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Abstract. Chronic kidney disease (CKD) has a very high 
mortality rate and remains a global health challenge. Inhibiting 
renal fibrosis is one of the most promising therapeutic strate-
gies for CKD. Recent studies have indicated that endoplasmic 
reticulum stress (ERS) serves an active role in the develop-
ment of acute and chronic kidney disease, especially with 
regards to renal fibrosis. In the current review, the authors 
summarize the latest understanding of the role of ERS during 
the onset of renal fibrosis. ERS promotes renal fibrosis through 
multiple signaling pathways, such as transforming growth 
factor‑β, epithelial‑mesenchymal transition and oxidative 
stress. In addition, ERS also causes podocyte damage, leading 
to increased proteinuria and the development of renal fibrosis 
in rat models. In conclusion, targeted inhibition of ERS may 
become a promising therapeutic strategy for renal fibrosis.
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1. Introduction

Chronic kidney failure, the endpoint of chronic kidney disease 
(CKD), is defined as a glomerular filtration rate persistently 
below 15 ml/min per 1.73 m2. Renal replacement therapy 
(RRT) is achieved by hemodialysis, hemodiafiltration, perito-
neal dialysis or kidney transplantation, and can be lifesaving 
for patients with CKD. However, the mortality rate for patients 
on RRT remains high, and <25% of patients with chronic 
kidney failure undergo RRT in developing countries (1).

Renal fibrosis is a complicated process characterized by 
fibroblast proliferation and the accumulation of extracellular 
matrix (ECM). Collectively, these changes lead to renal tubule 
fibrosis, glomerular sclerosis, renal artery stenosis and chronic 
inflammatory cell infiltration (2). It is currently believed that 
renal fibrosis develops in response to ECM accumulation due 
to epithelial‑mesenchymal transition (EMT) (3), transforming 
growth factor (TGF)‑β signaling (4), oxidative stress (5) and 
proteinuria (6). Endoplasmic reticulum stress (ERS) is a 
physiological or pathological condition that can be caused by 
glucose deprivation, hypoxia or virus infection. Recent studies 
have shown that ERS plays a vital role in the development of 
CKD (7,8). Furthermore, inhibition of ERS can alleviate renal 
fibrosis progression (9-11). Although a rich body of knowledge 
regarding the relationship between ERS and CKD has been 
accumulated to date, how ERS contributes to renal fibrosis has 
not been fully elucidated. In the present review, the authors 
summarize the latest understanding of the role of ERS during 
the onset of renal fibrosis, and propose that targeted inhibition 
of ERS may become a promising therapeutic strategy for renal 
fibrosis.

2. The cause and role of ERS

The ER performs a variety of cellular function, including 
the regulation of protein biosynthesis, folding trafficking and 
modification (8). The ER is implicated in several cellular 
processes via three major types of signaling: 1) Protein kinase 
RNA‑like endoplasmic reticulum kinase (PERK) signaling, 
2) inositol‑requiring enzyme 1 (IRE1) signaling, and 
3) activating transcription factor (ATF) 6 signaling (12). The 
PERK pathway is activated by PERK autophosphorylation, 
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PERK then phosphorylates eukaryotic initiation factor‑2α 
(eIF2α). Phosphorylated eIF2α promotes the expression of 
apoptotic proteins such as CCAAT‑enhancer‑binding protein 
homologous protein (CHOP). Similarly, the IRE1 pathway is 
activated by autophosphorylation of IRE1, which subsequently 
induces unconventional splicing of X‑box‑binding protein‑1 
(XBP1) mRNA (13). In contrast, ATF6 signaling is initiated 
by ATF6 cleavage by Site 1 protease and Site 2 protease in the 
Golgi apparatus, and the cleaved subunit (p50ATF6) functions 
as a transcription factor (14). ER function can change in 
response to environmental stimuli, such as ischemia, glucose 
deprivation, or oxidative stress, as well as to genetic mutations, 
which can result in abnormal protein folding (15). Accumulation 
of misfolded proteins in the ER lumen induces a range of ER 
dysfunctions, collectively referred to as ERS (16). To ensure 
the fidelity of protein folding and prevent the accumulation of 
unfolded or misfolded proteins, cells experiencing ERS invoke 
a well‑conserved adaptive response known as the unfolded 
protein response (UPR) to ameliorate cell damage and restore 
homeostasis (17).

