
NEURAL REGENERATION RESEARCH www.nrronline.org

1650

RESEARCH ARTICLE

Saikosaponin a increases interleukin-10 expression 
and inhibits scar formation after sciatic nerve injury
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Abstract  
Nerve scarring after peripheral nerve injury can severely hamper nerve regeneration and functional recovery. Further, the anti-inflamma-
tory cytokine, interleukin-10, can inhibit nerve scar formation. Saikosaponin a (SSa) is a monomer molecule extracted from the Chinese 
medicine, Bupleurum. SSa can exert anti-inflammatory effects in spinal cord injury and traumatic brain injury. However, it has not been shown 
whether SSa can play a role in peripheral nerve injury. In this study, rats were randomly assigned to three groups. In the sham group, the left 
sciatic nerve was directly sutured after exposure. In the sciatic nerve injury (SNI) + SSa and SNI groups, the left sciatic nerve was sutured and 
continuously injected daily with SSa (10 mg/kg) or an equivalent volume of saline for 7 days. Enzyme linked immunosorbent assay results 
demonstrated that at 7 days after injury, interleukin-10 level was considerably higher in the SNI + SSa group than in the SNI group. Masson 
staining and western blot assay demonstrated that at 8 weeks after injury, type I and III collagen content was lower and nerve scar formation 
was visibly less in the SNI + SSa group compared with the SNI group. Simultaneously, sciatic functional index and nerve conduction velocity 
were improved in the SNI + SSa group compared with the SNI group. These results confirm that SSa can increase the expression of the anti-in-
flammatory factor, interleukin-10, and reduce nerve scar formation to promote functional recovery of injured sciatic nerve.

Key Words: nerve regeneration; saikosaponin a; anti-inflammatory factor; inflammation; interleukin-10; nerve scar; peripheral nerve injury; 
sciatic nerve injury; sciatic functional index; nerve conduction velocity; neuroelectrophysiological function; neural regeneration 

Graphical Abstract   

Saikosaponin a (SSa) promotes functional recovery in rats with sciatic nerve injury

Introduction 
Peripheral nerve injury is a common clinical injury (Li et al., 
2014). Currently, there are many available methods to treat 
peripheral nerve injury such as autologous nerve graft (the 
‘gold standard’) (Masgutov et al. 2018), micro-suture (Leuzzi 

et al., 2014), and tissue-engineered nerve catheter bridges 
(Rbia et al., 2017). However, these methods have limitations 
or side effects, and it is necessary to identify auxiliary meth-
ods to promote peripheral nerve repair and regeneration 
(Rbia et al., 2017). A series of pathophysiological changes 
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occur after peripheral nerve injury including Wallerian de-
generation (Gaudet et al., 2011; Tricaud et al., 2017), apop-
tosis (Zhao et al., 2017), dedifferentiation of Schwann cells 
(Wang et al., 2015), scarring (Lemke et al., 2018), inflam-
mation (Hartlehnert et al., 2017), and edema (Chen et al., 
2015). Inflammation and scarring can hamper regeneration 
of injured nerve, and may even lead to nerve necrosis and 
other severe consequences (Han et al., 2016; Li et al., 2017). 
Moreover, there is evidence showing that the formation of 
scarring after peripheral nerve injury is strongly associated 
with the occurrence of inflammation (Atkins et al., 2007; 
Yao et al., 2018). Therefore, it may be possible to inhibit scar 
formation to promote regeneration and repair of nerve by 
inhibiting inflammation (Atkins et al., 2006). 

Interleukin-10 (IL-10) is the most important anti-in-
flammatory factor, and plays a key role in inflammation 
after peripheral nerve injury (Khan et al., 2015). Once a 
peripheral nerve is injured, Schwann cells and macrophages 
rapidly produce proinflammatory cytokines, leading to in-
flammatory reactions (Mietto et al., 2015). The role of IL-10 
is to reduce and gradually stop inflammation, and provide 
a good microenvironment for regeneration of peripheral 
nerve (Taskinen et al., 2000; Siqueira et al., 2015). Atkins et 
al., (2007) reported that low doses of IL-10 reduces scar for-
mation after sciatic nerve injury (SNI) and promotes axonal 
regeneration. This suggests that drugs that increase IL-10 
expression may inhibit nerve scar formation and promote 
repair of peripheral nerve injury.

