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Abstract

That amino acid properties are responsible for the way protein molecules evolve is natural and is also reasonably well
supported both by the structure of the genetic code and, to a large extent, by the experimental measures of the amino acid
similarity. Nevertheless, there remains a significant gap between observed similarity matrices and their reconstructions from
amino acid properties. Therefore, we introduce a simple theoretical model of amino acid similarity matrices, which allows
splitting the matrix into two parts – one that depends only on mutabilities of amino acids and another that depends on
pairwise similarities between them. Then the new synthetic amino acid properties are derived from the pairwise similarities
and used to reconstruct similarity matrices covering a wide range of information entropies. Our model allows us to explain
up to 94% of the variability in the BLOSUM family of the amino acids similarity matrices in terms of amino acid properties.
The new properties derived from amino acid similarity matrices correlate highly with properties known to be important for
molecular evolution such as hydrophobicity, size, shape and charge of amino acids. This result closes the gap in our
understanding of the influence of amino acids on evolution at the molecular level. The methods were applied to the single
family of similarity matrices used often in general sequence homology searches, but it is general and can be used also for
more specific matrices. The new synthetic properties can be used in analyzes of protein sequences in various biological
applications.
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Introduction

The connection between amino acid properties and molecular

evolution was proposed very soon after the discovery of the latter

[1–4]. It has been shown that the most frequently occurring single

nucleotide mutations of DNA lead to amino acid changes that

conserve certain amino acid properties [3,5]. It has also been

suggested that this property of the genetic code was acquired in the

process of evolution – the code itself evolved to minimize changes

in important properties of amino acids upon mutation [5–10].

Those mutations which conserve important residue properties are

much more likely to preserve the structure and function of protein,

than those which dramatically change these properties. Therefore,

the importance of the amino acid properties should be reflected in

the data on the actual mutations of proteins. Such data can be

collected in the laboratory by studying the effects of mutations on

protein activity in numerous mutants of various proteins. These

mutants can be obtained via site-directed mutagenesis, and one

can measure directly how mutations affect protein activity [11,12].

However, the amount of work necessary to perform such analysis

limits practical application of this approach, since only a small

subset of all possible combinations of mutations can be studied in

this way. One can also study the mutational experiments

performed by Nature, using proteins from all living organisms as

experimental material. The evolving proteins retain their structure

and function, so by studying the mutations occurring in natural

sequences, and observing which properties are conserved in these

mutations, one may find which properties are indeed important.

Compact and synthetic information on the mutations occurring in

nature is available in the form of amino acid similarity matrices

(AASMs). Originally introduced by Dayhoff and Eck in 1968 [13],

the AASMs were subsequently developed by several researchers.

These matrices are used for measuring the similarity of proteins by

algorithms such as Smith-Waterman [14] or BLAST [15].

Currently, the most often used are of two types: PAM [16], based

on the original approach of Dayhoff and Eck, and BLOSUM [17]

introduced in 1992, which is based on a slightly different method.

It has been shown that AASMs correlate quite strongly with the

amino acid properties [18]. It has also been shown that mutation

matrices specific to given protein families can exhibit even stronger

correlations [19]. These findings are good evidence supporting the

role amino acid properties play in molecular evolution.

Nevertheless, while the fact that the properties of amino acids

are decisive in determining protein structure, function and

evolution on the molecular level is now universally accepted,

and even considered self-evident, the support for the last thesis is

not yet satisfactory. The structure of the genetic code might have

arisen as a result of an evolutionary process that minimized errors

introduced by single-step non-synonymous codon mutations, but

this is still disputed [20] and alternative theories for the

explanation of the genetic code structure are being investigated

[21–25]. Also, only up to 85% of the variability within AASMs is

explained by the model which relates distance matrices created

from the differences in chemical properties of amino acids to
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similarity matrices [18], leaving the remainder unexplained. As

early as 1965 Zuckerkandl and Pauling [1], stated ‘‘apparently

chemists and protein molecules do not share the same opinions

regarding the definition of the most prominent properties of a

residue’’. This remains true to a large extent also today, despite the

hundreds of various amino acid descriptors proposed up to date.

In the current paper we propose to apply the inverse

engineering approach to find the connections between evolution-

ary and chemical properties of amino acids. In this approach first

we build the simple model of amino acids evolution that allows us

to represent AASM as a sum of two matrices – one that depends

only on global properties of amino acids (mutabilities), and the

other that depends on similarity between amino acids. Then we

derive fundamental vectors describing the second matrix and

compare them with the amino acid properties. We also analyse

similarities between these fundamental vectors obtained from all

matrices in the series of BLOSUM matrices. Finally we

reconstruct entire series of BLOSUM matrices with high fidelity

using single set of fundamental vectors.

Materials and Methods

Amino acid similarity matrices
The AASM is a compact representation of molecular evolution.

It has been shown by Altschul [26], that all AASM can be

represented in the following way:

Sik~a log
fik

fifk
, ð1Þ

where Sik is the matrix element fi and fk are the background

frequencies of the i-th and k-th amino acid and fik is the frequency

of exchange between them. Generally it is impossible to tell the

direction of mutations, hence it is assumed that observed

frequencies are the sum of mutations in both directions. It follows

that

fik~fki: ð2Þ

One should note that the diagonal and off-diagonal elements of

the matrices represent different types of information. The diagonal

terms correspond to the observed levels of conservation of amino

acids. Thus the diagonal term is a property of a single amino acid

that measures how similar it is on average to all other amino acids.