Under prolonged or severe ERS, a variety of molecular 
chaperones accumulate in the ER lumen, such as glucose‑regu-
lated protein 78 (GRP78), GRP94 and calreticulin, which 
prevent the accumulation of unfolded proteins and facilitate 
protein folding (18). Moreover, if these adaptive responses fail 
to alleviate ERS, apoptotic pathways are activated to eliminate 
damaged cells. CHOP is thought to be a critical mediator of 
ERS‑induced apoptosis (19).

ERS has a crucial role in kidney diseases. ERS can cause 
cellular damage and lead to renal fibrosis in podocytes, 
renal tubular cells, glomerular endothelial cells (GEnCs) 
and mesangial cells (11,20,21), whereas inhibition of ERS 
can ameliorate renal fibrosis progression (9,10). Collectively, 
these findings suggested that the inhibition of molecular 
chaperones during UPR or directly blocking ERS may offer 
new therapeutic strategies for renal fibrosis.

3. Relationship between TGF‑β and ERS

TGF‑β is the primary cytokine that causes fibrosis. Smad 
proteins are highly conserved transcription factors that are 
central to signal transduction pathways that mediate the 
numerous effects of TGF‑β superfamily (22). For example, the 
inhibition of ERS reduced TGF‑β activity in an angiotensin 
Ⅱ reperfusion model, thereby alleviating myocardial hyper-
trophy and fibrosis (23). TGF‑β induced GRP78 expression 
in human and mouse lung fibroblasts, while the inhibition 
of GRP78 expression significantly reduced the expression of 
collagen and α‑smooth muscle actin (α‑SMA), two biomarkers 
of fibrosis (24). These results indicate that ERS serves a 
pro‑fibrogenic role.

Prolonged or severe ERS can cause kidney cells to undergo 
apoptosis, resulting in renal fibrosis, while the inhibition of 
ERS can delay fibrosis development (6,25). ERS-associated 
proapoptotic signals, including B‑cell chronic lymphocytic 
leukemia/lymphoma 2‑associated protein (BAX) expression 
and caspase‑12 and c‑Jun N‑terminal kinase (JNK) phos-
phorylation, are activated in the unilateral ureteral obstructed 
(UUO) kidney. Prolonged ERS attenuates the expression of 
both unspliced and spliced XBP‑1. In addition, prolonged 

ERS activates IRE1α‑JNK phosphorylation and the expres-
sion of protein kinase RNA‑like endoplasmic reticulum 
kinase (PERK), eIF2α, ATF‑4, CHOP and cleavage activating 
transcription factor 6 (cATF6)‑CHOP, collectively resulting 
in ERS‑induced apoptosis. TGF‑β markedly increases the 
expression of ERS‑associated proteins, such as GRP78, CHOP, 
ATF4, spliced XBP1 and various profibrotic factors, such as 
α‑SMA and connective tissue growth factor. Many of these 
proteins serve as apoptotic markers in renal tubular cells (8). 
TGF‑β also activates ERS‑mediated proapoptotic signaling 
via the JNK pathway, which serves an important role in renal 
fibrosis and mesangial cell apoptosis (26). Furthermore, ERS 
promotes apoptosis in GEnCs by regulating TGF‑β expres-
sion (21), ultimately causing renal fibrosis. Sox4 (SRY‑related 
HMG box 4) is required for TGF‑β‑induced apoptosis, and 
is widely expressed during mouse embryogenesis and func-
tions in the development of many tissues (27). A recent study 
reported that TGF‑β can induce Sox4 expression, causing 
pro‑apoptotic responses in pancreatic cancer cells associated 
with EMT‑linked repression of Kruppel‑like factor 5 (28). 
It remains unclear whether this mechanism of apoptosis is 
related to ERS‑induced renal fibrosis.

