Other 
groups have suggested different modular units with inverse design21 and kinematic analysis of rigid units22,26. 
Similar to modular robots, modular origami units do not need to connect fully during rearrangement. Indeed, 
the loose connectivity can provide more flexibility to the design of the mobility and functionality. Despite the 
potential of 3D modular origami for more flexible mobility for robotic matter, however, the effect of the discon-
nection of units on the overall transposability during the assembly has not yet been explored.

Unlike modular robots whose units are rigid bodies, modular architected material units are generally flex-
ible, resulting in more complex mobility. Moreover, in modular materials, the deformable individual units create 
additional interconnection with adjacent units, leading to even more complex mobility. Although it is challenging 
to calculate mobility, the increased mobility can produce an exciting opportunity to realize more versatile recon-
figurability of modular architected metamaterials. Therefore, in this work, we suggest a method to determine 
the mobility and stiffness of architected materials with complex networks connected and disconnected with 
individual deformable units.

Briefly reviewing a multi-DOF modular origami, we identify independent angles to easily capture individual 
units’ mobility and interaction with loops in section “Kinematics of a unit cell with multi-DOF”. After investi-
gating the mobility analysis of extended unit cells of cubic modular origami structures produced by planar and 
spatial tessellations of units in sections “Planar tessellation” and “Spatial tessellation”, we extend the analysis to 
network structures in section “Mobility analysis of network structures”. We also discuss a directional stiffness 
of the modular origami to find an optimum direction of mechanical actuation in section “Directional stiffness”. 
Finally, we conclude our work with significant findings and envision the potential use of our methods.

Kinematics of a unit cell with multi‑DOF
Overvelde et al. synthesized prismatically deformable 3D building blocks with thin-walled structures using 
"Snapology"; these structures were constructed by extruding the edges of the polyhedron in the normal direction 
for highly tunable functionality with multi-DOF23,24. In cubic-Snapology, the unit cell of the building blocks 
consists of six tetragons extruded from the cube’s edges in the direction normal to each face23. The extruded 
faces are rigid, yet the whole structures are foldable by the rotational motion of hinges along the edges of the 
faces. Analogous to a four-bar rotational linkage (4R), each tetragon has a single DOF, coupled with adjacent 
tetragons to make a cubic-Snapology structure with three DOF23. Owing to the folding flexibility arising from 
the extruded tetragons with 4R, the cubic-Snapology structure possesses superior transformability compared 
with other polyhedral-based Snapology structures. Therefore, in this work, we confined our interest to cubic-
Snapology structures while focusing on their motion when the units are disconnected from adjacent ones.

Figure 1a presents an overall strategy to identify the mobility of modular origami structures with cubic units. 
After counting the total units and loops constructed by units, we impose geometric and topological constraints. 
These constraints help to sort the units using independent kinematic equations. For spatial loops and filled pla-
nar loops, we also impose constraints on the vertices, even reducing the independent kinematic equations. We 
describe the procedure in sections “Planar tessellation” and “Spatial tessellation” in more detail.

We briefly revisit the kinematics of the deformable cubic unit, a basic layout to analyze tessellated structures 
while further considering loop connection. Unlike the previous approach for analyzing the kinematics of a 
cubic-Snapology unit23, we use an alternative method to analyze the mobility of the unit by setting two separate 
angle sets for an internal loop ( α1 , α2 ) and an external loop β3 ( ∈ [0,π] ), as illustrated in Fig. 1b. The kinematic 
analysis with these separate angles can be helpful in identifying the mobility of complex modular assemblies by 
decomposing the deformation of units and the connection of loops. As a key parameter to conveniently analyze 
the mobility of a loop connection of units, we use β3 (the angle between adjacent extruded square tubes), as 
shown in Fig. 1b. We discuss the kinematics of the loop connection in the next section in more detail.

For a set of orthonormal basis vectors êi ( i = 1, 2, and 3 ) in Fig. 1b, the position vectors v1 , v2 , and v3 on the 
edges of an internal rhombohedron core of the cubic unit are expressed as three angles α1 , α2 , and β3:

As there is no additional constraint imposed by Eqs. (1)–(3), α1 , α2 , and β3 are the independent angles to 
control the transformation of a cubic modular unit; 0 ≤ α1,α2,β3 ≤ π . Therefore, we know that the mobility of 
a cubic-Snapology unit is three.