The off-diagonal terms are on the other hand related with the

similarity between amino acids. Nevertheless, one should note that

the differences between mutabilities of amino acids are also

reflected in the off-diagonal terms.

The most often used similarity matrices are those that are

offered as choices in the BLAST service from NCBI. They belong

either to the PAM (PAM30, PAM70 and PAM250) or BLOSUM

(BLOSUM90, BLOSUM80, BLOSUM62, BLOSUM50 and

BLOSUM45) family of matrices. The PAM30 and PAM70

matrices are suitable mostly for searches of very short sequences

with high similarity, whereas PAM250 is present mostly for

historical reasons – it has been the most often used matrix before

introduction of modern BLOSUM series.

PAM matrices are obtained as an extrapolation from the

mutations observed in the closely related proteins, whereas

BLOSUM matrices were derived from direct observation of

mutations in conserved sequence blocks in proteins of variable

similarity. The exchange frequencies fik in BLOSUM matrices are

obtained from direct observation, whereas in the PAM matrices

the more elaborate procedure was applied for their derivation.

Nevertheless, it can be shown that the final result of PAM

procedure can be written in form of Eq. 1.

The BLOSUM matrices are generally considered superior to

PAM matrices and are recommended for BLAST searches.

BLOSUM62 in particular is considered the best matrix for wide

range of similarities and query lengths and is the default choice in

BLAST, but can be replaced by BLOSUM80 for short queries and

BLOSUM45 for searches of weakly similar sequences. The ordinal

number attached to BLOSUM name is the level of clustering that

was applied to the BLOCKS database before derivation of the

BLOSUM matrix. All sequences that have a similarity higher than

the x% are represented by a single averaged entry in the clustered

database used for derivation of BLOSUMx matrix.

Therefore the analysis performed in the current study was

limited to the BLOSUM family of matrices. The analysis covered

the entire range of matrices from BLOSUM100 to BLOSUM30,

with step 5, and additionally the BLOSUM62 matrix. The

matrices that are most often used in similarity searches are scaled

and rounded to the nearest integer, however, the rounding

procedure introduces an unnecessary source of error when

correlations with properties are studied. Therefore the non-

rounded versions of the matrices were used in the current study.

The notions of mutability and relative mutability introduced for

derivation of PAM matrices are useful for the current study. The

mutability of amino acid k is defined here as:

mk~

P
i;i=k

AikP
i

Aik

~

P
i;i=k

Aik

Nk

~

P
i;i=k

Aik
N

Nk=N
~

P
i;i=k

fik

fk
, ð3Þ

where Aik is the number of counts of i-th and k-th amino acid in the

same position within the conserved block of alignments; Nk is the

number of counts of k-th amino acid in the data set and N is the

total number of counts of all amino acids in the data set. The

relative mutability was defined by Dayhoff et al arbitrarily in

relation to the mutability of alanine:

rk~100
mk

mAla

: ð4Þ

Figure 1. Squares of correlation coefficients between eigen-
vectors obtained from Bx matrix with the eigenvectors
obtained from the B100 matrix.
doi:10.1371/journal.pone.0098983.g001
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Both mutability and relative mutability were defined in the context

of the original data set used for derivation of PAM matrices. In the

current study mutability the Eq. 3 is used to define mutability

corresponding to any similarity matrix defined by Eq. 1. The

relative mutability r is redefined with respect to the average

mutability of all amino acids in this data set:

Table 1. Eigenvectors of BLOSUM100 matrix.

Amino Acid EV1 EV2 EV3 EV4 EV5 EV6

A 0.2167 0.0494 0.2345 0.2496 0.3504 0.0594

R 0.2217 0.1822 20.1103 20.2950 0.3594 20.0954

N 0.2220 0.2619 20.0224 0.1362 20.3214 20.0092

D 0.2335 0.3024 0.0104 0.0710 20.5125 0.0622

C 0.1740 20.1616 0.1909 0.3443 0.0324 20.0252

Q 0.2156 0.1984 20.1189 20.2772 0.0783 20.0669

E 0.2347 0.2812 20.0080 20.1963 20.2618 20.0964

G 0.2129 0.1650 0.0657 0.3523 0.1910 20.1504

H 0.1973 0.1346 20.3638 20.0206 20.0967 0.3454

I 0.2767 20.3426 0.2297 20.1713 20.2171 0.0951

L 0.2155 20.3112 0.1009 20.2111 20.0415 20.0337

K 0.2406 0.2288 20.0198 20.3078 0.2746 0.1417

M 0.2452 20.2356 0.0993 20.2999 0.0457 20.1522

F 0.2198 20.3142 20.3134 0.1276 20.0529 0.3275

P 0.2284 0.1107 0.1136 0.0077 0.2651 20.0406

S 0.2188 0.1508 0.1584 0.3135 0.0865 0.0028

T 0.2099 0.0324 0.2244 0.1616 20.0884 0.0402

W 0.2059 20.2112 20.3941 0.1733 0.1718 0.3719

Y 0.2121 20.1937 20.4991 0.1724 20.0492 20.7234

V 0.2515 20.2746 0.2843 20.0978 20.1181 20.0385

doi:10.1371/journal.pone.0098983.t001

Table 2. The variance explained by the eigenvectors in reconstructed BLOSUM matrices.