ERS may promote kidney fibroblast differentiation and 
collagen formation via the upregulation of TGF‑β (29,30). 
Studies based on a renal fibrosis model induced by asymmetric 
dimethylarginine (ADMA) demonstrated that ADMA could 
activate ERS sensor proteins PERK and IRE1α, which then 
induce CHOP expression and JNK phosphorylation in GenCs 
and mesangial cells (21,31). These changes resulted in increased 
TGF‑β expression, and ADMA promoted ERS‑related apop-
tosis by increasing TGF‑β expression (Fig. 1) (21). In contrast, 
TGF‑β has been shown to improve ischemia/reperfusion 
(I/R)‑induced myocardial contractile dysfunction in H9c2 
cells via the inhibition of ERS‑dependent markers of apoptosis 
(GRP78, CHOP, caspase‑12, and JNK) and the modulation of 
Bcl2/Bax expression (32). Further studies are needed to reveal 
the relationship between ERS and TGF‑β in different contexts.

4. Relationship between ERS and EMT

During EMT, renal epithelial cells are transformed into mesen-
chymal cells. These mesenchymal cells serve to ameliorate 
tissue damage, causing ECM accumulation and the production 
of myofibroblasts, which are key effectors in ECM synthesis 
and deposition (33). EMT is characterized by a reduction in 
cell‑cell contact, splitting of the basement membrane, reduced 
expression of proteins such as E‑cadherin, nephrin, podocin 
and zonula occludens‑1, cytoskeletal reorganization, transition 
to a spindle‑shaped morphology, and increased expression 
of mesenchymal markers such as α‑SMA, vimentin, type 
I collagen and fibronectin (33). Although a large number of 
studies have indicated that EMT in the kidney may lead to 
renal fibrosis, the relationship remains controversial (3).

ERS mediates EMT via several pathways. Advanced oxida-
tion protein products (AOPPs) are formed in response to the 
reactions between plasma albumin and chlorinated oxidants 
during oxidative stress (34). AOPPs have been reported to 
induce podocyte apoptosis, mesangial cell perturbation (35), 
distal renal tubular epithelial cell hypertrophy and EMT (36). 
Li et al (37) showed that AOPPs can promote the progression 
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of early diabetic renal fibrosis. This may be because AOPPs 
induce ERS by increasing GRP78 and CHOP expression, 
which causes human renal glomerular endothelial cells to 
undergo EMT as they age or are exposed to hyperglycemic 
conditions (35). ERS mediates EMT by decreasing E-cadherin 
expression and increasing α‑SMA expression. These 
AOPP‑associated effects can be reversed by treating cells 
with salubrinal, an inhibitor of ERS, but can be reproduced by 
treating cells with thapsigargin (TG), an inducer of ERS (35).

In addition, autophagy is induced during stress, and it 
can alternately contribute to cell death or serve as a cellular 
survival mechanism (38). ERS resulting from tunicamycin 
or TG treatment can induce EMT by causing autophagy via 
c‑Src kinase activation in tubular epithelial cells, ultimately 
leading to renal fibrosis (Fig. 2) (39). Neuronal precursor 
cell‑expressed developmentally downregulated protein 
(Nedd) 4‑2, a 120 kDa highly conserved E3 ligase present in 
eukaryotic cells, has been demonstrated to regulate membrane 
availability of a number of ion channels (40). Nedd4-2 has 
also been reported to be involved in renal‑tubular metabolism, 

leading to kidney injury (41). Wang et al (42) demonstrated that 
Nedd4‑2 is upregulated in response to ER stress by the spliced 
form of XBP‑1, which is important for inducing an appropriate 
autophagic response in liver cells. Nonetheless, there is still no 
any report on the relationship between ER stress and Nedd4‑2 
in kidney cells.