Radix Bupleuri is an important herbal medicine in China, 
and used as a traditional medicine in Asia for a number of 
diseases (Yang et al., 2017). Saikosaponin a (SSa) is an im-
portant active saikosaponin of Radix Bupleuri, and plays a 
crucial role in anti-inflammatory (Lu et al., 2012; Zhu et al., 
2013; Fu et al., 2015), antitumor (Kang et al., 2017), antiviral 
(Chen et al., 2015), neuromodulatory, and immunoregula-
tory activities (Yuan et al., 2017). Studies have shown that 
SSa plays an active role in alleviating inflammation (Chen et 
al., 2018), reducing cerebral edema in traumatic brain injury 
rats (Mao et al., 2016), and inhibiting the nuclear factor kap-
pa B inflammatory pathway to relieve neuropathic pain in 
rats (Zhou et al., 2014). However, it has not yet been report-
ed whether SSa can promote repair of peripheral nerve inju-
ry. In this study, we focused on clarifying the role of SSa in 
peripheral nerve injury, and investigated the effect of SSa on 
the inflammatory response and nerve scar formation after 
peripheral nerve injury. Our findings provide a theoretical 
basis for auxiliary repair of SSa for peripheral nerve injury.

Materials and Methods 
Drugs
SSa (purity > 98%; Nanjing Pu Yi Biological Technology Co., 
Ltd., Nanjing, China) was dissolved in 0.9% saline at a ratio 
of 1:1, stored at −20°C, and shaken before each experiment.

Animals
Sixty male Sprague–Dawley rats (aged 6 weeks, weighing 
250–300 g) were purchased from the Academy of Military 

Medical Sciences Laboratory Animal Center, China (license 
No. SCXK [Army] 2012-0004). The rats were housed in 
cages and maintained at 24°C on a standard 12-hour light/
dark cycle (lights on at 7:00 a.m.). Rats had free access to 
food and water until 24 hours before SNI. This study was ap-
proved by the Animal Care and Use Committee of Tianjin 
Medical University, China.

Group assignment and surgical procedures
All rats were randomly assigned to three groups (n = 20), 
and treated with SSa or physiological saline: (1) sham group; 
(2) SNI group: SNI + physiological saline; (3) SNI + SSa 
group: SNI + 5 mg/kg SSa. 

Rats were intraperitoneally anesthetized with 4% chloral hy-
drate (1 mL/100 g; Qingdao Yulong Alga Co., Ltd., Qingdao, 
China). SNI models were generated according to a previous 
method (Horasanli et al., 2017). For each rat, all four limbs 
were fixed in the prone position. After shaving, a longitudinal 
incision was made on the dorsal side of the left lower limb to 
expose the biceps femoris. The biceps femoris was bluntly dis-
sociated to expose the sciatic nerve. The superior segment of 
the sciatic nerve was transected and an epineural neurorrha-
phy was performed with a No.10-0 Prolene suture (Shanghai 
Medical Suture Needle Factory Co., Ltd., Shanghai, China). 
The biceps femoris was sutured using an absorbable suture 
and the skin sutured with silk sutures (Figure 1). After disin-
fecting, the wound was dressed. In the sham group, the mus-
cles and skin were sutured directly after sciatic nerve exposure. 

Rats in the SNI and SNI + SSa groups were injected with 
SSa or saline (at a dose of 10 mg/kg), respectively, at the 
injury site within 15 minutes after operation. Rats were 
injected once daily for 7 days. The dose was decided based 
on drug solubility and a previous study (Zhou et al., 2014). 
Twenty-four hours after surgery, the left lower limb of rats 
in the SNI and SNI + SSa groups had contracted and would 
not move. In contrast, the left lower limb was basically nor-
mal in rats of the sham group. This indicated successful es-
tablishment of our models. 