Number of eigenvectors

Blosum 0 1 2 3 4 5

100 16,9% 19,7% 68,8% 84,5% 91,7% 94,2%

95 16,8% 19,5% 69,7% 85,0% 92,0% 94,3%

90 16,7% 19,2% 69,8% 85,2% 91,7% 93,9%

85 17,0% 19,4% 70,1% 85,4% 91,8% 93,9%

80 17,8% 19,9% 70,1% 85,5% 91,6% 93,6%

75 17,5% 19,1% 69,6% 85,2% 91,3% 93,2%

70 17,5% 19,0% 69,4% 84,7% 91,1% 93,0%

65 17,9% 19,0% 69,1% 84,5% 91,0% 92,9%

62 19,3% 20,1% 68,2% 83,9% 90,0% 91,9%

60 19,7% 20,5% 68,5% 84,0% 90,3% 92,2%

55 20,2% 20,7% 68,1% 83,9% 89,8% 91,5%

50 22,1% 22,6% 67,7% 82,0% 86,9% 87,6%

45 23,8% 24,4% 65,3% 78,2% 83,2% 84,3%

40 17,7% 18,7% 55,2% 68,5% 72,9% 73,3%

35 6,9% 7,6% 37,8% 46,3% 47,3% 47,6%

30 5,4% 7,4% - - - -

The fraction of variance in an original BLOSUM matrix explained by reconstruction carried out with the eigenvectors of BLOSUM100 matrix. The number of eigenvectors
varied between 0 (the reconstruction using the non-specific G-matrix only) and 5.
doi:10.1371/journal.pone.0098983.t002
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rk~
mk

M
with M~

P
i,j;i=j

AijP
i,j

Aij
~

X
i,j;i=j

f ij: ð5Þ

The Eq. 5 is more general than the original definition of Dayhof

and co-workers.

Any similarity matrix defined by Eq. 1 can be transformed to

the following form

Sik~a log
fik

fifk
~a log

P
k;i=k

fik

fi

P
i;i=k

fik

fk

fikP
i;i=k

fik
P

k;k=i

fik

0
B@

1
CA, ð6Þ

and taking into account Eq. 3 this can be rewritten as:

Sik~a log mimk
fikP

i;i=k

fik
P

k;k=i

fik

0
B@

1
CA: ð7Þ

Therefore one can decompose the similarity matrix into two

terms

Sik~Ski~a log mimkð ÞzaDik, ð8Þ

Figure 2. Squares of correlation coefficients between the of-diagonal elements of Bx matrices and their reconstructions. The i-th
model of each matrix is reconstructed using i eigenvectors. The reconstruction with i = 0 is limited to G-matrix, the remaining models use
eigenvectors EVi (i = 1…6). The left panel displays entire range of r2, the right panel is a close-up for r2 larger than 0.8.
doi:10.1371/journal.pone.0098983.g002

Figure 3. The relative quality of the reconstructed matrices. The value on Y-axis is a fraction of best possible reconstruction achieved by the
model. It is estimated as a fraction of r2 achieved in reconstruction with eigenvectors derived from B100 and r2 obtained in reconstruction with its own
eigenvectors. The left panel displays entire range of Y, the right panel is a close-up for Y larger than 0.9.
doi:10.1371/journal.pone.0098983.g003

Amino Acid Properties and Molecular Evolution

PLOS ONE | www.plosone.org 4 June 2014 | Volume 9 | Issue 6 | e98983



with Dik defined as:

Dik~ log
fikP

i;i=k

fik
P

k;k=i

fik

0
B@

1
CA: ð9Þ

Both terms in the Eq. 7 depend on the evolutionary divergence

of the underlying mutation matrix. One can remove this

dependence from the first term by rewriting the Eq. 6 in terms

of relative mutabilities, defined in the Eq. 4 in the following way:

Sik~a log rirk
M2fikP

i;i=k

fik
P

k;k=i

fik

0
B@

1
CA: ð10Þ

Consequently, the similarity matrix S can be expressed as

Sik~Ski~a log rirkð ÞzaDik, ð11Þ

with Dik defined as

Dik~ log
M2fikP

i;i=k

fik
P

k;k=i

fik

0
B@

1
CA~ log

fik

pipk

� �
, ð12Þ

where pi is defined as a fraction of mutations involving i-th amino

acid in all mutations:

pi~
X
k;k=i

fik

,
M: ð13Þ

One can notice that both Dik and Dik are proportional to the

logarithm of odds of mutation frequencies. The first term in Eq. 8

and Eq. 11 does not depend on the specific pair-wise similarities

between amino acids. The second term describes pair similarity

between the i-th and k-th amino acid. It is not clear a priori,

whether Eq. 8 or rather Eq. 11 is better suited for the purpose of

our study, thus both equations were examined.

As demonstrated above, the original AASM can be decomposed

into two parts. The first one is further referred to as G-matrix,

since it is obtained in terms of amino acid mutabilities that are

global properties of single amino acids. The second one describes

pair-wise similarities and is further referred to as P-matrix. In

matrix notation:

Bx~GxzPx, ð14Þ

where Bx is the BLOSUMx matrix, Gx is the G-matrix and Px is

the P-matrix obtained from Bx. In the absence of preferences

between any pair of amino acids the G matrix would still be non-

uniform, unless the mutabilities of amino acids were all equal.

Amino acid properties
It has previously been established that the polarity, hydropho-

bicity and size of amino acids are correlated with the AASMs

[2,4,6,8,18]. Despite the numerous proposed descriptors for

polarity, size and hydrophobicity, the right set for describing

protein evolution has not been found. There is no fundamental

reason why the properties that we can measure should be the most

convenient ones for modelling the process of evolution.