Finally, ERS causes EMT by increasing TGF‑β expression 
in renal tubular epithelial cells, and TGF‑β acts as a major 
regulator in inducing EMT through the PI3K/Akt pathway, 
the Notch signaling pathway, the Wnt/β‑catenin pathway and, 
perhaps, the AOPPs (26,43). Snail, Zeb1, and TWIST1, as 
transcriptional factors, have been involved in the process of 
EMT (44). ERS induces EMT also via increasing the expres-
sion of Snail (45), Zeb1 and TWIST1 in cancer cells (44).

5. Relationship between ERS and oxidative stress

Oxidative stress is usually produced by reactive oxygen 
species (ROS). Oxidative stress is common in CKD and serves 
an important role in renal fibrosis progression (5). ROS attack, 

Figure 1. TGF‑β signaling induced apoptosis is modulated by the UPR cascade. Under severe or prolonged endoplasmic reticulum stress caused by TGF‑β 
signaling, UPR stimulates apoptosis through the following 3 proteins: PERK, IRE1 and ATF4. These proteins increase the expression of transcription factors 
CHOP, XBP1 and ATF4, which promote apoptosis and upregulate TGF‑β1 expression, thus augmenting TGF‑β signaling. Additionally, UPR propagates apop-
tosis via the JNK signaling pathway, which can also be induced by TGF‑β. TGF‑β, transforming growth factor‑β; UPR, unfolded protein response; PERK, protein 
kinase RNA‑like endoplasmic reticulum kinase; IRE1, inositol‑requiring enzyme 1; ATF, activating transcription factor; CHOP, CCAAT‑enhancer‑binding 
protein homologous protein; XBP1, X‑box‑binding protein‑1; JNK, c‑Jun N‑terminal kinase; α-SMA, α‑smooth muscle actin.
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denature and modify the structure and function of molecules 
and activate redox‑sensitive transcription factors and signaling 
pathways, resulting in tissue injury and dysfunction. These 
events increase ECM expression and promote the development 
of renal fibrosis (5).

ERS promotes ROS production through multiple 
pathways. Protein disulfide isomerase (PDI) is an essential 
enzyme that mediates disulfide bond formation in the ER. In 
chaperone‑assisted disulfide bond formation between peptide 
chains, two electrons are provided to a cysteine residue within 
the PDI active site (46). The transfer of electrons reduces the 
PDI active site and causes substrate oxidation, contributing to 
ROS production in the ER (47). The NADPH oxidase protein 
family has seven members, Nox 1‑5 and Duox 1 and 2, among 
them, Nox4 is most commonly associated with the ER (47). 
ERS and ROS production are fundamental components in the 
acute and chronic conditions that result from UPR signaling. 
Following UPR activation, peripheral vasculature cells 
experience increased Nox4 level, which in turn stimulates ROS 
production (48). In addition, oxidative stress has also been 
indicated to initiate and contribute to ERS (49). Therefore, 
ERS and ROS have a cause‑and‑effect relationship with each 
other.

The interaction between ERS and oxidative stress is consid-
ered the primary driving force of renal fibrosis. Hyperglycemia 
commonly leads to oxidative stress. Using a type 2 diabetic rat 
model, Lee et al (11) reported that ERS and oxidative stress 
activated TGF‑β/Smad2/3 signaling and increased α-SMA 
expression, resulting in kidney cell fibrosis and apoptosis and 
diabetic nephropathy (DN). Recent studies have indicated 
that aldosterone/mineralocorticoid receptor (MR) is a major 

contributor to CKD progression (50). For instance, oxidant 
stress‑mediated aldosterone/MR‑induced podocyte injury 
occurs in response to ERS, which then triggers both apoptosis 
and autophagy to cope with the injury (50).

6. Relationship between ERS and proteinuria

CKD is characterized by abnormalities in the glomerular 
filtration barrier that lead to increased glomerular permeability 
and abnormal filtration of macromolecules, such as albumin. 
Evidence from clinical and experimental studies indicates that 
albuminuria and proteinuria are not simply markers of CKD 
progression, but rather are active players in the development of 
CKD (6). Mechanistically, it has been proposed that proteins 
released into the glomerular filtrate have toxic effects on 
tubular cells and damaged tubular cells lead to the develop-
ment of interstitial fibrosis (51).

