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As Elimelech et al.1 point out, there is a legitimate need for
a method that produces singlet dioxygen (1ΔgO2) effi-
ciently, because this species plays a role in a research fields

like environmental science and biochemistry. They1 describe a
flow-through filtration process whereby singlet dioxygen is gen-
erated electrochemically. The mechanism proposed by Elimelech
et al.1 for its production is based on the reduction of hydrogen
peroxide by superoxide, the infamous Haber–Weiss reaction, and
is therefore incorrect. Furthermore, the evidence for formation of
singlet dioxygen is questionable.

The mechanism, shown in Fig. 4 of that publication1, starts
with reduction of O2 at the cathode to O2

•− and H2O2. H2O2 is,
of course, also formed by the spontaneous disproportionation of
O2

•−. Subsequently, 1ΔgO2 is proposed to be produced via reac-
tion 1:

O2
�� þHþ þH2O2 ! 1ΔgO2 þHO� þH2O ð1Þ

This reaction became known as the Haber–Weiss reaction
(with 1ΔgO2 or3Σg−O2) and was proposed in 19312. It proceeds
with a rate constant of at best 1 M−1s−1 3, and cannot compete4

with the rapid and spontaneous5 disproportionation of O2
•−.

Elimelech et al. cite my 1976 publication6 in support for for-
mation of 1ΔgO2. Indeed, I wrote that reaction (1) is thermo-
dynamically possible. However, the standard Gibbs energies of
formation of HO• and O2

•− have been determined more accu-
rately since then7, with the result that reaction 1 with O2 in the
singlet state is thermodynamically not possible3,8.

Elimelech et al. report that insignificant amounts of HO• were
detected. This should have led them to reject Reaction 1, because
for every 1ΔgO2 also one HO• is formed. Could it be that
the terephthalate concentration these authors used to detect HO•

was insufficient? If 1ΔgO2 was detected with micromolar con-
centrations of furfuryl alcohol, then HO• should also have been
seen, given that the rate constants of 1ΔgO2 and HO• with furfuryl
alcohol and terephthalate are similar, that terephthalate was
present in millimolar concentrations, and that unlike HO•, 1ΔgO2

is quenched in water at a rate of 2.7 • 105 s−1 9. Although irre-
levant at this stage, the notion that HO• reacts with terephthalate
to yield hydroxyterephthalate is incorrect. Instead, an adduct is
formed that needs to be oxidised to yield hydroxyterephthalate.

The authors base their conclusion that 1ΔgO2 is formed also on
the reaction of the latter with 2,2,6,6-tetramethylpiperidine, but
do not discuss the possibility that this compound may be oxidised
at the anode and then yields 2,2,6,6-tetramethyl-4-piperidinol-N-
oxyl after reaction with O2

10. Formation of any products from
1ΔgO2 would have been enhanced in D2O where 1ΔgO2 lives
much longer, or decreased by addition of a quencher, such as 1,4-
diazobicyclo[2.2.2]octane.

Thermodynamically, a simpler route to 1ΔgO2 could be the
oxidation of O2

•− to 1ΔgO2 at the anode, because the electrode
potential of the couple 1ΔgO2(aq)/O2

•− is +0.81 V11. In contrast,
the spontaneous disproportionation of O2

•− is not an alternative,
as the yield of 1ΔgO2 varies from not detectable to extremely low,
as recently reviewed8.

If we assume that is 1ΔgO2 formed, we may ask: how much?
Given the consumption of furfuryl alcohol, the rate constant of the
reaction of this compound with 1ΔgO2, the quenching rate con-
stant for 1ΔgO2 in water9, and the flow rate, one arrives at a low
nanomolar steady-state concentration of 1ΔgO2. This calculation
also shows that only 1.8% of all 1ΔgO2 reacts with furfuryl alcohol.

Experimental conditions and nomenclature need to be dis-
cussed too. Elimelech et al1. use scavengers at a single con-
centration, with the exception of terephthalate which was used at
two concentrations. These experiments do not prove that 1ΔgO2,
O2

•−, H2O2, and HO• are formed, because such a non-dose-
dependent approach only gives an indication. The authors refer to
these scavengers as specific for a particular species. Since HO•

reacts with nearly everything at high rates, such terminology is
inappropriate. Indeed, N3

− quenches 1ΔgO2, but it also reacts
with HO•, as do p-benzoquinone and catalase. It would have been
beneficial if the authors had consulted the Solution Kinetics
Database of the National Institute of Standards and Technology12

for the relevant rate constants. The description of 1ΔgO2 as
“possessing an empty π* orbital”1 is simplistic13. When electro-
filtration was carried out to remove substances, temperature and
pH were not mentioned. The word “quenching” is used as a
synonym of “scavenging”, which is incorrect14. The term ROS for
Reactive Oxygen Species, although widespread, is misleading as
neither O2

•− nor H2O2 are reactive, as argued before15. A study of
the thermodynamics and kinetics of reactions of small, short-
lived, oxygen-containing species will illustrate this.
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In summary, it is not impossible that Elimelech et al. produced
singlet dioxygen, but certainly not via the oxidation of O2

•− by
H2O2.
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