Table 3. Optimised coefficients for matrix reconstruction for final models.

BLOSUM matrix N E1 E2 E3 E4 E5

100 5 223.28 13.61 7.78 5.07 2.98

95 5 222.17 13.44 7.49 4.89 2.78

90 5 221.55 13.05 7.26 4.57 2.58

85 5 220.06 12.67 7.05 4.37 2.46

80 5 217.55 12.01 6.75 4.07 2.30

75 5 214.10 11.50 6.46 3.87 2.16

70 5 212.90 10.96 6.14 3.77 2.09

65 5 29.49 10.31 5.79 3.59 1.95

62 5 27.64 9.41 5.45 3.24 1.80

60 5 212.54 10.05 5.37 3.36 22.20

55 5 24.69 8.19 4.82 2.80 1.48

50 4 23.46 7.26 3.96 2.27 -

45 4 23.77 6.02 3.25 2.02 -

40 4 25.59 5.40 3.29 1.79 -

35 3 27.06 6.25 3.04 - -

30 2* 25.62 4.21 - - -

The N refers to the number of eigenvectors used in the final reconstruction, whereas Ei are the optimised coefficients. In the case of BLOSUM30 the eigenvalues of
BLOSUM30 are used.
doi:10.1371/journal.pone.0098983.t003
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In the current work it is assumed that the currently known

descriptors may not be the most important for evolution. Instead

we propose that synthetic properties that can be derived directly

from the P-matrix are best suited to describe evolution on the

molecular level. To this end the eigenvector decomposition of the

P-matrix is used. The square 20620 matrix P that has linearly

independent columns can be represented in the following form:

P~QLQ{1, ð15Þ

whereQ is the matrix of eigenvectors and L is a diagonal matrix of

eigenvalues. Both Q and L are square 20620 matrices. The i-th

column of the Q matrix (and i-th row of the Q21 matrix) is the i-th

eigenvector of P. The i-th element of the diagonal of matrix L is

the i-th eigenvalue of P. Due to properties of matrix multiplication

the compact formula in Eq. 15 is equivalent to the following sum:

P~
X20
i~1

Li
:EVi6EVi, ð16Þ

where Li is the i-th eigenvalue, EVi is the i-th eigenvector and 6

denotes outer product of vectors. Hence, the P-matrix is

represented as a sum of 20 matrices, each constructed using

single eigenvector and corresponding eigenvalue. The eigenvectors

are ordered according to the absolute value of the corresponding

eigenvalue, therefore the terms of sum in Eq. 16 are also ordered.

Thus truncation of the series at k-th term gives approximation

containing k most important contributions.

We postulate that eigenvectors of P-matrices corresponding to

large eigenvalues are the synthetic properties that best describe

evolution on molecular level.

If this postulate is correct then several consequences should

follow:

1. Firstly, the eigenvectors of matrices in the entire series should

be conserved – the eigenvectors derived from BLOSUM100

matrix should be similar to those derived from BLOSUM45

and even BLOSUM30 matrix.

2. Secondly, it should be possible to define a single set of

eigenvectors that could be used to reconstruct all matrices in

the series with high fidelity.

3. Finally, the eigenvectors should be related with the properties

that have already been identified as important for measuring

similarity between amino acids, such as hydrophobicity,

molecular size or electric charge – the current approach is

not proposed to invalidate earlier work, but to explain earlier

results in a more formal and ordered framework.

To check whether these conditions are indeed fulfilled one

needs to define a basic set of eigenvectors that can be used as a

reference for comparisons and as a base for reconstruction of all

matrices and which can be compared with measured properties of

amino acids. To this end the eigenvectors derived from the B100

matrix were selected. B100 is a high-entropy limit of the BLOSUM

series, and hence by choosing it as a reference one can test

conservation across wide ranges of information entropies. The

same range could possibly be tested by selecting B30 matrix, which

Figure 4. The optimal number of eigenvectors for reconstruc-
tion of the BLOSUM matrices. The optimal number of eigenvectors
was obtained with the help of the Bayesian Information Criterion.
doi:10.1371/journal.pone.0098983.g004

Figure 5. The differences between original BLOSUM62 matrix and its reconstruction. The matrix was reconstructed using G-matrix and 5
eigenvectors derived from BLOSUM100 matrix. The triangle above diagonal displays differences between matrices scaled to half bit units and
rounded, the diagonal and triangle below displays differences between matrices scaled to half bit units and not rounded. The shades of gray
correspond to the differences.
doi:10.1371/journal.pone.0098983.g005
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is the low-entropy limit in the BLOSUM family, however, the B100

matrix is obtained using all information contained in BLOCKS

database, while very little information is left in B30 matrix.

Following the notation for matrices, the set of eigenvectors derived

from the Bx (or more precisely from the Px) is further denoted as

Ex, for example the E62 refers to the set of eigenvectors obtained

from B62 matrix.

Conservation of eigenvectors
To examine the conservation of the eigenvectors across the

entire range of BLOSUM matrices all matrices were decomposed

into sums of the G-matrix and P-matrix. Then for each Bx matrix

the Ex was derived from Px. Then the correlations between all

eigenvectors in Ex with all eigenvectors in E100 were computed.

Finally the correspondence between vectors in the test set and

eigenvectors from B100 was established, that is, for each vector Ex
i

the vector E100
k was found that had the highest correlation value.