Sciatic functional index (SFI)
Rat SFI score was evaluated as previously described (Yao et 
al., 2016). At different time points after injury (1, 7, 14, 28, 
and 56 days), hind feet of the rats were dipped in ink, and 
the rats allowed to walk across a plastic tunnel. The foot-
prints were recorded on paper loaded onto the bottom of 
the tunnel. Distance between the top of the third toe and the 
most posterior part of the foot in contact with the ground 
(print length, PL), distance between the first and fifth toes 
(toe spread, TS), and distance between the second and 
fourth toes (intermediary toe spread, ITS) were measured 
on the experimental side (EPL, ETS, and EITS, respective-
ly) and on the contralateral normal side (NPL, NTS, and 
NITS, respectively). SFI was calculated as follows (Bain et 
al., 1989): SFI = 109.5 × (ETS − NTS)/NTS − 38.3 × (EPL − 
NPL)/NPL + 13.3 × (EITS − NITS)/NITS − 8.8.

In general, SFI values of approximately 0 indicated normal 
nerve function and −100 indicated total dysfunction.
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Enzyme linked immunosorbent assay (ELISA)
Seven days after surgery, six rats in each group were sacri-
ficed and the left sciatic nerve removed. The lesion was taken 
as the center, with an overall length of approximately 2 cm. 
Tissue samples were weighed and homogenized in a 1:9 ra-
tio with phosphate-buffered saline, and then centrifuged to 
collect supernatant liquid. Optical density values of sample 
liquid were measured using a rat IL-10 ELISA kit (Lanpai 
Biological Technology Co., Ltd., Shanghai, China) according 
to the manufacturer’s instructions. A concentration histo-
gram was plotted by calculating the concentration of each 
factor in the sample based on a standard curve.

Nerve conduction velocity 
Electrophysiological evaluation was performed on day 56 
after injury. Five rats were selected from each group and the 

left nerve exposed following anesthesia. Briefly, electrical 
stimuli were applied to the injured sciatic nerve site using 
a biological function experimental system (Viasys Solar Se-
cure, Inc., San Diego, CA, USA). The stimulating electrode 
was then moved distally by a fixed 10-mm distance. Com-
pound muscle action potentials were compared with the 
contralateral control nerve, and expressed as percentages. 
Motor nerve conduction velocity was calculated from the 
latency and distance between the two stimulating positions 
(i.e., 10 mm) (Lin et al., 2017). 

Masson staining
Eight weeks after surgery, five rats in each group were sac-
rificed and the left sciatic nerve removed. The lesion was 
taken as the center, with an overall length of approximately 
2 cm. Slices were dewaxed and stained with 10% potassium 
dichromate and 10% trichloroacetic acid for 30 minutes. 
Nuclei were stained with hematoxylin for 20 minutes. Cells 
were differentiated with hydrochloric acid and ethanol for 
15 seconds, returned to blue with weak ammonia for 15 sec-

Figure 1 Modeling schematic.

Figure 2 SSa increased IL-10 level at 7 days after sciatic nerve injury 
in rats (enzyme linked immunosorbent assay).
SSa markedly increased IL-10 expression. Data are expressed as the mean 
± SD (n = 6; one-way analysis of variance followed by the least significant 
difference post-hoc test). *P < 0.05, vs. sham group; ##P < 0.01, vs. SNI 
group. IL-10: Interleukin-10; SNI: sciatic nerve injury; SSa: saikosaponin a. 

Figure 3 SSa reduced nerve scar formation at 8 weeks after sciatic 
nerve injury in rats (Masson staining, optical microscope). 
SSa visibly reduced nerve scar formation. (A) Sham group: Almost no 
collagen fibers; (B) SNI group: lots of collagen fibers; and (C) SNI + SSa 
group: less collagen fibers. Collagen fibers are blue (black arrows) and 
nuclei are red (red arrows). Original magnification, 400×. SNI: Sciatic 
nerve injury; SSa: saikosaponin a.  
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onds, stained with Masson solution (Cell Signaling Technol-
ogy, Irvine, CA, USA) for 1 minute, rinsed with 1% acetic 
acid, and dehydrated with an increasing ethanol series. Sec-
tions were permeabilized with xylene I and II for 10 minutes 
and finally mounted in resin. Collagen fiber proliferation 
in longitudinal sections was observed by light microscopy 
(Olympus, Tokyo, Japan). Cell nuclei were stained red and 
collagen fibers blue. 