Observing the angles on the edges of the cubic unit, we find six angles: three angles relevant to the core edges 
( α1,α2,α3 ) and another three angles from the prismatic tubular edges ( β1 , β2 , β3 ), as shown in Fig. 1c. Alterna-
tively, we can choose another set of independent angles, e.g., α3 = cos−1 v1·v2

|v1|·|v2|
 , β1 = cos−1

(

cosα2 cosα3−cosα1
sin α2 sin α3

)

 , 
and β2 = cos−1

(

cosα3 cosα1−cosα2
sin α3 sin α1

)

 . The selection of three angles from the six (α1,α2,α3 , β1 , β2 , and β3 ) provides 
flexibility when we analyze the complex network structures with loops in the planar and spatial tessellation. Note 
that the shape of the transformation domain varies depending on the selection of the three independent angles. 

(1)v1 = L sin α2 sin β3 ê1 − L sin α2 cosβ3 ê2 + L cosα2 ê3

(2)v2 = L sin α1 ê2 + L cosα1 ê3

(3)v3 = Lê3
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For example, a combination of α and β provides a cubic shape, as shown in Fig. 1d, unlike the core-angle param-
eterization whose domain is confined in a tetrahedron geometry23.

Planar tessellation
To investigate the effect of the disconnection on the mobility of the modular origami network structures, we 
construct extended unit cells, searching for possible topologies while subtracting units. We need at least four 
cubic units to build a foldable closed-loop on a planar tessellation: n = 4 ( = 2× 2 ), as shown in Fig. 2a. Sub-
tracting one unit from the extended unit cell with a square loop can generate two possible topologies—one with 
a triangular loop and the other with no loop—as shown in Fig. 2b,c, respectively. Notably, subtracting two units 
from the extended unit cell with a square loop makes n = 2× 1 , eventually making an equivalent structure of 
n = 4 ( = 2× 2 ) after planar tessellation, as shown in Fig. 2a. Therefore, n = 3 and n = 4 are the only topological 
options that we can create as extended unit cells for a given maximum 2× 2 unit size.

The planar tessellation of the cubic units with or without disconnection generates a loop, providing unique 
mobility. Figure 3 helps us determine the mobility of the extended unit cells with loops. The extended unit cell 
with a square closed-loop consists of four units. Each unit has three DOF, providing 12 DOF ( = 3× 4 ) for the 
connected structure with four units without considering a loop. However, the construction of a loop in Fig. 3a 
generates constraints of motion at the four tubular junctions of the units:

From the observation of the loop in Fig. 3a, v3 for all the units are in parallel and create a parallelogram, 
introducing three constraints of β for one square closed-loop:

Equations (4) and (5) provide a total of seven independent constraints. Therefore, the mobility of the extended 
unit cell with a square closed-loop in Fig. 3a has five DOF ( = 12− 7 ), whose five independent angles can be, 
e.g., 0 ≤ α1a , α2a , α1c , α2c ,β3a ≤ π.

Similarly, we can apply the method to the extended unit cell with a triangular closed-loop in Fig. 3b. In this 
case, the total DOF from three units without considering the loop constraint is nine ( = 3× 3 ). However, the 
triangular closed-loop provides the three constraints β3a = β3b = β3c = 60◦ , implying zero mobility on the loop 
with a constant angle. Notably, three binary links making a triangular shape provide zero DOF27. The tubular 
connection imposes additional constraints on the local units: α1b = α2a ,α1c = α2b , and α1a = α2c , which leads 
to a total of three DOF for the extended unit cell, as shown in Fig. 3b. The transformation domain is on 0 ≤ α1a , 

(4)α1b = α2a ;α1c = α2b ;α1d = α2c ;α1a = α2d .

(5)β3a = β3c ;β3a + β3d = π;β3b = β3d .