One should note that it is not required that corresponding

eigenvectors are identically ordered in Ex and E100 sets. The order

corresponds to the order of eigenvalues that can change between

matrices. Hence it may be necessary to compute more than one

correlation for each eigenvector in a set, to be certain that no

important correlation has been overlooked. The threshold that was

used to identify significant correlations was set at 0.5 for the square

of correlation.

Reconstruction of similarity matrices
The reconstruction procedure was very simple. Each matrix Bx

was reconstructed as a sum of Gx and Px. The P-matrix is

reconstructed using the following formula:

~PPx~
XN
i~1

ai
x
cE

100
i 6

x
cE

100
i , ð17Þ

where ~PPx is the reconstructed Px, ai is a parameter, and the x
cE

100
i

is the eigenvector of the P100 matrix that corresponds to i-th

eigenvector of the Px matrix, N varies between 0 and 8. The initial

value of ai is set equal to the i-th eigenvalue of Px matrix – Lx
i and

the minimization of the difference between Px and ~PPx is

performed using ais as free parameters with the help of the

Newton method.

Model selection
It is a well-known phenomenon that by increasing the number

of parameters in the model, one increases the fidelity of the model

for known data but also increases the chance of over-fitting. Thus,

at some point, by adding extra parameters to the model, fidelity

actually decreases. This is a well-known problem when a model is

developed on a relatively small sample and is then applied to

predict results for unseen data. The rule of thumb is that the

number of data points used for model building has to be at least

one order of magnitude larger than the number of parameters. A

more formal approach was proposed in the form of the so-called

Akaike Information Criterion (AIC) [27] and Bayesian Informa-

tion Criterion (BIC) [28]. The BIC criterion is usually more

restrictive than the AIC and therefore it was used in the current

study. The formula for BIC is:

BIC~n:ln ŝs2err
� �

zk ln nð Þ, ð18Þ

where n is the number of degrees of freedom, k is the number of

parameters in the model, and ŝs2err is the estimate of error variance
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of the model. The first term usually decreases with increased

number of parameters, whereas the second increases. The first is

the optimistic estimate of the model quality, whereas the second

represents pessimistic correction that takes into account the

increased ability of over fitting with increasing number of

parameters. The balance between these terms usually gives a

function with a minimum. To select the best model, one computes

the BIC function for a series of models and then selects the one

with the minimal BIC. This procedure was used to establish the

number of eigenvectors used for reconstruction of the Px matrices,

the number of degrees of freedom was the number of the off-

diagonal elements in the similarity matrices (190).

Correspondence between properties and eigenvectors
The amino acid properties measured experimentally and

derived by theoretical means are collected in the aaindex database

[17]. This database contains descriptors of different origins – some

properties are measured experimentally (such as free energy of

hydration), some other are elementary properties of amino acids

(such as number of bonds in the side-chain), yet some other are

basic properties estimated with theoretical methods (accessible

surface area), whereas some are derived from statistical data

collected from known protein structures. We do not consider the

last category as fundamental and elementary and hence these

properties were manually filtered out from the database before

analysis, leaving the reduced set consisting of 149 properties.

These properties were normalized and the correlation coefficients

with the eigenvectors were computed.

The mean values of the eigenvectors of BLOSUM matrices are

very close to zero. There is one exception to this observation – the

first eigenvector is has an average value 0.223 that is almost equal

to the square root of 1/20. Moreover, the deviations from the

mean value are small – the standard deviation is 0.022. Therefore,

it follows from Eq. 17 that this vector contributes mostly to the

average value of the similarity matrix, with small contribution to

the variance of the model. Taking aside the first eigenvector, for

the remaining eigenvectors 2–20 the correlation of an eigenvector

with a property is equivalent with their scalar product. Therefore,

the set of 19 correlations of a given property with eigenvectors 2–

19 is a set of direction coefficients in 19-dimensional space

spanned on these eigenvectors.

Interpretation in the opposite direction, i.e. interpreting

eigenvectors in terms of known amino acid properties is less

obvious, because properties do not constitute the orthonormal set.

Nevertheless, the large value of the square of the scalar product

between a property and an eigenvector indicates that both vectors

Figure 6. Amino acids in the eigenvector space. Six panels display projections of amino acids on all combinations space spanned on four
eigenvectors: EV2, EV3, EV4 and EV5.
doi:10.1371/journal.pone.0098983.g006
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are strongly related. Another useful measure is the sum of squares

of scalar products of a given property with a range of eigenvectors

– a high value (approaching one) indicates that the given property

can be entirely decomposed into contributions from this set and no

other eigenvectors contribute significantly.

Results

The entire procedure described above was performed for

decomposition of the BLOSUMmatrices using both Eq. 8 and Eq.

11. Results were similar, however, models obtained with the help

of the Eq. 11 were consistently and significantly better that those

obtained from the Eq. 8. Therefore, only results for the former are

presented here.