Western blot assay 
At 8 weeks after surgery, four rats in each group were sacri-
ficed as described above. Near the injury site, approximately 
1 cm sciatic nerve was collected for further western blot 
assay. Samples were homogenized on ice. Protein samples 
(30 μg) were mixed with sample buffer, supplemented with 
0.0625 M Tris-HCl (pH 6.8), 2% (w/v) sodium dodecyl sul-
fate, 5% (w/v) β-mercaptoethanol, 10% (v/v) glycerin, and 
0.002% (w/v) bromophenol blue for 10% sodium dodecyl 
sulfate-polyacrylamide gel electrophoresis (Zanotto et al., 
2013). After separation, protein samples were transferred 
onto polyvinylidene difluoride membrane for incubation 
at room temperature for 1 hour with rabbit anti-rat type I 
collagen polyclonal antibody (Abcam, Shanghai, China or 

rabbit anti-rat type III collagen polyclonal antibody (Abcam) 
(both diluted to 1:500). After three washes with saline, pro-
tein samples were incubated with anti-rabbit or anti-mouse 
peroxidase-conjugated immunoglobulin (IgG, diluted at 
1:10,000) at room temperature for 1 hour (Desoubeaux et 
al., 2017). Chemiluminescence signal was detected using 
an enhanced chemiluminescence Kit (Beyotime Institute 
of Biotechnology, Nanjing, China) and analyzed using Sci-
onImage software (ImageJ, Bethesda, MD, USA). Rabbit 
anti-rat β-tubulin polyclonal antibody (1:1000; Abcam) was 
used as an internal reference. 

Statistical analysis
Data are expressed as the mean ± SD and were analyzed using 
SPSS 22.0 software (IBM, Armonk, IL, USA). Statistical anal-
ysis was performed using one-way analysis of variance fol-
lowed by the least significant difference post-hoc test. P-values 
less than 0.05 were considered statistically significant.

Results
SSa increased level of anti-inflammatory factor IL-10 after 
SNI
Chen et al. (2015) reported that IL-10 level peaked at 7 days 

Figure 4 SSa reduces expression of type I and III collagen at 8 weeks after sciatic nerve injury in rats. 
SSa markedly reduced expression of type I and III collagen. Types I and III collagen are the main components of nerve scar (Ko et al., 2018). Data 
are expressed as the mean ± SD (n = 4; one-way analysis of variance followed by the least significant difference post-hoc test). *P < 0.05, vs. sham 
group; #P < 0.05, vs. SNI group. SNI: Sciatic nerve injury; SSa: saikosaponin a.

Figure 5 SSa promoted recovery of motor function and nerve conduction function at 8 weeks after sciatic nerve injury in rats.
(A) SSa promoted recovery of motor function; (B) SSa promoted recovery of nerve conduction function at 8 weeks (56 days). Data are expressed as 
the mean ± SD (n = 5; one-way analysis of variance followed by the least significant difference post-hoc test). *P < 0.05, vs. sham group; #P < 0.05, 
vs. SNI group. SNI: Sciatic nerve injury; SSa: saikosaponin a.
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after SNI in rats. Level of IL-10 in the sciatic nerve of three 
groups of rats was examined by ELISA at 7 days after surgery. 
Our results showed normal IL-10 level in the sciatic nerve of 
rats in the sham group, while expression was slightly higher 
in the SNI group compared with the sham group (P < 0.05), 
which may reflect protective immunity in rats. Meanwhile, 
IL-10 level was significantly higher in the SNI + SSa group 
compared with the SNI group (Figure 2; P < 0.01), indicating 
that SSa increases IL-10 expression.