Figure 1.   (a) Procedure to obtain the independent angles of modular origami structures with disconnection; 
(b) geometric parameters of a prismatic deformable cubic unit; the basis vectors ê1, ê2, ê3 are depicted in 
the rhombohedron core for two α angles, α1 and α2 . β3 denotes the angle between adjacent tubular edges, 
as indicated by the green arrows; (c) six angles relevant to the core edges ( α1, α2, α3 ) and the prismatic 
tubular edges ( β1 , β2 , β3 ), (d) 3D domain of α1, α2 , and β3 to represent transformation states of the cubic unit 
(Supplementary Video 1).
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α2a , α1c ≤ π . The extended unit cell in Fig. 3c does not have a closed-loop, implying all the β s are independent 
angles. Imposing constraints on the two tubular connections: α1c = α2b and α1b = α2a , we have seven DOF 
( 9− 2 ) with a transformation domain of 0 ≤ α1a ,α1b ,α1c ,α2c ,β3a ,β3b ,β3c ≤ π.

Identifying the independent angles of the extended unit cells helps generate transformation states, as shown 
in Fig. 3, where the selected transformation shapes of extended unit cells and their network structures are dis-
played. Unlike for other origami structures and architected materials20,21, the mobility of the modular origami 
structures in this work depends on both the topology of the loops and the individual units. The deformability of 
the cubic-Snapology units makes the mobility of the network structures complex and unique.

Spatial tessellation
We use a 3D fully extended unit cell with 2× 2× 2 units as a fundamental building block that can fully deform 
both the loops and units. However, our approach can be readily extended to a more extensive set of extended 
unit cells, e.g., 3× 3× 3.

Within the scope of the 3D building block, we find three fully filled 3D extended units: cubic, triangular, 
and tetrahedral shapes, as shown in Fig. 4. We obtain eight independent shapes of partially filled cubic units by 
subtracting units from the fully filled extended cubic unit cell in Fig. 4a. As observed in Fig. 4a,b, increasing the 
number of defects (or disconnection) generally increases the mobility of the extended unit cells and network 
structures. Without a loop ( c = 0 ), the mobility increases with n due to the simply added individual units’ motion. 
However, the increase of n does not always translate into higher mobility. For example, the extended unit cells 
with n = 7 and 8 have three DOF, lower than that of the extended unit cells with n < 7 because of the increased 
number of loops. Notably, the defect of one unit ( n = 7 ) has the same mobility as the filled structure, indicating 
that one can reduce the mass by 12.5% while retaining control of the architected materials with the same DOF. 
Interestingly, an extended unit cell with n = 6 generates a spatial loop ( s = 1 ), providing six DOF. However, its 
network structure with the spatial loop has only three DOF because of additional constraints during spatial tes-
sellation, providing a 25% reduction of mass with the same mobility as the filled structure.

Conventionally, investigation of the unit cell of architected materials to represent the properties of the whole 
network is preferred. This is true for architected materials with fully filled units ( c = 6, n = 8, referred to as c6n8 ), 

Figure 2.   2D extended unit cells and network structures for 3 ≤ n ≤ 4 : (a) square closed-loop, (b) triangular 
closed-loop, and (c) no closed-loop structures; we describe the fabrication method of the prototypes in Section 
I of the Supplementary Information (SI). The MATLAB code for the computation of mobility of network 
structures is available in the SI.
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where the network structures have the same mobility (DOF = 3) as the extended unit cell. However, the assembly 
with disconnection exhibits a different trend in the mobility compared with the assembly with fully connected 
units. For example, most extended units with defects ( c0n4 , c0n5 , c1n6 , c2n6 , c3n7 ) increase the mobility if the 
network size becomes more prominent, which means the overall reconfigurability of the assembly cannot be 
simplified as the behavior of the unit. However, the mobility of the spatial closed-loop network structure with 
disconnection ( s1n6 ) has the same as that of the cubic unit, not the same as the extended unit cell’s mobility; 

Figure 3.   Angular kinematics of motion of 2D extended unit cells and selective transformations: (a) square 
closed-loop (Supplementary Video 2), (b) triangular closed-loop, and (c) no-loop structures.
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the mobility of the network structure converges to three from six when the stacked scale increases, as shown 
in Fig. 4c,d.

In addition, there are three partially filled extended unit cells (c = 1, 2, 5) for the triangular shape, as shown 
in Fig. 4e. A similar trend is observed in the mobility of the triangular extended unit cells; an increase in c results 
in a dramatic drop in the mobility of extended unit cells. Interestingly, there is no partially filled extended unit 
cell for the tetrahedral shape, as shown in Fig. 4e; the fully filled tetrahedral extended unit cell (c = 4) has zero 
DOF. We analyze the mobility of several extended unit cells with unique features in the following sub-sections.