Conservation of eigenvectors
The first test of the approach described in the previous section is

the conservation of eigenvectors – the ones obtained for the entire

range of BLOSUM matrices should be similar. Figure 1 displays

the squares of correlations between eigenvectors EVi [E100
i and

Exx
k , where Exx

k is the eigenvector with highest correlation with

EVi, i = 1…6. One can see that, contrary to initial expectations,

the best-conserved eigenvector is not the one that corresponds to

the largest eigenvalue, namely the EV1. The curve corresponding

to EV1 is very close to that of EV5. Nevertheless, the next few

eigenvectors follow the expected pattern – the conservation level of

eigenvectors is highest for EV2, then for EV3 and EV4. For all

eigenvectors the correlation level at first decreases very slowly and

then falls rapidly after r2 drops below 0.9. The only eigenvector

that has relatively high correlation for the entire range of entropies

is EV2. It is interesting that correlations are quite good until

vectors obtained from B50 or B45 matrices, which are those with

lowest entropy recommended for similarity searches with BLAST.

We don’t know whether this is just a coincidence or a consequence

of too small information content in these matrices, to make them

suitable both for similarity searches and present type of analysis.

Matrix reconstruction
High stability of the eigenvectors for nearly the whole range of

entropies is one indicator that indeed they may be good

descriptors of properties conserved in evolution. The values of

the first six eigenvectors of the BLOSUM100 matrix, which are

used further as the base set, are listed in Table 1. The next test

undertaken to substantiate the hypothesis was to reconstruct all the

similarity matrices from the BLOSUM series using the single basis

set derived from the B100. The synthetic effects of the reconstruc-

tion for the entire series are presented in Figure 2 and Table 2.

The first observation is that the model that is based on G-matrix

alone explains between 16% and 25% of variability in the

BLOSUM series of matrices. This is by definition achieved

without taking into account any pair-specific information. The

lower values correspond to high entropy matrices and then the

contribution of the non-specific part increases with decreasing

entropy of the matrix until it reaches maximum for B45. Then it

rapidly falls down. The next interesting observation is that the first

eigenvector contributes very little to the variability of the matrix.

The explanation is straightforward – the first eigenvector has very

similar values for all amino acids, as can be seen in Table 1. The

first term in the sum in Eq. 17 corresponds to adding the average

value to all elements of the reconstructed similarity matrix. The by

far highest contribution to the matrix variability is due to the

second eigenvector. The model built with G-matrix and the two

first eigenvectors explains nearly 70% of the variability in most

matrices. This value falls below 60% only for the three matrices

with lowest entropy (B40, B35, B30) and for B30 it falls down to

zero. After adding the third eigenvector the model explains more

than 80% of the variability in most of the matrices. The fourth and

fifth eigenvectors increase the model fidelity above 90%, whereas

the sixth eigenvector adds a relatively small contribution

explaining roughly 1% of variability in BLOSUM matrices.

The proposed model of BLOSUM matrices works well for

matrices in the range spanned by B100 and B45, its quality

decreases for B40 and B35 matrices and it fails for B30 matrix. It is

clearly visible on Figure 3, which displays the quality of the models

of BLOSUM matrices reconstructed with eigenvectors of B100

matrix relative to the reconstruction of the same matrices with

their own eigenvectors. The reconstructions are close to the best

possible for matrices between B100 and B55, the quality decreases

considerably for matrices B50 and B45 and then falls rapidly for

remaining matrices.

The simple use of BIC for selection of the models for matrices

leads to results that are certainly too optimistic for high entropy

matrices, down to BLOSUM 70, see Figure 4. The BIC index was

computed for models built with up to 8 eigenvectors and for all

these matrices the maximum was achieved at 8 eigenvectors. It is

more likely that this result reflects high similarity between high-

entropy matrices than conservation of important properties. For

medium entropy matrices (B65, B62, B60, B55) the BIC index falls

to 5, then it falls to 4 for B50 and B45 and to 3 for B35. The spike at

B40 is most probably a numerical artefact. Finally the value for B30

is meaningless, since the quality of model is very low. The values of

the optimised coefficients in the Eq. 17 that were used to

reconstruct BLOSUM matrices are presented in Table 3.

An example of the results of the reconstruction procedure is

shown in Figure 5. It displays differences between the elements of

the BLOSUM62 matrix and their reconstructions. The upper off-

diagonal part holds values obtained from differences between

integer representation of the matrix, whereas the lower right part

holds the differences between non-rounded variants of the

matrices. The standard representation of this matrix is in half bit

units and rounded to integer. 76 percent of the off-diagonal

elements are reproduced within 0.25 bit from the original value 93

percent within 0.5 bit and 99 percent within 0.75 bit. The figures

that illustrate full sequence of reconstructions for B62 as well as for

B80 and B45 matrices can be found in Figures S1–S20. Both,

numerical value of correlation between original and reconstructed

matrices, as well as visual inspection of the differences, show that

the method works very well.

The final question is how the new synthetic properties compare

with the physical properties known to correlate with AASMs. To

answer this question the correlations of the five eigenvectors

corresponding to highest eigenvalues with properties collected in

the aaindex database were computed. As mentioned earlier, the

correlation coefficient of the normalized property computed with

eigenvector other than the first one is nearly identical with the

scalar product.