Podocyte injury is a major cause of proteinuria, and ERS 
serves an essential role in podocyte damage. ERS was presented 
to have a close relationship with podocyte injury in a CKD rat 
model, ERS induces a series of changes such as the upregula-
tion of ER chaperone and ERS proteins, increased podocyte 
apoptosis, accumulation of mutated and misfolded proteins in 
the ER, and disruption of the glomerular filtration structure, 
leading to proteinuria (Fig. 3) (52,53). These findings suggested 
that UPR augmentation therapy may enhance ER proteostasis 
and serve as a new therapeutic approach for renal fibrosis.

ERS is common in the pathogenic microenvironment and 
contributes to the progression of various podocyte diseases. A 
proteomic study revealed a series of ERS proteins that are mainly 
involved in cytoskeletal rearrangement, suggesting a potential 

Figure 2. The possible mechanism by which ERS induces EMT. UPR impacts EMT both directly and indirectly. In the former case, GRP78 can increase 
the expression of α‑SMA and decrease the expression of E‑cadherin, both biomarkers of EMT. In the latter case, ERS stimulates the expression of α-SMA 
through autophagy induced by C‑Src. ERS, endoplasmic reticulum stress; EMT, epithelial‑mesenchymal transition; UPR, unfolded protein response; GRP78, 
glucose‑regulated protein 78; α-SMA, α‑smooth muscle actin.
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mechanism by which these proteins cause podocyte dysfunc-
tion (54). In addition, abnormal protein accumulation associated 
with ERS in podocytes produces damage to the cells, which in 
turn leads to severe proteinuria (55). Slit diaphragm proteins 
such as CD2‑associated protein (CD2AP) serve a critical role 
in podocyte biology, protein permeability, cell signaling and 
disease (52). The transient receptor potential (TRP) superfamily 
member TRPC6 is confirmed to be the primary Ca2+‑permeable 
ion channel in non‑excitable cells. TRPC6, a glomerular slit 
diaphragm‑associated channel required for normal renal func-
tion, is expressed in the cell body, major processes and foot 
processes near the slit diaphragm (56). Downregulation of TRPC6 
expression ameliorated puromycin aminonucleoside‑induced 
podocyte apoptosis (57). Furthermore, in several studies of 
albumin overload, which mimics proteinuria, TRPC6‑mediated 
calcium entry into the cells and CD2AP downregulation could 
induce UPR‑mediated apoptosis in podocytes (52,58). ERS 
also causes podocyte damage through monocyte chemotactic 
protein‑1, which is associated with renal fibrosis‑related chronic 
inflammation (59). Moreover, the activation of rapamycin‑sensi-
tive protein kinase complex mTORC1 triggered UPR activation 
in podocytes in an animal model of DN, leading to podocyte 
injury (60). The carrier protein neutrophil gelatinase‑associated 
lipocalin (NGAL), also known as lipocalin (LCN) 2, is associ-
ated with renal fibrosis and has been demonstrated to promote 
CKD progression in mice and humans (61). Proteinuria caused 
by calcium release‑induced ER stress results in LCN2 over-
expression, which in turn leads to tubular apoptosis and renal 
lesions. Moreover, 4‑phenylbutyric acid (PBA) was reported to 
delay renal deterioration in proteinuric mice (61). This may be 

because albumin induces ER stress and increases cytosolic Ca2+ 

concentrations in cultured podocytes through the activation of 
TRPC6. In albumin‑overloaded tubular cells exhibiting UPR, 
ERS increases the expression of CHOP and ATF4, and these 
proteins then interact with other factors to induce LCN2 expres-
sion (Fig. 3) (58).