Planar closed‑loops.  Extended unit cell with two planar closed‑loops.  The extended unit cell in 
Fig.  5a consists of six units. Out of a total of 18 ( = 6× 3 ) unconstrained conditions with six units, we 
have the initial independent geometric parameters: α1f , α2f , β3f , α1g , α2g , β3g , β1b ,α2b , β3b ,β2c ,α1c , 
β3c , α1a , α2a , β3a , α1d , α2d , and β3d . Two square closed-loops impose six constraints ( = 2× 3 ): 

Figure 4.   Mobility of 3D extended unit cells and network structures with cubic-Snapology units;n and c denote 
the numbers of units and loops, respectively, and s denotes the number of spatial loops. (a) Configurations and 
mobility of extended unit cells and network structures for cubic packing; (b) a phase map of mobility of the 3D 
extended unit cells for varying n and c ; (c) tessellation of an extended unit cell containing a spatial closed-loop 
along three lattice vectors l1, l2 , and l3 . Note that [121], [122], and [222] are the index forms to identify the 
number of extended units along the lattice vectors. For example, [121] represents a tessellation pattern with one 
unit, two units, and one unit along the l1, l2, and l3 directions, respectively; (d) mobility of cubic assemblies 
of extended unit cells, where X and Y  in the legend cXnY denote the number of loops and units of assemblies, 
respectively; (e) configurations and mobility of extended unit cells and network structures for triangular and 
tetrahedron packing. The MATLAB code for the computation of mobility of network structures is available in 
the SI.



7

Vol.:(0123456789)

Scientific Reports |        (2021) 11:18259  | https://doi.org/10.1038/s41598-021-97609-5

www.nature.com/scientificreports/

β1b = β3g ,β1b = π − β3f ,β1b = π − β2c ,β3b = β3d ,β3b = π − β3c ,β3b = π − β3a . The seven tubular con-
nections require seven constraints: α2f = α1g , α2b = α1c ,α2d = α1a , α2g = α3c , α1f = α3b , α2a = α1b , and 
α1d = α2c . Therefore, the extended unit cell in Fig. 5a has five DOF ( = 18− 6− 7 ) whose transformation is ex-
pressed in a domain of 0 < α1a ,α1c ,α2f ,β3b ,β1b < π . Notably, the loops perpendicular to each other in Fig. 5a 
do not affect the individual motions of the adjacent loops. Also note that α3c , α3b , α1b , and α2c are functions of α 
and β whose dependencies are expressed in Section II of the Supplementary Information (SI).

Extended unit cell with three planar closed‑loops.  The extended unit cell in Fig.  5b consists of seven cubic-
Snapology units with three planar closed-loops, providing a total of 21 ( = 7× 3 ) DOF if unconstrained: α1f , 
α2f , β3f , α1g , α2g , β3g , β1b ,α2b , β3b ,β2c ,α1c , β3c , α1a , α2a , β3a , α1d , α2d , β3d , α1h , α3h , and β2h . However, the three 
square closed-loop imposes nine ( = 3× 3 ) constraints and an additional nine constraints on the tubular con-
nections. Therefore, the extended unit cell has three DOF ( = 21− 9− 9 ) with a possible mobility domain such 
as 0 < β1b , β3b , α2c < π . Notably, the extended unit cell with three planar closed-loops also does not show a 
coupling effect of motion among the loops.

Extended unit cell with fully filled cubic connection.  Unlike the partially filled cases, the extended unit cell with 
a fully filled cubic connection in Fig. 5c shows a unique feature on the tubular constraints. From the 24 DOF 
( = 8× 3 ) with eight unconstrained units, we subtract constraints considering loops and tubular connections. 
The extended unit cell has six square closed-loops and 12 tubular connections, providing 30 ( = 6× 3+ 12 ) 
constraints, implying an over-constrained condition ( DOF = −6 ). However, the structure in Fig. 5c does have 
three DOF23, showing that our previous method does not apply to this structure.