SSa inhibited nerve scar formation after SNI
Nerve scar is the glial scar formed by accumulation of type I 
and III collagen after nerve injury, and which forms a phys-
ical barrier between injured axons and severely hampers 
axonal regeneration (Benga et al., 2017). Masson staining 
detected nerve scar formation in all three groups of rats at 
8 weeks after surgery. Further, the amount of type I and III 
collagen was determined by western blot assay. The Masson 
staining results showed almost no blue collagen fibers in the 
sham group, suggesting there was no neural scarring. How-
ever, many blue collagen fibers were detected in the SNI 
group (Figure 3). Compared with the SNI group, the num-
ber of blue collagen fibers was considerably reduced in the 
sciatic nerve of the SNI + SSa group, but also markedly in-
creased compared with the sham group. These results indi-
cate that SSa reduced nerve scar formation after SNI in rats. 
Moreover, western blot assay results showed that expression 
of type I and III collagen was significantly increased in the 
SNI group compared with the sham group, while expression 
was significantly decreased in the SNI + SSa group com-
pared with the SNI group (Figure 4; P < 0.05). Altogether, 
Masson staining and western blot assay results indicate that 
treatment with SSa reduces nerve scar formation after SNI 
in rats. 

SSa promoted recovery of lower extremity motor function 
and neurophysiological function
SFI was used to assess recovery of lower extremity motor 
function at various time points after SNI. Additionally, 
nerve conduction velocity was used to assess recovery of 
neurophysiological function at 8 weeks after surgery. Rats 
in the sham group had a slightly lower SFI value at only 1 
week after surgery because of trauma caused by sciatic nerve 
exposure and its slightly worsened motor function. After 
this, the SFI value began to rise and was almost close to 0, 
indicating that lower extremity motor function returned to 
normal in rats of the sham group. In the first two weeks after 
surgery, the SFI value of rats in both the SNI group and SNI 
+ SSa group was low and close to −100, indicating almost 
complete loss of motor function in the lower extremities. 
Thus, the SNI model was successfully established in both 
groups. However, at 4 and 8 weeks after surgery, higher than 
before SFI values were found in the SNI + SSa group and 
SNI group, indicating gradual recovery of motor function. 
Meanwhile, SFI value was higher in the SNI + SSa group 
than SNI group (Figure 5A; P < 0.05). Thus, SSa promotes 
recovery of lower extremity motor function. Neurophysio-

logical function of rats in all three groups was also evaluated 
at 8 weeks after surgery. These results found normal nerve 
conduction velocity of rats in the sham group, indicating 
normal sciatic nerve function. Furthermore, nerve conduc-
tion velocity was lower in rats from the SNI group and SNI 
+ SSa group than the sham group. While nerve conduction 
velocity was higher in rats of the SNI + SSa group than the 
SNI group, indicating improved recovery of sciatic nerve 
function in the SNI + SSa group compared with the SNI 
group (Figure 5B; P < 0.05). Altogether, this suggests that 
SSa promotes recovery of lower extremity motor function 
and neurophysiological function. 

Discussion
Inflammation and scarring after peripheral nerve injury 
play the dual role of inhibiting and promoting nerve regen-
eration (Barton et al., 2017). In the early stage of injury, the 
release of inflammatory cytokines and scar formation are 
a self-protective response (Ngeow, 2010; Lang et al., 2014). 
However, once the inflammatory factors accumulate in large 
quantities and scar tissue further forms, nerve regeneration 
is inhibited (Benga et al., 2017). 