The previous results show that meaningful models can be built

using the five eigenvectors with largest eigenvalues. The first

eigenvector does not contribute significantly to the variability of

the matrix, but instead is responsible for elevating its average

value. Nevertheless, the correlation coefficients rki of amino acid

Rk with eigenvectors EVi were computed for i=1…6. The sixth

eigenvector was included to examine whether any properties that

are known to be important could be omitted by limiting the

eigenvector number to five. Then for each property the fraction of

length of the property contained in the 4-dimensional subspace

spanned on the set of four eigenvectors (EV2, EV3, EV4, EV5)

was computed:
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L2
2{5,k~

X5
i~2

r2ik ð19Þ

where L2
2{5,k is the sum of squares of correlation coefficients. Two

properties with highest correlations with each eigenvector are

displayed in the Table 4. The inspection of Table 4 reinforces

earlier results. The eigenvectors 2–5 are indeed strongly correlated

with properties, which are already known to be connected with

AASMs. In particular the EV2 is highly correlated with properties

describing hydrophobicity of the residues, EV3 and EV4 are both

correlated with various measures of the size of the residues, and

EV5 is correlated with residue charge. One may observe that

apparently similarity of both size and shape impacts the accepted

mutations – this is implied due to the correlation of EV3 and EV4

with different descriptors connected with size. The quite strong

correlation of the fifth eigenvector with charge of the residue

shows the role of the electrostatics for mutations. Location of

amino acids in the four-dimensional space spanned on eigenvec-

tors EV2, EV3, EV4 and EV5 is presented in Figure 6.

Two remaining eigenvectors from those examined, namely EV1

and EV6 are not correlated with selected properties to a

substantial extent. For both these eigenvectors the properties that

correlate most strongly with them correlate more strongly with

other eigenvectors. What is more, the maximal correlation is

rather small – in particular in the case of the sixth eigenvector.

This finding independently confirms that five eigenvectors are a

good choice for building the amino acid matrices. While the first

eigenvector does not contribute much to the variance it does

contribute significantly to the average value of reconstructed

matrices and hence should be included. However, the sixth

eigenvector neither contributes much to variance nor is it

correlated with any known property to a significant extent.

It is interesting to notice that the property that is nearly perfectly

aligned with the hyperplane spanned on eigenvectors EV2, EV3,

EV4 and EV5 is polarity, originally introduced by Grantham in

1974 [29] to build a distance matrix for amino acids.

For 122 of amino acid properties, out of 149 that were

examined within the current study, most of their variability is

confined to the hyperplane spanned on eigenvectors EV2…EV5.

The sum of the squares of correlation coefficients L2
2{5,k of these

properties with eigenvectors EV2…EV5 is larger than 0.5. Within

this set 83 properties have L2
2{5,k higher than 0.7 and 54 have it

higher than 0.8. This result clearly shows that properties that were

researched in the literature are strongly biased towards the

hyperspace spanned on the eigenvectors EV2…EV5.

Discussion

The idea of using eigenvalue decomposition for analysis of the

similarity matrices is not new. Kinjo and Nishikawa [30] examined

a series of matrices derived from mutation data in a manner

similar to BLOSUM searching for amino acid properties that are

conserved in evolution. They discovered a transition between two

modes – for closely related proteins the mutability was considered

most important, whereas for distant proteins the hydrophobicity

became more important. The transition was observed for sequence

identity around 30–35 percent, which is the same region where

quality of the matrix reconstruction with the model proposed in

the current study rapidly deteriorates and ultimately fails for

BLOSUM30 matrix.

The singular value decomposition of matrices, which for square

matrices is equivalent to eigenvalue decomposition, was used

recently by Zimmerman and Gibrat [31] in their analysis of amino

acid properties conserved in evolution. They applied it as an

intermediate step in their method aiming at representing amino

acids matrices as scalar products of amino acid property vectors.

In their approach they first obtained a set of vectors and then

correlated them with selected amino acid properties. They used 17

properties and estimated their contributions to BLOSUM and

PAM similarity matrices. A similar approach was proposed

previously by Pokarowski et al. [32] who aimed at reconstruction

of similarity matrices from scalar products of arbitrary vectors.

Our study differs from previous efforts in two key aspects.

Firstly, only mutability and four mutually orthogonal fundamental

properties are used in the model for all matrices, hence the model

developed in the current study is more parsimonious than earlier

approaches. These properties are derived as eigenvectors of

pairwise-specific part of the BLOSUM100 matrix. Moreover, our

approach allows for a more precise estimate of contributions to the

substitution matrices of various properties conserved in the

evolution. In our analysis we explicitly separate the effects of

pair-wise similarities between amino acids from those arising from

mutability, which is a property of a single amino acid. One should

stress, however, that mutability is a special property. As can be

seen in Eq. 3 it depends explicitly on similarities to all other amino

acids, hence it is a derivative of fundamental properties. Indeed, 70

percent of variance in mutability is explained by the five first

eigenvectors. Nevertheless, including mutability explicitly in the

model allows taking into account the collective effects of the

remaining eigenvectors.

The selection of BLOSUM100 matrix as a base was arbitrary,

but the results don’t depend on the selection of a particular matrix.

An identical analysis was performed using BLOSUM62 as a base,

with nearly identical results. The results were actually slightly

better for the low entropy matrices in that case, nevertheless, we

decided to present the results in the current form because selection

of BLOSUM100 is a more conservative approach – the distances

from low entropy matrices to BLOSUM100 are higher than those

to BLOSUM62 matrix.

The newly derived synthetic properties are both orthogonal to

each other and are relevant for interactions between amino acids.

Hence they are better suited to be used in analyses of protein

sequences than either standard physical and chemical properties

or vectors arising from principal component analysis. The physical

and chemical properties are neither orthogonal, nor are they

directly connected with amino acid mutations. While principal

components of the property space are orthogonal, their interpre-

tation is difficult and they strongly depend on the composition of

the database. The eigenvectors of the BLOSUM100 matrix are

derived from the data on amino acid mutations, are orthogonal

and interpretable in terms of known properties. The proposed

model allows to attribute up to 94% of the variability of the off-

diagonal part of similarity matrices to well defined factors.