Figure 5.   Angular kinematics to determine mobility of extended unit cells with planar closed-loops for spatial 
tessellation: (a) extended unit cell with two planar closed-loops, (b) extended unit cell with three planar closed-
loops, and (c) extended unit cell with six planar closed-loops.
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In this case, we observe a coupling effect of motion on the loops parallel to each other. A parallel loop pair 
provides one independent constraint. Therefore, there are three independent constraints in the orthogonal direc-
tions considering the three parallel loop pairs; e.g., β1a = β2d , β2a = β1b , and β3e = β3a in Fig. 5c. Therefore, the 
structure in Fig. 5c has three DOF ( = 24− 6× 3− 3 ). We can express the transformation domain with three 
angles, β1a , β2a , and β3a ; β1a + β2a ≥ β3a , β1a + β3a ≥ β2a , and β2a + β3a ≥ β1a , β1a + β2a + β3a ≤ 2π . Note 
that the extended unit cells in Fig. 5a,b do not have a parallel loop pair; they only have perpendicular loop pairs. 
This finding with cubic units strengthens the results in previous work23, demonstrating that the cubic-Snapology 
unit and the extended unit cell with fully filled connection have the same mobility ( DOF = 3).

Spatial closed‑loops.  Subtracting two units in a spatial diagonal direction from the fully filled extended 
unit cell with n = 8 , we can build a spatial closed-loop, as shown in Fig. 6a. If we only consider the mobility of 
unconstrained six cubic units and six tubular constraints, we have 12 DOF ( = 6× 3− 6 ). However, on the tubu-
lar connection of the spatial closed-loop, each vertex of the spatial loop imposes additional constraints: the vec-
tors to the exterior directions coincide with each other at the junctions, providing an additional six constraints 
at the six vertices. Therefore, the extended unit cell with a spatial closed-loop has six DOF ( = 6× 3− 6− 6 ). 
Figure 6b shows the transformed shapes of the extended unit cells with the spatially closed loop. We provide a 
more detailed derivation of the mobility of the spatial loop in Section III of the SI.

The exceeding DOF of the extended unit cell with the spatial closed-loop over the fully filled one can trans-
form to various shapes. More interestingly, the network structures constructed by a spatial tessellation of the 
extended unit cell in Fig. 6a have the same DOF as the network structure with filled units. The matter with the 
spatial loop reduces the mass compared with the fully filled matter to produce the same DOF ( = 3 ) and can pro-
duce multiple DOF ( = 3 or 6 ) depending on the modular stage. Identifying the independent motion of modular 
origami structures with disconnection is significant to reduce unnecessary actuators, eventually resulting in 
tremendous energy savings for the transformation of robotic matter.

Mobility analysis of network structures
Observing the mobility analysis of extended unit cells in the previous sections, we subtract the number of 
kinematic constraints by the closed-loops and tubular connections from the individual cubic Snapology units’ 
mobility. Similarly, we can apply the mobility analysis of the extended unit cells to the network structures. How-
ever, we need to investigate the mobility in the divided regions of a network structure because each region has 
a different role in kinematic constraints, as illustrated in Fig. 7a. From the all-possible individual mobility of 
extended unit cells, we subtract the number of new constraints in each region by the interaction of the extended 
unit cells with the adjacent regions’ ones, e.g., new planar and spatial loops between extended unit cells and 
new tubular connections. For example, a network structure with 2× 2× 2 extended unit cells (n = 4, c = 0) in 
Fig. 7b has the following mobility for a spatial tessellation:

where the subscript S denotes a spatial tessellation, i , j , k , ij , jk , and ik are the number of extended unit cells in 
the i , j , k , ij , jk , and ik regions. Note that the ijk region provides no independent mobility of the extended unit 
cell. In detail, we show the derivation of the mobility of network structures for planar and spatial tessellations 
in Section VI of the SI.

We validate the analytical method with a numerical approach that inspects the rank of the matrices consisting 
of linearized kinematic constraints28. We use the numerical approach to obtain the mobility of network structures 
with defects where the numerical code for Figs. 2 and 4 are available in the SI. Notably, we implement the same 
assumption as23 that the face of defected origami is rigid, demonstrating that our numerical results of mobility 
with defects provide the same ones as the eigenmode analysis23.