Inflammation includes recruitment of inflammatory cells 
and release of inflammatory cytokines (Dubový et al., 2013). 
Schwann cells express proinflammatory factors and chemok-
ines immediately after peripheral nerve injury. These factors 
trigger recruitment and activation of macrophages, which 
are the major cells that express the anti-inflammatory cyto-
kine, IL-10. IL-10 can inhibit pro-inflammatory cytokines to 
exert an anti-inflammatory effect (Potas et al., 2015; Wang 
et al., 2015; Chen and Jin, 2016; Hartlehnert et al., 2017). Si-
multaneously, IL-10 facilitates nerve regeneration and func-
tional recovery after peripheral nerve injury (Fregnan et al., 
2012). Siqueira et al. (2015) investigated the role of IL-10 in 
the inflammatory response and functional recovery after pe-
ripheral nerve injury. They found that IL-10-deficient mice 
failed to rapidly reduce expression of pro-inflammatory 
cytokines, with recovery function and axonal regeneration 
affected. Our ELISA results showed increased IL-10 expres-
sion in the SNI + SSa group at one week after SNI in rats, 
whereas IL-10 expression was only slightly increased in the 
SNI group compared with the sham group. We believe that 
SSa increases IL-10 expression, while a slight increase of IL-
10 in the SNI group might reflect the rat immune response 
to injury. Simultaneously, our SFI and nerve conduction 
velocity results showed that SSa promoted recovery of lower 
extremity motor function and neurophysiological function. 
Therefore, we conclude that SSa increases IL-10 expression 
and promotes recovery of neurological function.

Inflammatory responses occur after peripheral nerve inju-
ry. Fibroblasts in the resting state largely activate, proliferate, 
and produce many type I and III collagens (da Silva et al., 
2017; Li et al., 2018). The extracellular matrix formed by col-
lagen accumulates in tissue and is not easily absorbed by the 
body, resulting in scar formation and inhibition of axonal 
regeneration (Hara et al., 2017). Nerve scar formation not 
only prevents passage of regenerative axons, but also causes 
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the nerve and surrounding tissue to become adhesive, result-
ing in ischemic nerve changes and further damage (Ko et al., 
2018). Consequently, inhibiting scar formation can promote 
repair and regeneration of peripheral nerve (Li et al., 2018). 
Xue et al. (2016) reported that calcium channel blockers in-
hibit nerve scar formation, and promote functional recovery 
and nerve regeneration in sciatic nerve injured rats. Li et al. 
(2016) produced a methylprednisolone microsphere sus-
tained-release membrane to repair the injured sciatic nerve 
of rats, and found that it effectively inhibited scar formation 
and promoted nerve regeneration. Our western blot results 
showed type I and III collagen content was considerably 
higher in the SNI group than the sham group, while it was 
lower in the SNI + SSa group than the SNI group. Therefore, 
treatment with SSa inhibits scar formation. Further, our 
Masson staining results are consistent with the western blot 
assay. 

A study has shown a direct relationship between scar for-
mation and release of inflammatory cytokines (Atkins et al., 
2007). Among them, pro-inflammatory cytokines such as 
tumor necrosis factor-α and interleukin-6 promote nerve 
scar formation, while anti-inflammatory factors such as IL-
10 inhibit nerve scar formation (Khan et al., 2017). Atkins 
et al., (2007) injected IL-10 locally into SNI mice, and found 
that IL-10 reduced nerve scar formation and promoted ax-
onal regeneration and functional recovery. Sakalidou et al., 
(2011) injected IL-10 into end-to-side peroneal/tibial nerve 
lesion model rats, and found that IL-10 reduced scar forma-
tion and enhanced nerve regeneration. Ngeow et al. (2011) 
injected IL-10 peptide fragment locally into the SNI site of 
C57/B6 mice, and again found that IL-10 reduced nerve scar 
formation and enhanced nerve regeneration. Therefore, we 
speculate that after SNI in rats, SSa inhibits formation of 
neural scarring and promotes recovery of neurological func-
tion by increasing IL-10 expression. 

In summary, SSa can promote recovery of motor and 
nerve conduction function in SNI rats by increasing expres-
sion of the anti-inflammatory cytokine, IL-10, and inhib-
iting nerve scar formation. In this study, we enriched the 
methods to repair peripheral nerve injury. However, we did 
not determine whether SSa inhibits nerve scar formation 
by increasing IL-10 expression, which still needs to be con-
firmed by further investigation. 
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