It is unlikely that more sophisticated models could improve our

results significantly. The success of sequence analysis methods that

are based on the position specific similarity matrices [15], as well

as the demonstrated dependence of mutation probability on local

context [33,34] shows the limits of general models. The

methodology developed in the current study can be also used for

analysis of AASMs derived for more specialised applications, such

as, for example, analysis of membrane proteins [35] or properties

in local protein environments [33] and possibly also for improving

current sequence homology search tools.
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Supporting Information

Figure S1 Reconstruction of the BLOSUM80 matrix – stage 0,

G-matrix and no eigenvectors. The 6 stages of reconstruction of

BLOSUM80 matrix with eigenvectors from BLOSUM100 are

presented in Figures S1-S6. The stage 0 involves the non-specific

G-matrix only, stage 1 involves the first eigenvector of BLO-

SUM100, and k-th stage involves k eigenvectors. For each matrix

the triangle above diagonal displays differences between matrices

scaled to half bit units and rounded, the diagonal and triangle

below displays differences between matrices scaled to half bit units

and not rounded. The shades of gray correspond to the

differences. The gray scale is presented in Figure S7.

(TIF)

Figure S2 Reconstruction of the BLOSUM80 matrix – stage 1,

G-matrix and one eigenvector.

(TIF)

Figure S3 Reconstruction of the BLOSUM80 matrix – stage 2,

G-matrix and two eigenvectors.

(TIF)

Figure S4 Reconstruction of the BLOSUM80 matrix – stage 3,

G-matrix and three eigenvectors.

(TIF)

Figure S5 Reconstruction of the BLOSUM80 matrix – stage 4,

G-matrix and four eigenvectors.

(TIF)

Figure S6 Reconstruction of the BLOSUM80 matrix – stage 5,

G-matrix and five eigenvectors.

(TIF)

Figure S7 The scale for Figures S1-S6. The shades of gray

correspond to the differences between original and reconstructed

matrices. The maximal value for the scale is obtained as the

absolute value of the off-diagonal elements of the original

BLOSUM80 matrix, the minimal value is zero. The scale is

divided equally into ten intervals.

(TIF)

Figure S8 Reconstruction of the BLOSUM62 matrix – stage 0,

G-matrix and no eigenvectors. The 6 stages of reconstruction of

BLOSUM62 matrix with eigenvectors from BLOSUM100 are

presented in Figures S8–S13. The stage 0 involves the non-specific

G-matrix only, stage 1 involves the first eigenvector of BLO-

SUM100, and k-th stage involves k eigenvectors. For each matrix

the triangle above diagonal displays differences between matrices

scaled to half bit units and rounded, the diagonal and triangle

below displays differences between matrices scaled to half bit units

and not rounded. The shades of gray correspond to the

differences. The gray scale is presented in Figure S14.

(TIF)

Figure S9 Reconstruction of the BLOSUM62 matrix – stage 1,

G-matrix and one eigenvector.

(TIF)

Figure S10 Reconstruction of the BLOSUM62 matrix – stage 2,

G-matrix and two eigenvectors.

(TIF)

Figure S11 Reconstruction of the BLOSUM62 matrix – stage 3,

G-matrix and three eigenvectors.

(TIF)

Figure S12 Reconstruction of the BLOSUM62 matrix – stage 4,

G-matrix and four eigenvectors.

(TIF)

Figure S13 Reconstruction of the BLOSUM62 matrix – stage 5,

G-matrix and five eigenvectors.

(TIF)

Figure S14 The scale for Figures S8–S13. The shades of gray

correspond to the differences between original and reconstructed

matrices. The maximal value for the scale is obtained as the

absolute value of the off-diagonal elements of the original

BLOSUM62 matrix, the minimal value is zero. The scale is

divided equally into ten intervals.

(TIF)

Figure S15 Reconstruction of the BLOSUM45 matrix – stage 0,

G-matrix and no eigenvectors. The 5 stages of reconstruction of

BLOSUM45 matrix with eigenvectors from BLOSUM100 are

presented in Figures S15–S19. The stage 0 involves the non-

specific G-matrix only, stage 1 involves the first eigenvector of

BLOSUM100, and k-th stage involves k eigenvectors. For each

matrix the triangle above diagonal displays differences between

matrices scaled to 1/3 bit units and rounded, the diagonal and

triangle below displays differences between matrices scaled to 1/3

bit units and not rounded. The shades of gray correspond to the

differences. The gray scale is presented in Figure S20.

(TIF)

Figure S16 Reconstruction of the BLOSUM45 matrix – stage 1,

G-matrix and one eigenvector.

(TIF)

Figure S17 Reconstruction of the BLOSUM45 matrix – stage 2,

G-matrix and two eigenvectors.

(TIF)

Figure S18 Reconstruction of the BLOSUM45 matrix – stage 3,

G-matrix and three eigenvectors.

(TIF)

Figure S19 Reconstruction of the BLOSUM45 matrix – stage 4,

G-matrix and four eigenvectors.

(TIF)

Figure S20 The scale for Figures S15–S19. The shades of gray

correspond to the differences between original and reconstructed

matrices. The maximal value for the scale is obtained as the

absolute value of the off-diagonal elements of the original

BLOSUM45 matrix, the minimal value is zero. The scale is

divided equally into ten intervals.

(TIF)
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