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Abstract
In light of our own experiences, we value the existing literature to critically point out possible “near” future applications of 
optical coherence tomography (OCT) as an intraoperative neurosurgical guidance tool. “Pub Med”, “Cochrane Library”, 
“Crossref Metadata Search”, and “IEEE Xplore” databases as well as the search engine “Google Scholar” were screened for 
“optical coherence tomography + neurosurgery”, “optical coherence tomography + intraoperative imaging + neurosurgery”, 
and “microscope integrated optical coherence tomography + neurosurgery”. n = 51 articles related to the use of OCT as an 
imaging technique in the field of neurosurgery or neurosurgical research. n = 7 articles documented the intraoperative use 
of OCT in patients. n = 4 articles documented the use of microscope-integrated optical coherence tomography as a neuro-
surgical guidance tool. The Results demonstrate that OCT is the first imaging technique to study microanatomy in vivo. 
Postoperative analysis of intraoperative scans holds promise to enrich our physiological and pathophysiological understanding 
of the human brain. No data exists to prove that OCT-guided surgery minimizes perioperative morbidity or extends tumor 
resection. But results suggest that regular use of microscope-integrated OCT could increase security during certain critical 
microsurgical steps like, e.g., dural dissection at cavernous sinus, transtentorial approaches, or aneurysm clip placement. 
Endoscopy integration could aid surgery in regions which are not yet accessible to real-time imaging modalities like the 
ventricles or hypophysis. Theranostic instruments which combine OCT with laser ablation might gain importance in the 
emerging field of minimal invasive tumor surgery. OCT depicts vessel wall layers and its pathologies uniquely. Doppler 
OCT could further visualize blood flow in parallel. These abilities shed light on promising future applications in the field 
of vascular neurosurgery.
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Introduction

Microneurosurgery remains an exceedingly demand-
ing and dexterous fine motor task. Microscope-integrated 
three-dimensional imaging techniques which delineate the 
microstructural composition of tissue in the field of view 
are missing so far.

OCT imaging depends on the detection of back-scattered 
near-infrared light and is therefore harmless to biological tis-
sue [3]. Notably OCT offers an outstanding axial spatial res-
olution from 1 to 15 μm. Among in vivo imaging methods, it 

remains unprecedented and approaches spatial resolution of 
conventional histopathology [10]. Penetrating depths depend 
on the optical tissue density. They range from 4 mm in air 
to 2.5 mm in dens tissue. With approximately 3.1 mm in 
the human cerebral cortex OCT well meets microsurgical 
requirements [9].

Physically depending on light microscope integration is 
fairly simple [25]. This opens up the ability of contact free 
three-dimensional, real-time scanning of tissue in the field 
of view during microsurgical procedures [26]. In ophthal-
mology, the technique yet proved robustness and is daily 
integrated in vitreoretinal surgical setups [19, 36].

In the neuroimaging domain, recent optical and image 
processing advancements like automatic serial sectioning of 
polarization-sensitive OCT (asPSOCT) and speckle modu-
lation even increased image quality to such an extent that 
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in vitro representation of cortical layers at single cell width 
were possible (see Fig. 1) [13, 29, 37, 41].

OCT has the ability to perform an “optic biopsy”. Not 
only white and gray matter but also healthy and diffusely 
invaded brain tissue could be distinguished in glioma sur-
gery [2, 12, 14, 24, 31].

A part from structural imaging, functional brain imag-
ing is possible. Adaptations of perfusion-dependent OCT 
offer the possibility of functional cortical mapping after 
peripheral stimulation and furthermore the delineation of 
epileptic foci [32, 33, 35].

Fig. 1  Recent technical developments in OCT. (1) Speckle-modu-
lated OCT. Speckle artifacts limit the spatial to noise ratio in OCT 
imaging. These exemplary speckle-modulated OCT scans of the 
mouse cornea and retina show the increase of resolution in contrast to 
conventional OCT imaging. (1A) Conventional OCT scan of mouse 
cornea. (1B) Speckle modulated OCT scan of same mouse cornea, 
notice enhanced sectioning of histological layers. (1C, D) Enlarged 
excerpts (1D) notice enhanced delineation of histological structures 
like lamellae and enhanced delineation of the endothelium in speckle-
modulated OCT. (1E) Histological section of cornea. (1F) Conven-
tional OCT scan of mouse retina. (1G) Speckle-modulated OCT scan 
of mouse retina. (1H, I) Enlarged excerpts (1E) notice enhanced 
segregation of single retinal layers; see Yecies et al. [41]. (2) Polar-
ization-sensitive OCT (ps-OCT). Through a set of hardware and 
software components, polarization-sensitive OCT (ps-OCT) is able 
to measure and correct the birefringence (“bi-refraction” of light) of 
local regions of tissue, leading to enhanced imaging of tissue with 
different optical densities and refraction indices. (2A) ps-OCT of 
a block of human cerebellar lobule. The folded cerebellar cortex is 