(6)DOFSn=4,c=0 = 2
(

i + j + k
)

+ 3
(

ij + jk + ik
)

− 6

Figure 6.   (a) Angular kinematics to determine mobility of the extended unit cell with spatial closed-loops and 
(b) its transformed configurations.
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Directional stiffness
The modular origami in this work can be used for both structures and mechanisms. For structural function, it has 
a load-bearing capacity with direction-dependent stiffness. Once a force exceeds the direction-dependent stiff-
ness, the modular origami starts deforming for transformation—actuation. Unlike the previous study23 that used 
air pressure on the hinges for actuation, one can use a mechanical actuation for reconfigurability29,30. Identifying 
the direction of weak stiffness of transformable modular origami structures with missing connections is signifi-
cant in search of loading directions to trigger mechanical actuation. Under a small deformation assumption, we 
obtain the directional stiffness of the modular origami structures with a periodic boundary condition using a 
finite element (FE)-based discretization method. We implement a torsional spring on the foldable hinge and a 
set of springs for stretching, bending, and shearing on the deformable faces. See the details on the formulation 
in Section V of the SI with the MATLAB code. Subtracting units from the fully connected structure can release 
both the maximum and minimum stiffness peaks, as shown in Fig. 8. The reduced minimum stiffness peak can 
trigger a transformation, requiring only a tiny amount of energy to trigger motion. For example, Fig. 8a-9 has 
the same DOF as the structure in Fig. 8a-1. However, a partially filled structure in Fig. 8a-9 has a lower mass and 
lower energy required to trigger motion than the fully connected structures in Fig. 8a-1.

The triangular loops in Fig. 8b have in-plane isotropy, showing a marginal anisotropy in the out-of-plane 
direction. However, increasing the number of defects can distinguish anisotropy, enabling optimum spots of 
energy-saving for triggering mechanical actuation. The cubic-Snapology structure with a tetrahedron loop has 
isotropic stiffness, providing no optimum spots for triggering a transformation, as shown in Fig. 8c. The cubic-
Snapology structures with disconnection constructing the planar square and spatial loops have lower directional 
stiffness. The lower directional stiffness implies that the Snapology structures can easily trigger transformation 
with low triggering mechanical energy than other modular origami topologies, as confirmed in Fig. 8d and 
Supplementary Video 3 in the SI.

Previously, Miura-origami31,32 and Snapology33 modular structures showed nonlinear folding behaviors dur-
ing mechanical actuation due to self-locking, multi-stability, and other material nonlinearity. We expect similar 
behavior in our structures; as folding proceeds, the normal surface direction of weak spots for mechanical 
actuation can change for the global coordinate, coupled with the geometric, material, and kinematic nonlinearly, 
implying that our search for weak spots in Fig. 8 has a limitation for large deformation.

Conclusion
We built building blocks of multi-DOF modular origami structures, including partial disconnection among 
modular units. By decomposing the motion of the core and tubular connection of the deformable modular 
units, we were able to determine the mobility of extended unit cells and network structures with the creation of 
loops by disconnection. Opposite to our intuition, an increase in disconnection rate does not necessarily reflect 
an increase in mobility, e.g., a network structure with spatial loops can maintain the same mobility (three DOF) 
as the fully filled structure while decreasing the mass by 25%. Our findings are valuable for the future design of 
soft modular robots, active architected materials, implanted modular medical devices, deployable structures, 
and active acoustic metamaterials. Our approach can expand the design space of multi-DOF modular origami 

Figure 7.   Analytical procedure to obtain mobility of network structures; (a) divided regions in a 3D space (b) 
an example of network structure with an extended unit cell (n = 4, c = 0).
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structures by creating loops in spatial and planar directions with artificial defects—disconnection, providing 
tunable mobility and stiffness while minimizing mass. A defect is generally considered unacceptable mechanical 
damage in structural engineering. However, the defect presented in this work has the potential to offer increased 

Figure 8.   Directional stiffness of modular origami structures for varying loop topologies of (a) cubic 
(Supplementary Video 3), (b) triangular, and (c) tetrahedron units as a function of angles γ and θ . The black and 
white circles indicate the unit’s orientations with maximum and minimum stiffness in each plot. Under each 
stiffness plot, the deformed units are shown on a magnified scale to facilitate visualization. (d) Specific stiffness 
values with the corresponding number of closed loops c , units n , and DOF.
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control of the mobility of modular origami structures over perfectly filled ones, representing a paradigm shift 
in the design of robotic matter.
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