7. Potential value of ERS for the treatment of renal fibrosis

Recently, growing evidence has suggested that inhibiting ERS 
can alleviate the progression of renal fibrosis. Downregulation 
of Klotho, a transmembrane protein primarily expressed in 
kidney distal tubular cells, has been indicated to cause multiple 
age-associated disorders (10). Aging is related to CKD devel-
opment, and Klotho, which has anti‑aging properties, has been 
implicated in the pathogenesis of various kidney diseases (62). 
Liu et al (10) reported decreased Klotho expression and the 
presence of ERS in a UUO model, and Klotho administra-
tion was able to ameliorate UUO‑induced ER stress, inhibit 
apoptosis and attenuate renal fibrosis. Another study reported 
that CHOP deficiency not only attenuates apoptosis and oxida-
tive stress in experimental renal fibrosis, but also reduces 
local inflammation and ameliorates UUO‑induced renal 
fibrosis (63).

Although some drugs have shown the ability to suppress 
ERS, further experimental studies are required. The chemical 
chaperone sodium 4‑BPA, an aromatic fatty acid analog, has 
been used to treat urea cycle disorders because its metabolites 
offer an alternative pathway to the urea cycle, allowing for 
excretion of excess nitrogen (8). Liu et al (8) reported that 
4‑PBA acts as an ER chaperone to ameliorate ERS‑induced 
renal tubular cell apoptosis and renal fibrosis. Valproate (VPA) 
is a histone deacetylation enzyme inhib itor that increases 
histone acetylation and promotes gene transcription. VPA has 
previously been used as an antiepileptic and anti‑tumor treat-
ment. Recently, Sun et al (9) demonstrated in a rat model that 
VPA relieved ERS and reduced renal cell apoptosis, thereby 
attenuating renal injury. Furthermore, a pentacyclic triterpenoid 
compound oleanolic acid (OA) has shown therapeutic efficacy 
for CKD, without apparent side effects. Several studies have 
reported that OA has anti‑oxidant, microbicidal, anti‑diabetic, 
anti‑inflammatory, hypolipidemic and anti‑atherosclerotic 
activities (11). In mammals, N-acetylcysteine (NAC, 2-acet-
amido‑3‑sulfanylpropanoic acid) is a precursor of intracellular 
cysteine and glutathione, and a previous study reported that 
NAC has powerful anti‑oxidant and protective effects in 
β‑cells in diabetic db/db mice (64). Lee et al (11) reported 
that OA and NAC have potential therapeutic effects for DN 
based on their anti‑oxidant effects and ability to reduce ERS. 
Sodium citrate also has a protective effect on chronic renal 
failure by affecting ERS (65).

Mesencephalic astrocyte‑derived neurotrophic factor 
(MANF) localizes to the ER lumen and is secreted in response 
to ERS in several cell types. Using a rat model, Kim et al (66) 
demonstrated that MANF can potentially serve as an urine 
diagnostic or prognostic biomarker for ERS‑related kidney 
disease to help stratify disease risk, predict disease progres-
sion, monitor treatment response and identify subgroups of 
patients who can be treated with ER stress modulators in a 
highly targeted manner.

Figure 3. The possible mechanism by which ERS results in podocyte damage. 
Proteinuria causes ERS via Ca2+, resulting in increased expression of ATF4 
and CHOP, which interact to induce LCN2 expression and cause podocyte 
apoptosis. Additionally, increasing Ca2+ levels can promote podocyte UPR 
by inhibiting CD2AP, which serves a critical role in podocyte biology. ERS, 
endoplasmic reticulum stress; ATF, activating transcription factor; CHOP, 
CCAAT‑enhancer‑binding protein homologous protein; LCN2, lipocalin 2; 
UPR, unfolded protein response; CD2AP, CD2‑associated protein; TRPC6, 
transient receptor potential C6; PERK, protein kinase RNA‑like endoplasmic 
reticulum kinase.
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8. Conclusions

It is important to note that stress is a non‑specific systemic 
protection response and ERS acts as a self‑protecting regula-
tory system to promote cell survival under different stresses 
that can result in various pathological conditions. However, 
abnormal or excessive ERS would result in different patho-
logical changes. Therefore, ERS inhibitors not only inhibit 
fibrosis in the kidney but also alleviate pathological role of 
excessive ERS in other organs. In summary, targeted inhibi-
tion of ERS is of great value for renal fibrosis therapy, and it 
is expected that ERS inhibitors with clinical applications will 
become available in the future.
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