shown on orthogonal viewing planes (xy coronal; xz axial; yz sagit-
tal). Note the ability to delineate the Purkinje cell layer. Volume ren-
dering of segmented (2B) molecular layer, (2C) granual layer, and 
(2D) white matter (see Wang et  al. [37]. (3) Doppler OCT. In  vivo 
delineation of mouse cortical vasculature with Doppler OCT. (3A) 
Multi-photon laser scanning microscopy (MPM) of cerebral vascula-
ture (3B) three-dimensional reconstruction of flow demonstrating the 
vasculature of the mouse cortex. (3C) Doppler OCT velocity projec-
tion map (see Gagnon et  al. [13]. (4) Sensitivity contrast-enhanced 
OCT. Imaging of lymph vessels in ears pinnae in living mice. Injec-
tion of large gold nanorods LGNR is used for functional imaging. 
(4a) Delineation of blood vessels (red) by flow detection in OCT 
prior to LGNR injection. (4b) Injection of 815  nm LGNRs (green) 
and 925  nm LGNRS (cyan). (4c) Drainage of LGNRs and delinea-
tion of lymphatic vessels. (4d) Same imaging technique in a different 
mouse after injection of LGNRs (4e) enlarged excerpt displaying the 
relationship of blood and lymphatic vessels (4f) same area as in (4e) 
after injection of 925 nm LGNRs displaying the (arrow) junction of 
lymph vessels and mono directional flow (see Liba (2016))
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These versatile strengths shed light on OCTs potential for 
microneurosurgical guidance. This critical literature review 
focuses on clinical “near” future applications to further 
enhance neurosurgical excellence.

Materials and methods

“Pub Med”, “Cochrane Library”, “Crossref Metadata 
Search”, and “IEEE Xplore” databases as well as the search 
engine “Google Scholar” were screened for “optical coher-
ence tomography + neurosurgery”, “optical coherence 
tomography + intraoperative imaging + neurosurgery”, 
and “microscope integrated optical coherence tomography 
+ neurosurgery”.

Results

Detailed evaluation of the results revealed n = 51 articles 
related to the use of OCT as an imaging technique in neuro-
surgery or in the field of neurosurgical research. n = 7 articles 
documented the intraoperative use of OCT in patients. n = 4 
articles documented the use of microscope-integrated opti-
cal coherence tomography as a neurosurgical guidance tool.

Discussion

Fundamental research

OCT allows to study microanatomy in vivo. Analysis of the 
human subarachnoid space with microscope-integrated OCT 
could delineate for the first time its intact microstructural 
composition. The arachnoid barrier cell membrane, trabecu-
lar system, inlying blood vessels, pia mater, and brain cortex 
could be well-delineated. OCT was further the first imaging 
modality to measure the height of these structures in vivo 
with an accuracy of 7.5 µm. Increased heights of the arach-
noid barrier cell membrane at the Sylvian fissure manifested 
[17] (see Fig. 1).

Analysis of the cranial dura mater demonstrated differ-
entiation of the outer periostal and inner meningeal layer as 
well as the microanatomical structure of mayor dural blood 
vessels like arteria meningea media with its vessel wall lay-
ers. Measurements of the cranial dura mater documented 
interindividual highly variable thicknesses [15] (see Fig. 1).

Extravascular OCT could delineate the microstructural 
composition of cerebral vessel walls with richness of detail 
[8, 38, 42]. It proved to delineate tunica interna, media, 
externa, and adventitia in cerebral arteries. Clinical relevant 
pathologies like calcifications and arteriosclerosis could be 
further displayed. Scanning of an incidental vasospasm 

could well define contraction of tunica media with increased 
thickness and decreased luminal diameters (preliminary 
results of our research group). The amorphous character of 
cerebral aneurysm walls with residual tunica media could be 
delineated for the first time [18] (see Fig. 1).

Intra‑axial lesions

Primary applications of OCT in neurosurgery focused on 
the ability to distinguish healthy and tumor-infiltrated brain 
tissue. This ability could be demonstrated in glial tumors as 
well as malignant melanomas in vitro and later in vivo [2, 4, 
5, 24, 27, 34]. Further technical development of cross-polar-
ization OCT even enhanced such tumor detection qualities 
[22, 39, 40]. Aside from experimental setups, OCT proved 
these abilities during human glioma resection [1, 14]. Fac-
tors which might limit the use of OCT during high-grade 
glioma surgery might be extended globe shaped resection 
cavities which need multiple adaptations of the microscope 
angle to acquire reliable orthograde scans. Another factor 
could be the diffuse infiltrative growth which often leads to 
functional-based rather than tumor margin-based resections. 
Thirdly, 5-ALA states a well-established tool in this domain 
{Stummer:2006ib}.

Needle interventions

Due to its physical properties, integration into optical 
devices is fairly simple [5]. Needle integration aided and 
controlled the placement of epidural catheters in a porcine 
model [23]. A lateral viewing probe could discriminate 
blood vessels at biopsy site in human brain tumors [34]. 
Since OCT can distinguish between gray and white matter, 
fine placement of electrodes for deep brain stimulation could 
be guided in a rodent model [28, 30]. A combination with 
laser ablation systems has the ability of direct real-time feed-
back to guide the ablation process in a porcine brain tumor 
model [7, 11, 21]. These yet experimental theranostic instru-
ments could be promising in the advancing field of minimal 
invasive tumor, radiant necrosis, and epileptic surgery.

Extra‑axial lesions

OCT-guided dissection of cranial dura mater showed the abil-
ity to discriminate dural layers. Thin dura mater in combina-
tion with low optical density enabled transdural OCT scanning. 
These scans showed a sufficient image quality to delineate con-
cealed microanatomical structures like the subarachnoid space, 
inlying blood vessels, or the brain cortex [15] (see Fig. 1). No 
literature exists on the use of OCT during meningioma surgery. 
The above mentioned study suggests that OCT would only be 
suitable to delineate crucial venous structures like the sinus in 
certain meningiomas with a low optical density.
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Fig. 2  Microscope Integrated OCT. 
A Light microscopic image after right 
fronto-lateral craniotomy, during dis-
section of dura mater. Opened segment 
shows Sylvian fissure with superficial 
Sylvian veins and temporal as well 
as frontal brain cortex. Orange line 
indicates region of scan. B OCT scan 
of dura mater depicting the (1) outer 
endosteal and (2) inner meningeal 
layer. Strikingly, a (3) subdural space is 
present, enabling a clear definition of 
(2) the inner meningeal dural layer and 
the (4) arachnoid barrier cell membrane. 
Furthermore, (5) subarachnoid blood 
vessels, (6) subarachnoid space, (7) tra-
becular system, (8) brain cortex, and (9) 
reflection artifacts are depicted by the 
transdural OCT scan. Red line indicates 
the area of enlarged excerpt. C Enlarged 
excerpt demonstrating details of trans-
dural OCT scan. D Schematic drawing 
of microstructures: (1) + (2) dura mater, 
(1) outer endosteal layer, (2) inner 
meningeal layer, (3) subdural space, (4) 
subarachnoid space (4) arachnoid barrier 
cell membrane, (5) subarachnoid blood 
vessels, (6) subarachnoid space, (7) 
trabecular system, (8) brain cortex, and 
(9) reflection artifacts; see Hartmann 
et al. [16], figure edited with permission 
from the authors. E OCT scan of frontal 
lobe at frontal operculum visualizing 
the collapsed SAS after CSF release, 
with adjacent internal blood vessels. Red 
rectangle shows enlarged details of the 
OCT-Scan; see Hartmann et al. [17, 18], 
figure edited with permission from the 
authors. F Light microscopic intraopera-
tive image of parent vessel: right internal 
carotid artery. Orange horizontal line 
indicates area of OCT scan. G OCT 
scan of parent vessel. (1 Tunica externa; 
(2) tunica media; (3) tunica interna; (4) 
atherosclerotic plaque; (5) vasa vasorum. 
H Light microscopic intraoperative 
image of ramus communicans aneurysm 
seen from a left fronto-lateral approach. 
I OCT scan of the neck of the ramus 
communicans anterior aneurysm (CA) 
demonstrating the continuous fading 
transition from a 3-layered configuration 
of the parent vessel to the mono-layered 
appearance of the CA dome. (1) CA 
dome; (2) CA neck; (3) parent vessel. J 
Light microscopic intraoperative image 
of right proximal internal carotid artery 
aneurysm seen from a right fronto-
lateral approach; orange lines indicate 
the area of OCT scan at the aneurysm 
dome with artherosclerotic plaque. K 
Longitudinal OCT scan at aneurysm 
dome demonstrating intra-aneurysmatic 
atherosclerotic plaque; see Hartmann 
et al. [17, 18], figures edited with per-
mission from the authors
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Vascular neurosurgery

Microscope-integrated OCT could well delineate the micro-
structural composition of cerebral vessel walls [8, 38, 42] 
(Fig. 2). Clinical relevant characteristics like wall thickness, 
different layers, calcifications, and arteriosclerosis could be 
clearly defined in cerebral arteries, veins, and aneurysms 
[18]. These promising results should lead to further stud-
ies in the field of neurovascular surgery like bypass surgery 
[20].

Arachnoid cyst

Microscope-integrated OCT could demonstrate the mem-
brane of a middle fossa cerebral arachnoid cyst. Transcystic 
OCT at site of the temporal lobe delineated the trabecular 
system of the arachnoid space, inlying cerebral arteries and 
veins as well as the brain cortex. At site of fenestration, OCT 
excluded hidden crucial anatomic structures prior to the dis-
section of the membrane [16].

Peripheral nerves

Intraoperative handheld OCT during peripheral nerve sur-
gery could delineate single bundles of nerve fascicles [6]. 
Image quality was influenced by motion artifacts and wrap-
ping of the imaging probe with sterile foil. Microscope-inte-
grated systems would eliminate these restraints and improve 
the surgical work flow. Clinical relevant data which cor-
relates the rehabilitation potential with intraoperative OCT 
similar to the work published on optic nerve rehabilitation 
are missing {Wilson:2020br}.

Conclusion

Intraoperative OCT offers the possibility to study micro-
anatomy in vivo approaching the resolution of conventional 
histology. Manifold applications could deepen our physi-
ological and pathophysiological understanding; e.g., in case 
of the choroid plexus, OCT videos could elicit mechanisms 
of liquor production in correlation to blood pulse.

Data which proves that microscope-integrated OCT low-
ers the perioperative morbidity or extent of tumor resection 
does not exist.

Experience from our group suggests that the regular use 
of microscope-integrated OCT could increase security dur-
ing certain critical surgical steps. In case of dural dissection 
during transtentorial approaches, tumor resection at mayor 
venous blood vessels like sigmoid sinus, removal of crani-
opharyngiomas, transsulcal preparation, and dissection of 
the Sylvian fissure - OCT could delineate crucial structures 

prior to dissection. Here, augmented reality is needed for 
intuitive integration into the microsurgical workflow.

For microsurgical considerations, it is worth noting that 
valuable OCT scanning is only possible if the surgical tra-
jectory exposes the pathology in an orthograde scanning 
angel. This general principle of microscope-integrated OCT 
is of particular significance during key hole surgery or other 
narrow approaches, e.g., to ramus communicans anterior 
aneurysms or supracerebellar infratentorial approaches to 
the pineal region.

Integration of OCT in endoscopy could aid surgeries with 
no access for real-time imaging methods like sonography. In 
case of hypophyseal surgery, OCT might define concealed 
hypophyseal arteries, cavernous sinus walls, and inlying 
structures as well as tumor and hypophyseal tissue to extend 
resection while lowering perioperative morbidity.

Combinations of OCT and minimal invasive needle 
devices seem to hold promise in tumor surgery. Biopsy 
needles with integrated forward and lateral viewing probes 
could lower perioperative morbidity by securing blood 
vessels and functional relevant brain structures as well as 
control biopsy positioning. Combination of OCT and laser 
ablation further offers the possibility to perform “optic biop-
sies” and adapt the coagulation process in real time. In the 
emerging field of minimal invasive surgery, these systems 
might gain further relevance.

OCT offers unprecedented quality to delineate the micro-
structural composition of vessel walls and their patholo-
gies. In aneurysm surgery, OCT of the neck of the aneurysm 
could help to aid clip placement in relation to intravascular 
arteriosclerosis, thrombosis, aneurysm wall thickness, and 
vessel wall calcifications—characteristics and pathologies 
which were concealed so far. In case of bypass surgery 
OCT would be an imaging method which could aid to deter-
mine optimal site of bypass in correlation to vessel wall 
pathologies.

Neuroscientific advancements like diffusion-dependent 
OCT for functional brain imaging have not yet found clini-
cal applications. Brain pulsation and vessel artifacts as well 
as intermodality validation with hemodynamic and elec-
trophysiological measurements still inhibit clinical transfer 
[32].

Spatial resolution of polarization-sensitive OCT lays yet 
beyond the scope of manual microsurgery. If robotic sur-
gery further develops, OCT might gain novel importance as 
a real-time distance measuring tool.
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